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Abstract

360° video requires human viewers to actively control
“where” to look while watching the video. Although it pro-
vides a more immersive experience of the visual content, it
also introduces additional burden for viewers; awkward in-
terfaces to navigate the video lead to suboptimal viewing
experiences. Virtual cinematography is an appealing direc-
tion to remedy these problems, but conventional methods
are limited to virtual environments or rely on hand-crafted
heuristics. We propose a new algorithm for virtual cine-
matography that automatically controls a virtual camera
within a 360° video. Compared to the state of the art, our
algorithm allows more general camera control, avoids re-
dundant outputs, and extracts its output videos substantially
more efficiently. Experimental results on over 7 hours of
real “in the wild” video show that our generalized camera
control is crucial for viewing 360° video, while the proposed
efficient algorithm is essential for making the generalized
control computationally tractable.

1. Introduction
360° cameras are becoming very popular, thanks to

emerging Virtual Reality (VR) technologies and applica-
tions. More than a dozen new 360° cameras were released
in 2016 [1], and the market is expected to grow by more
than 100% per year in the next few years [2]. Watch-
ing panoramic photos and videos is becoming a common
experience on content distribution sites like YouTube and
Facebook, and many content creators are adopting the new
medium. For example, BBC News distributes news in
360° videos online [3]. Whereas traditional cameras are re-
stricted to a field of view (FOV) even narrower than human
perception, a 360° camera captures the entire visual world
from its optical center.

This broad capture offers new freedom to videographers
and video consumers alike. A videographer no longer has
to determine which direction to capture in the scene, freeing
her to experience the moment rather than the act of record-
ing a video. Meanwhile, a human video consumer has the
freedom to explore the visual content based on her inter-
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Figure 1: Our goal is to control the direction and field of view of a
virtual camera within a 360° video in order to record a video that
looks as if it were captured by a human videographer.

est, without being severely restricted by choices made by
the videographer. For example, a news correspondent can
traverse a war zone without consciously considering how to
portray the scene, and subsequent viewers will still have an
immersive experience about the tragedy and witness events
in more detail than the videographer may even be able to
attend to in the moment. Similarly, a parent at his child’s
bustling birthday party can passively record 360° memories
to be perused more deliberately later.

On the other hand, the medium also introduces new chal-
lenges. The most common interface for watching 360°
videos is to display a small portion of the video as a 2D nor-
mal field of view (NFOV) video captured by a virtual cam-
era1. The video viewer now has to decide “where and what”
to look at by controlling the direction of the virtual cam-
era throughout the full duration of the video. The display
can be a normal screen, a mobile device, or a VR headset,
and the control signal will come from the mouse, the pose
of the device, or the head movement respectively. These
choices determine the content seen by the viewer and thus
the user experience. Because the viewer has no information

1For example, try clicking around on https://www.youtube.com/watch?
v=aTTzKwLPqFw
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about the content beyond the current FOV, it may be dif-
ficult to determine where to look in real time, e.g., a 360°
video viewer can easily fail to notice that there is some-
thing approaching the camera from the opposite direction.
In fact, the viewer may have to watch the video multiple
times in order to find a proper way to control the virtual
camera that navigates through the content of interest. While
360° videos may alternatively be displayed in their entirety
using equirectangular projection, the unfamiliar format and
distortion make such video hard to watch.

In light of this challenge, 360° video is a particularly
appealing domain to invoke automatic videography tech-
niques, which aim to convert unedited materials into an ef-
fective video presentation that conveys events [7, 9, 10, 18,
19, 31, 36, 37, 39]. While automatic videography in prior
work has largely dealt with virtual environments and hand-
crafted heuristics [7, 9, 18, 31], our recent work shows the
potential of learning how to extract informative portions of
360° video as a presentable NFOV video [37]. In [37], we
introduce the Pano2Vid problem, which takes a 360° video
as input and as output generates NFOV videos that look
like they could have been captured by a human observer
equipped with a real NFOV camera. Our AUTOCAM algo-
rithm learns videography tendencies directly from human-
captured Web videos. By controling the pose of a virtual
NFOV camera within the input video, it removes the burden
of deciding “where” to look when watching 360° videos.

We propose a new algorithm for the Pano2Vid problem
that broadens the scope of camera control to generate more
realistic videos. First, we generalize the task of Pano2Vid to
allow not only spatial selections within the 360° video but
also changes in the FOV. This allows the virtual camera con-
trol to fully mimic human videographer tendencies, because
changing the FOV, i.e., zooming, is a common technique in
both professional and amateur videography. Second, toward
a more computationally efficient algorithm, we present a
coarse-to-fine search approach that iteratively refines the
camera control while reducing the search space in each it-
eration. The new approach makes the generalized task en-
compassing zoom computationally tractable. Finally, to ac-
count for the fact that valid Pano2Vid solutions are often
multimodal, we explore how to generate a diverse set of
plausible output NFOV videos, overcoming the redundancy
that deters a straightforward optimization approach.

We experiment with more than 7 hours of real-world
360° video and capture 12 hours of manually edited 360°
data in order to characterize results both quantitatively and
qualitatively. We demonstrate that the proposed generaliza-
tion of the Pano2Vid problem has dramatic effects. Com-
pared to both the existing solution as well as strong base-
lines driven by saliency or center biases, our method’s auto-
zoom improves results by up to 43.4%. In addition, we
achieve a significant advantage in computational cost, re-
ducing run-time by more than 84%.

2. Related Work
Video saliency Saliency studies visual content that at-
tracts viewers’ attention [17, 20, 21, 30, 35, 43], where at-
tention is usually measured by gaze fixations under free
viewing settings. Although the research originated in
static images, there is increasing work that studies video
saliency [21, 35, 43]. Both video saliency and Pano2Vid
try to predict spatial locations in videos. However, saliency
targets locations that are eye-catching in 2D image coordi-
nates whereas Pano2Vid predicts directions in spherical co-
ordinates that videographers would try to capture with cam-
eras. Also, saliency usually depends on local image content
whereas Pano2Vid depends on the content and composition
of the entire FOV.

Video retargeting Video retargeting adapts a source
video by cropping and scaling to better fit the target display
while minimizing the information loss [5,22,23,26,29,34].
Both retargeting and our algorithm select portions of the
original video to display to the user, but retargeting takes
an already well-edited video as input and tries to generate a
new version that conveys the same information. In contrast,
our input 360° video is not pre-edited, and our goal is to
generate multiple outputs that convey different information.
Pano2Vid also entails a more severe reduction in spatial ex-
tent, e.g., compared to retargeting a 2D video from the Web
to display nicely on a mobile device.

Virtual cinematography Most existing work on virtual
cinematography studies virtual camera control in virtual
(computer graphics) environments [7,9,18,31] or else a spe-
cialized domain such as lecture videos [10, 36, 39]. Aside
from camera control, some prior works also study automatic
editing of raw materials like videos or photos [4,12,13,19].
The goal is to generate an effective video presentation auto-
matically to reduce human labor filming or editing. Existing
approaches typically rely on heuristics that encode popular
cinematographic rules. Our problem differs from the above
in that we take unrestricted real 360° videos as input. Fur-
thermore, we learn the cinematography tendencies directly
from Web videos. Our work is most related to the AUTO-
CAM method [37], which also treats 360° video and takes a
data-driven approach. In contrast to [37], we generalize the
problem by allowing more degrees of freedom in the camera
control (i.e. zoom) and considering diverse hypotheses. In
addition, we propose a more efficient algorithm that makes
the generalized problem computationally tractable.

Video summarization Video summarization aims to gen-
erate a concise representation for a video by removing tem-
poral redundancy while preserving the important events [8,
14–16, 24, 27, 32, 33, 38, 42]. The goal is different from
ours in the sense that video summarization selects content
temporally whereas we select content spatially. Also, the
outputs of our algorithm are continuous videos that look as
if they were captured by a hand-held camera in the scene,
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whereas the output of a video summarization algorithm is
usually keyframes or concatenated disjoint video clips.

Diverse solution search Generating a diverse set of can-
didate solutions has been widely discussed in different do-
mains [6, 11, 25, 28, 41]. A common approach is to find the
solutions iteratively and encourage the solution of the cur-
rent iteration to be different from that of previous iterations
by penalizing the similarity between them. This approach
has been applied to segmentation and pose estimation in a
Markov Random Field [6], as well as machine translation
in diverse beam search [11]. Our approach differs in that
we formulate an exact solution search using dynamic pro-
gramming instead of a probabilistic model or an approxi-
mate search. Also, our approach guarantees the minimum
distance between solutions obtained in different iterations,
whereas existing approaches rely on a predefined penalty
term which fails to provide the same guarantee.

3. Preliminaries: AUTOCAM

First we provide background on our existing AUTO-
CAM solution [37]. AUTOCAM starts by sampling spatio-
temporal glimpses (ST-glimpses) from the 360° video. An
ST-glimpse is a five-second NFOV video clip with a 65.5°
FOV2 recorded from the 360° video by directing the camera
to a fixed direction in the 360° camera axes. The algorithm
samples candidate ST-glimpses at 18 azimuthal angles and
11 polar angles every five seconds:

θ ∈ Θ = {0,±10,±20,±30,±45,±75},
ϕ ∈ Φ = {0, 20, . . . , 340},
t ∈ T = {0s, 5s, . . . , L− 5s},

(1)

where L is the video length. Each candidate ST-glimpse
is defined by the camera principal axis (θ, ϕ) direction and
time in the video t:

Ωt,θ,ϕ ≡ (θt, ϕt) ∈ Θ× Φ. (2)

AUTOCAM then learns the “capture-worthiness” scores—
the likelihood of a ST-glimpse appearing in human captured
NFOV videos. Based on the assumption that 1) the con-
tent in human captured NFOV videos are mostly capture-
worthy and 2) most ST-glimpses are not capture-worthy,
it learns a classifier that predicts whether a video clip is a
NFOV video or a ST-glimpse. The posteriors on test ST-
glimpses are their capture-worthiness scores. The NFOV
videos are crawled from YouTube and convolutional 3D
features (C3D) [40] are used as the video representation.

After obtaining the capture-worthiness score of each
candidate ST-glimpse, AUTOCAM constructs a camera tra-
jectory (i.e. camera direction over time) by finding a path
over the ST-glimpses that maximizes the aggregate capture-
worthiness score, while simultaneously producing human-
like smooth camera motions. It realizes the smooth camera

2Note FOV refers to the horizontal field of view throughout the paper.

(a) Zoom out helps to capture complete content.

(b) Zoom in helps to concentrate on the subject.

Figure 2: Examples showing the importance of zooming. Our
zoom in/out result is on the right for each pair.

motion by restricting the trajectory from choosing an ST-
glimpse that is displaced from the previous one by more
than a threshold ϵ, i.e.

|∆Ω|θ = |θt − θt−1| ≤ ϵθ, |∆Ω|ϕ = |ϕt − ϕt−1| ≤ ϵϕ.
(3)

In practice, we restrict the new ST-glimpse to be within
the 8-adjacency of the previous ST-glimpse in the spheri-
cal coordinates. The problem can be reduced to a short-
est path problem and solved efficiently using dynamic pro-
gramming. The algorithm generates K NFOV outputs from
each 360° input by 1) computing the best trajectory ending
at each ST-glimpse location (of 18 × 11 = 198 possible),
and 2) picking the top K of these. The algorithm assumes
the input consists of pixel values on the unit sphere around
the camera optical center and does not assume a specific
360° camera model. Our results include video frames from
at least four common 360° camera models.

4. Approach
In this section, we present our algorithm. First we gen-

eralize the original Pano2Vid problem to enable zooming
(Sec. 4.1). Next, we describe our coarse-to-fine approach
to reduce the computational cost of camera trajectory selec-
tions (Sec. 4.2). Finally, we introduce an iterative approach
to generate a diverse set of output trajectories (Sec. 4.3).

4.1. Zoom Lens Pano2Vid
We first generalize the Pano2Vid problem to Zoom Lens

Pano2Vid, which allows zooming in the virtual camera con-
trol. Zooming is the technique of changing the focal length
(f ) of the lens. This is equivalent to changing the FOV of
the camera because they are related by

FOV = 2arctan(
d

2f
), (4)

where d is the horizontal sensor size and is a constant for
the camera. The technique is widely used in videography:
almost every digital camera nowadays provides the func-
tionality, and most of us have the experience of adjusting
the camera FOV by zooming to obtain the desirable fram-
ing. On the other hand, many existing manual interfaces for
viewing 360° videos do not provide the control for FOV. In-
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Figure 3: Generalized ST-glimpses.3
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Figure 4: Coarse-to-fine camera trajectory search. We first construct the trajectory on a
coarse sample of ST-glimpses and then refine it on a dense sample of ST-glimpses around the
trajectory. It reduces computational cost by avoiding processing all candidate ST-glimpses.

stead of trying to comply with these interfaces, we believe
a proper definition of Pano2Vid must follow the full expe-
rience of videography, i.e. generating a video as if it is cap-
tured by a human videographer in the scene. Fig. 2 shows
examples where zooming helps to improve the framing.

To achieve the effect of zooming, we sample ST-
glimpses not only with different principal axis directions but
also with different focal lengths. Assume the focal length
for the 65.5° FOV is f0, we sample ST-glimpses with three
different focal lengths

f ∈F = {0.5f0, f0, 1.5f0}, (5)

which results in FOV∈{104.3°, 65.5°, 46.4°} respectively.
The 104.3° FOV corresponds to an ultra wide angle lens
and is the largest FOV commonly used in photography. The
65.5° and 46.4° FOV cover the range of standard lenses.
The sampling for the principal axis direction is kept the
same as Eq. 1. The new ST-glimpses are therefore defined
by:

Ωt,θ,ϕ,f ≡ (θt, ϕt, ft) ∈ Θ× Φ× F. (6)

See Fig. 3.
When constructing the camera trajectories, we allow the

algorithm to select ST-glimpses with different focal lengths.
Therefore, the problem becomes finding a path over a series
of 3D grids (Θ × Φ × F ). In addition to the smoothness
constraints in Eq. 3, we restrict the change in focal length
between consecutive ST-glimpses:

|∆Ω|f = |ft − ft−1| ≤ 0.5f0, (7)

which is a prior saying that human videographers tend to
use gradual changes in zoom. While a basic dynamic pro-
gramming problem similar to that used in AUTOCAM can
find the trajectories in our formulation, the computational
cost grows linearly with respect to the number of available
focal lengths and becomes prohibitive. To make the algo-
rithm for solving the Zoom Lens Pano2Vid problem practi-
cal, we next introduce a new computationally efficient ap-
proach for optimizing the trajectories.

3Figures are best viewed in color.

4.2. CoarsetoFine Camera Trajectory Search
The computational bottleneck for the algorithm is esti-

mating the capture-worthiness score of each ST-glimpse.
The algorithm has to first render the 360° ST-glimpse into
NFOV video and then extract the C3D feature, both of
which are computationally intensive. A basic dynamic pro-
gramming approach like AUTOCAM requires the capture-
worthiness scores for all candidate ST-glimpses. Even if
we assume we can render the NFOV video and extract C3D
features in real time, the processing time would be orders
of magnitude longer than the input video length due to the
large number of candidate ST-glimpses, i.e. several hours
to process even a 1 minute 360° video. Therefore, we aim
to reduce the number of capture-worthiness scores required.
The most straightforward way would be to downsample the
number of candidate ST-glimpses. However, this would
lead to coarser camera control and a degradation in the qual-
ity of the output videos. In other words, the computational
overhead not only makes the algorithm slow but it also re-
stricts the granularity of virtual camera control.

Instead, we propose a coarse-to-fine approach that pre-
serves the effective number of candidate ST-glimpses while
reducing the number of ST-glimpses that require compu-
tation of the capture-worthiness score. The basic idea is
to first construct the trajectory over coarsely sampled ST-
glimpses and then refine the solution over densely sam-
pled ST-glimpses centered around the initial trajectory. See
Fig. 4. Furthermore, to keep the total cost sublinear in the
number of available focal lengths, we construct the coarse
trajectory with a single focal length and enable zooming
only when refining the solution. Because we process ST-
glimpses densely only in a small portion of the video, the to-
tal number of capture-worthiness scores required by the al-
gorithm decreases. The proposed coarse-to-fine approach is
based on the observation that the capture-worthiness scores
of neighbor ST-glimpses are positively correlated, and the
optimal trajectory in densely sampled ST-glimpses leads to
a candidate solution in coarsely sampled ST-glimpses. Al-
though the solution is not guaranteed to be the same as that
of dynamic programming over all candidate ST-glimpses,
empirical results verify that it perform well.
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We start the algorithm by sampling ST-glimpses at

θ ∈ Θ′ = {±10,±30,±75},
ϕ ∈ Φ′ = {0, 40, . . . , 320},
t ∈ T ′ = {0s, 10s, . . . , L− 10s},
f ∈ F ′ = {0.5f0}.

(8)

We use the focal length f =0.5f0 which corresponds to
the largest FOV so the visual content of these initial ST-
glimpses cover that of other focal lengths at the same di-
rection. Eq. 8 downsamples the candidate ST-glimpses
by a factor of two from Eq. 1, so the number of capture-
worthiness scores that need to be computed is only

|Θ′ × Φ′ × T ′|
|Θ× Φ× T |

× 1

|F |
≈ 4.5% (9)

the number of candidate ST-glimpses. We solve for the tra-
jectory using dynamic programming, but set the smoothness
constraint to 2ϵ to account for the coarser samples

|∆Ω|θ = |θt − θt−1| ≤ 2ϵ, |∆Ω|ϕ = |ϕt − ϕt−1| ≤ 2ϵ.
(10)

Denoting the ST-glimpses selected by the trajectory as

Ω0
t,θ,ϕ ≡ (θ0t , ϕ

0
t ) (11)

for t ∈ T ′, we then interpolate the ST-glimpses for t ∈
T \ T ′ = {5s, 15s, . . .} to obtain the full trajectory.

To refine the trajectory, we sample ST-glimpses

Ω1
t,θ,ϕ,f = (θ1t , ϕ

1
t , f

1
t ) (12)

that are adjacent to the original trajectory in direction

|θ1t − θ0t | ≤ ϵθ, |ϕ1
t − ϕ0

t | ≤ ϵϕ (13)

following Eq. 1 and 5. We then solve the same trajec-
tory search problem over the sampled ST-glimpses using
dynamic programming with the smoothness constraints in
Eq. 3 and Eq. 7. The number of candidate ST-glimpses is
greatly reduced by the adjacency constraint in Eq. 13 and is
only 5% of all candidate ST-glimpses.

4.3. Diverse Camera Trajectory Search
So far we have 1) presented our approach for the gener-

alized Pano2Vid problem allowing variable FOV, and 2) de-
vised a fast algorithm for optimizing it to produce the best
hypothesis NFOV video output. Next, we wish to expand
that single best solution to a set of diverse plausible outputs.

The motivation to generate a diverse set of output videos
stems from the fact that, by definition, there may be multiple
valid Pano2Vid solutions for each 360° video. For example,
one might capture a soccer game by tracking the ball or by
focusing on a particular player. Both of them will lead to
a plausible presentation for the game and should be a valid
output. In fact, when we ask human editors to manually ex-
tract NFOV videos from 360° data, the outputs for any two
editors on the same source video have only about 47% over-
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Window 1

Window 2

Best

Iteration T+1

Forbidden ST-glimpse
Available ST-glimpse

Selected ST-glimpse (T+1)
Selected ST-glimpse

Figure 5: Diverse trajectory search generates trajectories itera-
tively. In each iteration, we construct multiple trajectory search
problems by sampling time windows and removing previously se-
lected ST-glimpses in the window from the search space. We solve
all the problems and take the best solution as the output trajectory.

lap on average. In addition, many applications of Pano2Vid
would prefer a set of candidate solutions instead of a sin-
gle output. An editing aid system would be more useful if
the editor has the freedom to choose from different reason-
able algorithm-provided initializations. Similarly, a 360°
video player that allows the viewers to choose from differ-
ent NFOV video presentations is likely to achieve a better
user experience because the viewers can decide what to see
based on their preferences.

It is difficult to encourage diversity in a single pass of dy-
namic programming, because all the potential solutions are
constructed concurrently and the distances between them
are hard to control. In prior work, the AUTOCAM algorithm
generates multiple trajectories by requiring them to end at
different spatial locations in the video, i.e., with different
ST-glimpses. However, this requirement does not guaran-
tee the distance between different trajectories. In the worst
case, they can be exactly the same except in the last ST-
glimpses, leading to poor diversity in the outputs.

Instead, we generate trajectories iteratively and encour-
age diversity by imposing the minimum distance constraint
between trajectories generated in different iterations. To
realize the constraint, we sample a time window and for-
bid the trajectories of the current iteration from selecting
the same ST-glimpses as the solution of previous iterations
in the window. Therefore, the length of the time window
determines the minimum distance between the solutions of
different iterations. We sample the time window at multiple
temporal locations and construct the optimal trajectory for
each window. We take the best trajectory among them in
terms of accumulated capture-worthiness score as the solu-
tion of the current iteration. This avoids critical glimpses
being excluded from the solution space even if it is selected
by previous trajectories. See Fig. 5.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017



In practice, we set the length of the time window to 10%
the original video length and sample 20 different windows
distributed evenly over time. Once the length and location
of the time window is specified, the optimal trajectory can
be found using dynamic programming on a modified short-
est path problem where the ST-glimpses selected by previ-
ous solutions in the window are removed from the search
space. To improve computational efficiency, we divide the
unit sphere into 6 regions (by 3 azimuthal angles and 2 po-
lar angles) and generate an output per region by finding the
best trajectory ending in the region. This leads to 6 trajec-
tories per iteration. The iteration ends after K-trajectories
have been generated.

5. Experiments
Next we validate our method on challenging videos. See

project webpage for video examples and comparisons.

5.1. Dataset
We use the Pano2Vid dataset introduced in [37].4 It con-

sists of 86 360° videos crawled from YouTube using four
keywords: “Soccer,” “Mountain Climbing,” “Parade,” and
“Hiking”, for a total length of 7.3 hours. The dataset also
provides “HumanCam” data: URLs for 343 hours of NFOV
YouTube videos. We use half of that data to train logistic
regression capture-worthiness classifiers and half for evalu-
ation (details below). Following [37], we train the classifier
using leave-one-360°-video-out strategy for each keyword.

Some evaluation metrics below compare our outputs to
human-selected camera trajectories from 360° videos (“Hu-
manEdit”). To collect these trajectories, we ask human sub-
jects to edit the videos. The editors control the angle and
FOV of a virtual camera with their mouse, overlayed on
the 360° video’s equirectangular projection so the user can
see all the visual content at once. Please see supp. file for
details and examples. We collect HumanEdit data for 40
videos, each of them annotated by 3 editors. Overall, we
collect 480 trajectories totaling 717.2 minutes of video, and
roughly 18 hours of annotation time.

5.2. Baselines
We compare the following methods in the experiments.

• CENTER — random trajectories biased toward the “cen-
ter” of the 360° video axes (θ = ϕ = 0°). The bias ac-
counts for the fact that user-generated 360° videos often
contain interesting content close to the center, possibly
because the 360° camera design allows the users to use
it as if it were a NFOV camera. We sample the camera
direction for the next time-step from a Gaussian centered
around the current direction, which starts from the center.

• EYE-LEVEL — static trajectories that place the virtual
camera on the equator (θ = 0°). The equator usually

4http://vision.cs.utexas.edu/projects/Pano2Vid

corresponds to eye-level in 360° video where most inter-
esting events happen. We sample the azimuthal angle ϕ
every 20° for 18 different camera directions.

• SALIENCY — replace the capture-worthiness scores in
AUTOCAM by saliency scores.5 The saliency is com-
puted by a popular method [17] over the 360° video frame
in equirectangular projection.

• AUTOCAM — to our knowledge, the only prior work
tackling this problem [37].

5.3. Evaluation Metrics
We adopt the metrics proposed in [37], generalizing

them as need to account for Zoom Lens Pano2Vid.
HumanCam-based metrics This group of metrics eval-
uates whether the output videos look like human-captured
NFOV video (HumanCam). The more indistinguishable the
algorithm outputs are from HumanCam, the better the algo-
rithm. There are three metrics:

• Distinguishability quantifies if it is possible to tell the al-
gorithm output apart from HumanCam. It is measured by
5-fold cross validation error rate of discriminative classi-
fiers trained with HumanCam as positives and algorithm
outputs as negatives. Higher error is better.

• HumanCam-likeness measures the relative distance
from algorithm outputs to HumanCam data in a seman-
tic feature space. It trains classifiers with HumanCam
video as positives and all algorithm-generated videos as
negatives using leave-one-360°-video-out strategy. An
algorithm-generated video is ranked based on its distance
to the decision boundary, and we compute the normalized
mean rank; lower is better.

• Transferability measures how well semantic classifiers
trained on HumanCam videos transfer to algorithm-
generated videos, and vice versa. The more transferable
the classifiers are, the more similar the HumanCam and
algorithm outputs are. We take the four search keywords
as labels to learn a multi-class classifier on one domain
and measure transferability using the test error on the
other domain.

We use logistic regression classifiers in all metrics.

HumanEdit-based metric Whereas the above metrics
score output videos by their resemblance to human-
captured videos in general, the HumanEdit metric measures
the similarity between algorithm-generated camera trajecto-
ries and the manually created trajectories in the same 360°
video. The more similar they are, the better the algorithm.
This metric captures the subjective preference of human ed-
itors but is easily reproducible, in contrast to one-off user
studies. In particular, we compute the overlap of the cam-
era FOV in each frame. The overlap is approximated by

5We also considered a saliency baseline that permits zoom like our
method, but it fared worse than all others.
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Table 1: Pano2Vid performance: HumanCam-based and HumanEdit-based metrics. The arrows in column 3 indicate whether lower scores
are better (⇓), or higher scores (⇑). Our full method (OURS) significantly outperforms the baselines, and the relative improvements over
the best performing baseline are up to 43.4%. CENTER EYE-LEVEL SALIENCY AUTOCAM [37] OURS OURS

W/O DIVERSITY

Distinguishability Error rate (%) ⇑ 1.93 4.03 7.70 12.05 17.41 17.28
HumanCam-Likeness Mean Rank ⇓ 0.659 0.707 0.612 0.522 0.279 0.267

Transferability Human → Auto ⇑ 0.582 0.607 0.597 0.517 0.590 0.591
Auto → Human 0.526 0.552 0.549 0.584 0.618 0.617

Overlap Trajectory ⇑ 0.271 0.335 0.359 0.343 0.436 0.442
Frame 0.498 0.555 0.580 0.530 0.629 0.630
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Figure 6: Example frames of our algorithm outputs and the cor-
responding camera poses. The circular sector shows the camera
FOV and azimuthal angle, and the color shows the polar angle.
Red/green indicates the angle is greater/smaller than 0, and more
saturated color indicates larger value. In the first example, the
camera tracks the diver. In the second example, it zooms in to cap-
ture special moments, e.g., when the person climbs to the top or
high fives with another person. In the third example, the camera
first captures distant scene with long focal length and close objects
with short focal length. Also see videos on the project webpage.

max(1− 2∆Ω
FOVH+FOVA

, 0), where FOVH and FOVA corre-
spond to the FOV of algorithm and human controlled cam-
era respectively. We report overlap results under two pool-
ing strategies, trajectory, which rewards outputs similar to
at least one HumanEdit trajectory as a whole, and frame,
which rewards outputs similar to any HumanEdit trajectory
at each frame. See supp. for details.

Diversity We gauge diversity by the number of distinct
groups of trajectories among the outputs, where trajectories
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Figure 7: Two trajectories extracted from the same 360° video.
Our algorithm presents the same scene in different manners.

differing in angle or FOV for fewer than 10% of the video
frames are considered to be the same group.

Computational cost We measure computational cost by
the average processing time for 1 minute of 360° video.
The time is measured on a machine equipped with one In-
tel Xeon E5-2697 v2 processor (24 cores) and one GeForce
GTX Titan Black GPU (including I/O).

5.4. Output Quality
First we quantify the quality of the algorithm-generated

videos using the HumanCam-/HumanEdit-based metrics.
We obtain the trajectories for AUTOCAM from the authors
of [37]. We take the top K=20 outputs, following [37].

Table 1 shows the results. Our full method (OURS)
significantly outperforms all other methods. Compared to
the best performing baseline (AUTOCAM), our method im-
proves Distinguishability by 43.4% and ranks 25.5% better
on average in the HumanCam-Likeness. We also see a 23%
improvement in the Trajectory Overlap metric. The superior
performance clearly shows the importance of the proposed
zoom lens. Figures 6 and 7 show examples. Interestingly,
the camera zooms out (i.e. FOV>65.5°) more often than
it zooms in. In fact, 76% of the ST-glimpses selected by
OURS have 104.3° FOV, and editors select 104.3° FOV in
55% of the HumanEdit data. These results suggest that a
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Figure 8: Computational cost vs. output quality for our method
and AUTOCAM [37]. Computational cost is measured by the av-
erage processing time per 1 minute of input 360° video. Quality is
measured by the Distinguishability and Trajectory Overlap; higher
is better (⇑) for both metrics.

larger FOV is preferable when viewing 360° videos, pos-
sibly because the object of interest is usually closer to the
camera. Please see project webpage for videos.

Table 1 also shows that the CENTER and EYE-LEVEL
baselines perform poorly, indicating that hand coded heuris-
tics based on prior knowledge are not enough and a content-
dependent method is necessary. EYE-LEVEL performs bet-
ter than CENTER, which reflects the fact that EYE-LEVEL
is a generic prior while the CENTER prior only holds when
the 360° camera is asymmetric and the user uses it as an or-
dinary camera. Although SALIENCY is content-dependent,
it captures content that attracts gaze, which appears to be a
poor proxy for the Pano2Vid task. It underperforms OURS
in all metrics except the Human → Auto transferability.

Although our method outperforms all baselines, we no-
tice that the learned capture-worthiness is unable to cap-
ture preferences induced by context. For example, the al-
gorithm fails to concentrate on family members in a family
video. Also, the smoothness constraint may be too strong in
some scenes where the camera is unable to adjust to rapidly
changing content. See project page for failure cases.

5.5. Computational Cost
Fig. 8 shows the computational cost versus output qual-

ity, measured by HumanCam Distinguishability and Hu-
manEdit Trajectory Overlap. The computational cost for
OURS without coarse-to-fine processing is 2.88 times that
of AUTOCAM, which shows the need for a more compu-
tationally efficient algorithm. OURS W/ FAST reduces the
computational cost by 84% compared to OURS while per-
forming similarly in Trajectory Overlap and only 6% worse
in Distinguishability. Comparing the trajectories generated
by the two methods, the coarse-to-fine approach tends to fa-
vor the largest FOV and ignore trajectories that select the
smallest FOV throughout the video, because the initial tra-
jectories are constructed with the largest FOV. This may
cause the degradation in Distinguishability due to the fact
that the 104.3° FOV introduces distortion in output frames.
OURS W/ FAST takes less than 50% of the computation of
AUTOCAM yet is more accurate in all metrics. Although
further optimization on the implementation may reduce the
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Figure 9: The number of distinct trajectories each algorithm gen-
erates with respect to the number of algorithm outputs.

processing time, the relative cost will remain the same, as it
is linear in the number of ST-glimpses processed.

5.6. Output Diversity
Fig. 9 displays the relative diversity captured by the

methods as a function of the number of outputs they gener-
ate. Our diverse trajectory search approach generates more
distinct trajectories than any other method, with 2 ∼ 3 times
more distinct outputs than our ablated non-diverse variant.
AUTOCAM generates slightly more distinct trajectories than
OURS W/O DIVERSITY, despite the fact that they both use
DP to search for the trajectories. This is because OURS W/O
DIVERSITY has more degrees of freedom in camera control
and can generate closer variants of a given camera trajec-
tory, i.e. it can generate more outputs by varying the choice
of the last ST-glimpse than AUTOCAM can. SALIENCY per-
forms poorly in terms of output diversity—fewer than two
distinct trajectories on average even among its top 20 out-
puts. Because saliency scores are computed more densely
than the capture-worthiness scores, the correlation of the
scores between neighbor directions are stronger, and the al-
gorithm can generate more trajectories that are close vari-
ants to the others. Note that the results in Fig. 9 are com-
plementary to that in Table 1. Together, they show that our
method can generate diverse yet quality outputs.

6. Conclusion
We explore virtual videography in the context of 360°

video. Our system controls a virtual camera in a 360° video
to generate videos that look human-captured and properly
present the content to a passive human viewer. We general-
ize the previously proposed Pano2Vid problem by allowing
the algorithm to control its field of view dynamically, intro-
duce a coarse-to-fine optimization approach that makes it
tractable, and propose a method to encourage diversity and
capture the multimodal nature of “good” NFOV videos. Un-
der a battery of metrics—including against human editors—
our algorithm outperforms the state of the art, bringing tools
one step closer to practical virtual videography.
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