Outline

• What are grouping problems in vision?

• Inspiration from human perception
 – Gestalt properties

• Bottom-up segmentation via clustering
 – Algorithms:
 • Mode finding and mean shift: k-means, mean-shift
 • Graph-based: normalized cuts
 – Features: color, texture, …
 • Quantization for texture summaries
Grouping in vision

• Goals:
 – Gather features that belong together
 – Obtain an intermediate representation that compactly describes key image or video parts
Examples of grouping in vision

Determine image regions

Group video frames into shots

Figure-ground

Object-level grouping

Kristen Grauman
Grouping in vision

• Goals:
 – Gather features that belong together
 – Obtain an intermediate representation that compactly describes key image (video) parts

• Top down vs. bottom up segmentation
 – Top down: pixels belong together because they are from the same object
 – Bottom up: pixels belong together because they look similar

• Hard to measure success
 – What is interesting depends on the app.
Muller-Lyer illusion
What things should be grouped?
What cues indicate groups?
Gestalt

• Gestalt: whole or group
 – Whole is greater than sum of its parts
 – Relationships among parts can yield new properties/features

• Psychologists identified series of factors that predispose set of elements to be grouped (by human visual system)
Similarity

Kristen Grauman
Symmetry

Kristen Grauman
Common fate

Image credit: Arthus-Bertrand (via F. Durand)

Kristen Grauman
Proximity

Kristen Grauman
http://www.capital.edu/Resources/Images/outside6_035.jpg
Some Gestalt factors

- Not grouped
- Proximity
- Similarity
- Similarity
- Common Fate
- Common Region
- Parallelism
- Symmetry
- Continuity
- Closure
Illusory/subjective contours

Interesting tendency to explain by occlusion

In *Vision*, D. Marr, 1982
Continuity, explanation by occlusion
D. Forsyth
Figure-ground
Grouping phenomena in real life

Forsyth & Ponce, Figure 14.7
Grouping phenomena in real life

Forsyth & Ponce, Figure 14.7
Gestalt

• Gestalt: whole or group
 – Whole is greater than sum of its parts
 – Relationships among parts can yield new properties/features

• Psychologists identified series of factors that predispose set of elements to be grouped (by human visual system)

• Inspiring observations/explanations; challenge remains how to best map to algorithms.
Outline

• What are grouping problems in vision?

• Inspiration from human perception
 – Gestalt properties

• Bottom-up segmentation via clustering
 – Algorithms:
 • Mode finding and mean shift: k-means, mean-shift
 • Graph-based: normalized cuts
 – Features: color, texture, …
 • Quantization for texture summaries
The goals of segmentation

Separate image into coherent “objects”

Source: Lana Lazebnik
The goals of segmentation

Separate image into coherent “objects”

Group together similar-looking pixels for efficiency of further processing

“superpixels”

Image segmentation: toy example

- These intensities define the three groups.
- We could label every pixel in the image according to which of these primary intensities it is.
 - i.e., segment the image based on the intensity feature.
- What if the image isn’t quite so simple?
Now how to determine the three main intensities that define our groups?

We need to cluster.
• Goal: choose three “centers” as the representative intensities, and label every pixel according to which of these centers it is nearest to.

• Best cluster centers are those that minimize SSD between all points and their nearest cluster center c_i:

$$\sum_{clusters \ i} \sum_{points \ p \ in \ cluster \ i} \|p - c_i\|^2$$

Kristen Grauman
Clustering

• With this objective, it is a “chicken and egg” problem:
 – If we knew the **cluster centers**, we could allocate points to groups by assigning each to its closest center.
 – If we knew the **group memberships**, we could get the centers by computing the mean per group.
K-means clustering

- Basic idea: randomly initialize the k cluster centers, and iterate between the two steps we just saw.
 1. Randomly initialize the cluster centers, c_1, \ldots, c_K
 2. Given cluster centers, determine points in each cluster
 - For each point p, find the closest c_i. Put p into cluster i
 3. Given points in each cluster, solve for c_i
 - Set c_i to be the mean of points in cluster i
 4. If c_i have changed, repeat Step 2

Properties
- Will always converge to some solution
- Can be a “local minimum”
 - does not always find the global minimum of objective function:

$$\sum_{\text{clusters } i} \sum_{\text{points } p \text{ in cluster } i} \|p - c_i\|^2$$

Kristen Grauman

Source: Steve Seitz
K-means

1. Ask user how many clusters they’d like. *(e.g. k=5)*
K-means

1. Ask user how many clusters they’d like. (*e.g.* $k=5$)

2. Randomly guess k cluster Center locations
K-means

1. Ask user how many clusters they’d like. *(e.g. k=5)*

2. Randomly guess k cluster Center locations

3. Each datapoint finds out which Center it’s closest to. (Thus each Center “owns” a set of datapoints)
K-means

1. Ask user how many clusters they’d like. *(e.g. k=5)*
2. Randomly guess k cluster Center locations
3. Each datapoint finds out which Center it’s closest to.
4. Each Center finds the centroid of the points it owns
K-means

1. Ask user how many clusters they’d like. *(e.g. k=5)*

2. Randomly guess k cluster Center locations

3. Each datapoint finds out which Center it’s closest to.

4. Each Center finds the centroid of the points it owns...

5. ...and jumps there

6. ...Repeat until terminated!
K-means clustering

• Java demo:
 http://kovan.ceng.metu.edu.tr/~maya/kmeans/index.html
 http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html
K-means: pros and cons

Pros
- Simple, fast to compute
- Converges to local minimum of within-cluster squared error

Cons/issues
- Setting k?
- Sensitive to initial centers
- Sensitive to outliers
- Detects spherical clusters
- Assuming means can be computed
Segmentation as clustering

Depending on what we choose as the feature space, we can group pixels in different ways.

Grouping pixels based on intensity similarity

Feature space: intensity value (1-d)

Kristen Grauman
Quantization of the feature space; segmentation label map

```matlab
img_as_col = double(im(:));
cluster_membs = kmeans(img_as_col, K);

labelim = zeros(size(im));
for i=1:k
    inds = find(cluster_membs == i);
    meanval = mean(img_as_column(inds));
    labelim(inds) = meanval;
end
```

Kristen Grauman
Segmentation as clustering

Depending on what we choose as the feature space, we can group pixels in different ways.

Grouping pixels based on color similarity

Feature space: color value (3-d)

Kristen Grauman
Segmentation as clustering

Depending on what we choose as the feature space, we can group pixels in different ways.

Grouping pixels based on intensity similarity

Clusters based on intensity similarity don’t have to be spatially coherent.

Kristen Grauman
Segmentation as clustering

Depending on what we choose as the *feature space*, we can group pixels in different ways.

Grouping pixels based on **intensity**+**position** similarity

![Diagram](image)

Both regions are black, but if we also include **position** \((x,y)\), then we could group the two into distinct segments; way to encode both similarity & proximity.
Segmentation as clustering

• Color, brightness, position alone are not enough to distinguish all regions…

Kristen Grauman
Segmentation as clustering

Depending on what we choose as the \textit{feature space}, we can group pixels in different ways.

Grouping pixels based on \textit{texture} similarity

Feature space: filter bank responses (e.g., 24-d)

Kristen Grauman
Recall: texture representation example

Windows with primarily horizontal edges

Both

Windows with small gradient in both directions

Windows with primarily vertical edges

Dimension 1 (mean d/dx value)

Dimension 2 (mean d/dy value)

Kristen Grauman

statistics to summarize patterns in small windows
Segmentation with texture features

- Find “textons” by **clustering** vectors of filter bank outputs
- Describe texture in a window based on *texton histogram*

Malik, Belongie, Leung and Shi. IJCV 2001. Adapted from Lana Lazebnik
Image segmentation example

Texture-based regions

Color-based regions

Kristen Grauman
These look very similar in terms of their color distributions (histograms).

How would their *texture* distributions compare?

Kristen Grauman
Outline

• What are grouping problems in vision?

• Inspiration from human perception
 – Gestalt properties

• Bottom-up segmentation via clustering
 – Algorithms:
 • Mode finding and mean shift: k-means, mean-shift
 • Graph-based: normalized cuts
 – Features: color, texture, …
 • Quantization for texture summaries
Mean shift algorithm

• The mean shift algorithm seeks *modes* or local maxima of density in the feature space

Feature space

(L\(^*\)u\(^*\)v\(^*\) color values)
Mean shift

Search window

Center of mass

Mean Shift vector

Slide by Y. Ukrainitz & B. Sarel
Mean shift

Search window
Center of mass
Mean Shift vector

Slide by Y. Ukrainitz & B. Sarel
Mean shift

Search window
Center of mass
Mean Shift vector

Slide by Y. Ukrainitz & B. Sarel
Mean shift

Search window
Center of mass
Mean Shift vector

Slide by Y. Ukrainitz & B. Sarel
Mean shift

Search window
Center of mass
Mean Shift vector

Slide by Y. Ukrainitz & B. Sarel
Mean shift clustering

- Cluster: all data points in the attraction basin of a mode
- Attraction basin: the region for which all trajectories lead to the same mode

Slide by Y. Ukrainitz & B. Sarel
Mean shift clustering/segmentation

- Find features (color, gradients, texture, etc)
- Initialize windows at individual feature points
- Perform mean shift for each window until convergence
- Merge windows that end up near the same “peak” or mode
Mean shift segmentation results

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html
Mean shift segmentation results
Mean shift segmentation results
Mean shift

• **Pros:**
 – Does not assume shape on clusters
 – One parameter choice (window size)
 – Generic technique
 – Find multiple modes

• **Cons:**
 – Selection of window size
 – Does not scale well with dimension of feature space
Outline

• What are grouping problems in vision?

• Inspiration from human perception
 – Gestalt properties

• Bottom-up segmentation via clustering
 – Algorithms:
 • Mode finding and mean shift: k-means, mean-shift
 • Graph-based: normalized cuts
 – Features: color, texture, …
 • Quantization for texture summaries
Images as graphs

Fully-connected graph

- node (vertex) for every pixel
- link between *every* pair of pixels, \(p, q \)
- affinity weight \(w_{pq} \) for each link (edge)
 - \(w_{pq} \) measures *similarity*
 - similarity is *inversely proportional* to difference (in color and position…)

Source: Steve Seitz
Segmentation by Graph Cuts

Break Graph into Segments

- Want to delete links that cross between segments
- Easiest to break links that have low similarity (low weight)
 - similar pixels should be in the same segments
 - dissimilar pixels should be in different segments

Source: Steve Seitz
Measuring affinity

- One possibility:

\[\text{aff}(x, y) = \exp \left\{ -\left(\frac{1}{2\sigma^2} \right) \left\| x - y \right\|^2 \right\} \]

Small sigma: group only nearby points

Large sigma: group distant points

Kristen Grauman
Measuring affinity

Data points

Affinity matrices

Kristen Grauman
Cuts in a graph: Min cut

Link Cut
- set of links whose removal makes a graph disconnected
- cost of a cut:
 $$\text{cut}(A, B) = \sum_{p \in A, q \in B} w_{p,q}$$

Find minimum cut
- gives you a segmentation
- fast algorithms exist for doing this

Source: Steve Seitz
Minimum cut

• Problem with minimum cut:
 Weight of cut proportional to number of edges in the cut; tends to produce small, isolated components.

Fig. 1. A case where minimum cut gives a bad partition.

[Shi & Malik, 2000 PAMI]
Cuts in a graph: Normalized cut

- Fix bias of Min Cut by **normalizing** for size of segments:

\[
Ncut(A, B) = \frac{cut(A, B)}{assoc(A, V)} + \frac{cut(A, B)}{assoc(B, V)}
\]

\(assoc(A, V) = \text{sum of weights of all edges that touch } A\)

- Ncut value is small when we get two clusters with many edges with high weights, and few edges of low weight between them.

Example results
Results: Berkeley Segmentation Engine

http://www.cs.berkeley.edu/~fowlkes/BSE/
Normalized cuts: pros and cons

Pros:
• Generic framework, flexible to choice of function that computes weights ("affinities") between nodes
• Does not require model of the data distribution

Cons:
• Time complexity can be high
 – Dense, highly connected graphs \(\rightarrow\) many affinity computations
 – Solving eigenvalue problem
• Preference for balanced partitions

Kristen Grauman
Graph cuts for interactive segmentation

Adding hard constraints:

Add two additional nodes, object and background “terminals”

Link each pixel
- To both terminals
- To its neighboring pixels
Graph cuts for interactive segmentation

Let the edge weight to object or background terminal reflect similarity to the respective seed pixels.

\[D_p(s) = \text{const} - |I_p - I^s| \]

\[D_p(t) = \text{const} - |I_p - I^t| \]
Graph cuts for interactive segmentation

Intelligent Scissors
Mortensen and Barrett (1995)

Graph Cuts
Boykov and Jolly (2001)

GrabCut
Rother et al. (2004)

Another interaction modality: specify bounding box
"Grab Cut"

- Loosely specify foreground region
- Iterated graph cut

User initialization

K-means for learning colour distributions

Graph cuts to infer the segmentation

“Grab Cut”

- Loosely specify foreground region
- Iterated graph cut

Gaussian Mixture Model (typically 5-8 components)

“Grab Cut”

In Office 2010(?)
Summary

• Segmentation to find object boundaries or mid-level regions, tokens.

• Bottom-up segmentation via clustering
 – General choices -- features, affinity functions, and clustering algorithms

• Grouping also useful for quantization, can create new feature summaries
 – Texton histograms for texture within local region

• Example clustering methods
 – K-means
 – Mean shift
 – Graph cut, normalized cuts
Segments as primitives for recognition

B. Russell et al., “Using Multiple Segmentations to Discover Objects and their Extent in Image Collections,” CVPR 2006

Slide credit: Lana Lazebnik
Top-down segmentation

Slide credit: Lana Lazebnik
Top-down segmentation

Motion segmentation

Image grouping

READINGS FOR TODAY
Interactive segmentation

Rother et al. SIGGRAPH 2004
From Contours to Regions

Figure 3. Overview of our approach. **Left:** Original image. **Middle Left:** Maximal response of contour detector \(gPb \) over orientations. **Middle Right:** Weighted contours resulting from the Oriented Watershed Transform - Ultrametric Contour Map (OWT-UCM) algorithm using \(gPb \) as input. **Right:** Segmentation obtained by thresholding the UCM at level 0.4, with segments represented by their mean color.

Arbelaez et al. CVPR 2009
Finding “Object-Like” Segments

Carreira et al. CVPR 2010
Regions for Geometric Context

Hoiem et al. ICCV 2005