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Abstract

Human-nameable visual “attributes” can benefit vari-
ous recognition tasks. However, existing techniques restrict
these properties to categorical labels (for example, a per-
son is ‘smiling’ or not, a scene is ‘dry’ or not), and thus
fail to capture more general semantic relationships. We
propose to model relative attributes. Given training data
stating how object/scene categories relate according to dif-
ferent attributes, we learn a ranking function per attribute.
The learned ranking functions predict the relative strength
of each property in novel images. We then build a genera-
tive model over the joint space of attribute ranking outputs,
and propose a novel form of zero-shot learning in which the
supervisor relates the unseen object category to previously
seen objects via attributes (for example, ‘bears are furrier
than giraffes’). We further show how the proposed relative
attributes enable richer textual descriptions for new images,
which in practice are more precise for human interpreta-
tion. We demonstrate the approach on datasets of faces and
natural scenes, and show its clear advantages over tradi-
tional binary attribute prediction for these new tasks.

1. Introduction
While traditional visual recognition approaches map

low-level image features directly to object category labels,
recent work proposes models using visual attributes [1–
8]. Attributes are properties observable in images that have
human-designated names (e.g., ‘striped’, ‘four-legged’),
and they are valuable as a new semantic cue in various
problems. For example, researchers have shown their im-
pact for strengthening facial verification [5], object recog-
nition [6, 8, 16], generating descriptions of unfamiliar ob-
jects [1], and to facilitate “zero-shot” transfer learning [2],
where one trains a classifier for an unseen object simply by
specifying which attributes it has.

Problem: Most existing work focuses wholly on at-
tributes as binary predicates indicating the presence (or ab-
sence) of a certain property in an image [1–8, 16]. This may
suffice for part-based attributes (e.g., ‘has a head’) and some

(a) Smiling (b) ? (c) Not smiling

(d) Natural (e) ? (f) Manmade
Figure 1. Binary attributes are an artificially restrictive way to describe
images. While it is clear that (a) is smiling, and (c) is not, the more in-
formative and intuitive description for (b) is via relative attributes: he is
smiling more than (a) but less than (c). Similarly, scene (e) is less natural
than (d), but more so than (f). Our main idea is to model relative attributes
via learned ranking functions, and then demonstrate their impact on novel
forms of zero-shot learning and generating image descriptions.

binary properties (e.g., ‘spotted’). However, for a large va-
riety of attributes, not only is this binary setting restrictive,
but it is also unnatural. For instance, it is not clear if in Fig-
ure 1(b) Hugh Laurie is smiling or not; different people are
likely to respond inconsistently in providing the presence
or absence of the ‘smiling’ attribute for this image, or of the
‘natural’ attribute for Figure 1(e).

Indeed, we observe that relative visual properties are a
semantically rich way by which humans describe and com-
pare objects in the world. They are necessary, for instance,
to refine an identifying description (“the ‘rounder’ pillow”;
“the same except ‘bluer”’), or to situate with respect to ref-
erence objects (“‘brighter’ than a candle; ‘dimmer’ than a
flashlight”). Furthermore, they have potential to enhance
active and interactive learning—for instance, offering a bet-
ter guide for a visual search (“find me similar shoes, but
‘shinier’.” or “refine the retrieved images of downtown
Chicago to those taken on ‘sunnier’ days”).

Proposal: In this work, we propose to model relative at-
tributes. As opposed to predicting the presence of an at-
tribute, a relative attribute indicates the strength of an at-
tribute in an image with respect to other images. For exam-
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ple, in Figure 1, while it is difficult to assign a meaningful
value to the binary attribute ‘smiling’, we could all agree on
the relative attribute, i.e. Hugh Laurie is smiling less than
Scarlett Johansson, but more than Jared Leto. In addition to
being more natural, relative attributes would offer a richer
mode of communication, thus allowing access to more de-
tailed human supervision (and so potentially higher recog-
nition accuracy), as well as the ability to generate more in-
formative descriptions of novel images.

How can we learn relative properties? Whereas tradi-
tional supervised classification is appropriate to learn at-
tributes that are intrinsically binary, it falls short when we
want to represent visual properties that are nameable but not
categorical. Our goal is instead to estimate the degree of
that attribute’s presence—which, importantly, differs from
the probability of a binary classifier’s prediction. To this
end, we devise an approach that learns a ranking function
for each attribute, given relative similarity constraints on
pairs of examples (or more generally a partial ordering on
some examples). The learned ranking function can esti-
mate a real-valued rank1 for images indicating the relative
strength of the attribute presence in them. Then, we intro-
duce novel forms of zero-shot learning and description that
exploit the relative attribute predictions.

The proposed ranking approach accounts for a subtle but
important difference between relative attributes and con-
ceivable alternatives based on regression or multi-way clas-
sification. While such alternatives could also allow for a
richer vocabulary, during training they could suffer from
similar inconsistencies as binary attributes. For example,
it is more difficult to define and perhaps more importantly,
agree on, “With what strength is he smiling?” than “Is he
smiling more than she is?”. Thus, we expect the relative
mode of supervision our approach permits to be more natu-
ral and consistent for human labelers.

Contributions: Our main contribution is the idea to learn
relative visual attributes, which to our knowledge has not
been explored in any prior work. Our other contribution
is to devise and demonstrate two new tasks well-served by
relative attributes: (1) zero-shot learning from relative com-
parisons, and (2) image description in reference to example
images or categories. We demonstrate the approach for both
tasks using the Outdoor Scenes dataset [11] and a subset of
the Public Figure Face Database [12]. We find that rela-
tive attributes yield significantly better zero-shot learning
accuracy when compared to their binary counterparts. In
addition, we conduct human subject studies to evaluate the
informativeness of the automatically generated image de-
scriptions, and find that relative attributes are clearly more
powerful than existing binary attributes in uniquely identi-
fying an image.

1Throughout this paper we refer to rank as a real-valued score.

2. Related Work
We review related work on visual attributes, other uses

of relative cues, and methods for learning comparisons.

Binary attributes: Learning attribute categories allows
prediction of color or texture types [13], and can also pro-
vide a mid-level cue for object or face recognition [2, 5, 8].
Beyond object recognition, the semantics intrinsic to at-
tributes enable zero-shot transfer [2, 6, 14], or descrip-
tion and part localization [1, 7, 15]. Rather than manually
define attribute vocabularies, some work aims to discover
attribute-related concepts on the Web [3, 4], extract them
from existing knowledge sources [6, 16] or discover them
interactively [9]. In contrast to our approach, all such meth-
ods restrict the attributes to be categorical (and in fact, bi-
nary).

Relative information: Relative information has been ex-
plored in vision in a variety of ways. Recent work on large-
scale recognition exploits WordNet-based information to
specify a semantic-distance sensitive classifier [18], or to
make do with few labels by sharing training images among
semantically similar classes [17]. Stemming from a related
motivation of limited labeled data, Wang et al. [19] make
use of explicit similarity-based supervision such as “A ser-
val is like a leopard” or “A zebra is similar to the cross-
walk in texture” to share training instances for categories
with limited or no training instances. Unlike our approach,
that method learns a model for each object category, and
does not model attributes. In contrast, our attribute models
are category-independent and transferrable, enabling rela-
tive descriptions between all classes. Moreover, whereas
that technique captures similarity among object categories,
ours models a general ordering of the images sorted by the
strength of their attributes, as well as a joint space over mul-
tiple such relative attributes.

Kumar et al. [12] explore comparative facial attributes
such as “Lips like Barack Obama” for face verification.
These attributes, although comparative, are also modeled
as binary classifiers and are similarity-based as opposed to
an ordering. Gupta et al. [20] and Siddiquie et al. [21] use
prepositions and adjectives to relate objects to each other for
more effective contextual modeling and active learning, re-
spectively. In contrast, our work involves relative modeling
of attribute strengths for a richer vocabulary that enhances
supervision and description of images.

Learning to rank: Learning to rank has received exten-
sive attention in the machine learning literature [22–24],
for information retrieval in general and image retrieval in
particular [25, 26]. Given a query image, user preferences
(often captured via click-data) are incorporated to learn a
ranking function with the goal of retrieving more relevant
images in the top search results. Learned distance metrics
(e.g., [27, 28]) can induce a ranking on images; however,



this ranking is also specific to a query image, and typically
intended for nearest-neighbor-based classifiers. Our work
learns a ranking function on images based on constraints
specifying the relative strength of attributes, and the result-
ing function is not relative to any other image in the dataset.
Thus, unlike query-centric retrieval tasks, we can charac-
terize individual images by the strength of the attributes
present, which we show is valuable for new recognition and
description applications.

3. Approach
We first present our approach for learning relative at-

tributes (Section 3.1), and then explain how we can use rela-
tive attributes for enhanced zero-shot learning (Section 3.2)
and image description generation (Section 3.3).

3.1. Learning Relative Attributes

We are given a set of training images I = {i} repre-
sented in Rn by feature-vectors {xi} and a set of M at-
tributes A = {am}. In addition, for each attribute am, we
are given a set of ordered pairs of images Om = {(i, j)}
and a set of un-ordered pairs Sm = {(i, j)} such that
(i, j) ∈ Om =⇒ i � j, i.e. image i has a stronger pres-
ence of attribute am than j, and (i, j) ∈ Sm =⇒ i ∼ j,
i.e. i and j have similar relative strengths of am. We note
that Om and Sm can be deduced from any partial ordering
of the images I in the training data with respect to strength
of am. Either Om or Sm, but not both, can be empty.

Our goal is to learn M ranking functions

rm(xi) = wT
mxi, (1)

for m = 1, . . . ,M , such that the maximum number of the
following constraints is satisfied:

∀(i, j) ∈ Om : wT
mxi > w

T
mxj (2)

∀(i, j) ∈ Sm : wT
mxi = wT

mxj . (3)

While this is an NP hard problem [22], it is possible
to approximate the solution with the introduction of non-
negative slack variables, similar to SVM classification. We
directly adapt the formulation proposed in [22], which was
originally applied to web page ranking, except we use a
quadratic loss function together with similarity constraints,
leading to the following optimization problem:

minimize
(

1
2
||wT

m||22 + C
(∑

ξ2ij +
∑

γ2
ij

))
(4)

s.t. wT
mxi ≥ wT

mxj + 1− ξij ;∀(i, j) ∈ Om (5)

|wT
mxi −wT

mxj | ≤ γij ;∀(i, j) ∈ Sm (6)
ξij ≥ 0; γij ≥ 0. (7)
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Figure 2. Distinction between learning a wide-margin ranking function
(right) that enforces the desired ordering on training points (1-6) , and a
wide-margin binary classifier (left) that only separates the two classes (+
and−), and does not necessarily preserve a desired ordering on the points.

Rearranging the constraints reveals that the above formu-
lation, without the similarity constraints in Eqn. 6, is quite
similar to the SVM classification problem, but on pairwise
difference vectors:

minimize
(

1
2
||wT

m||22 + C
(∑

ξ2ij +
∑

γ2
ij

))
(8)

s.t. wT
m(xi − xj) ≥ 1− ξij ;∀(i, j) ∈ Om (9)

|wT
m(xi − xj)| ≤ γij ;∀(i, j) ∈ Sm (10)

ξij ≥ 0; γij ≥ 0, (11)

where C is the trade-off constant between maximiz-
ing the margin and satisfying the pairwise relative con-
straints. We solve the above primal problem using Newton’s
method [29]. While we use a linear ranking function in our
experiments, the above formulation can be easily extended
to kernels.

We note that this learning-to-rank formulation learns a
function that explicitly enforces a desired ordering on the
training images; the margin is the distance between the clos-
est two projections within all desired (training) rankings. In
contrast, if one were to train a binary classifier, only the
margin between the nearest binary-labeled examples is en-
forced; ordering among examples beyond those defining the
margin is arbitrary. See Figure 2. Our experiments confirm
this distinction does indeed matter in practice, as our learnt
ranking function is more effective at capturing the relative
strengths of the attributes than the score of a binary classi-
fier (i.e., the magnitude of the SVM decision function).

In addition, training with comparisons (image i is simi-
lar to j in terms of attribute am, or i exhibits am less than
j) is well-suited to the task at hand. Attribute strengths are
arguably more natural to express in relative terms, as op-
posed to requiring absolute judgments in isolation (i.e., i
represents am with degree 10).

We apply our learnt relative attributes in two new set-
tings: (1) zero-shot learning with relative relationships and
(2) generating image descriptions. We now introduce our
approach to incorporate relative attributes for each of these
applications in turn.



3.2. Zero-Shot Learning From Relationships

Consider N categories of interest. For example, each
category may be an object class, or a type of scene. Dur-
ing training, S of these categories are ‘seen’ categories for
which training images are provided, while the remaining
U = N − S categories are ‘unseen’, for which no training
images are provided.

The S categories are described via relative attributes with
respect to each other, be it pairwise relationships or partial
orders. For example, “bears are furrier than giraffes but less
furry than rabbits”, “lions are larger than dogs, as large as
tigers, but less large than elephants”, etc. We note that all
pairs of categories need not be related in the supervision,
and different subsets of categories can be related for the dif-
ferent attributes.

The U unseen categories, on the other hand, are de-
scribed relative to one or two seen categories for a subset
of the attributes, i.e., unseen class c(u)

j can be described

as c(s)i � c
(u)
j � c

(s)
k for attribute am, or c(s)i � c

(u)
j , or

c
(u)
j � c

(s)
k , where c(s)i and c(s)k are seen categories. We

note the simple and flexible supervision required for the cat-
egories, especially the unseen ones: for any attribute (not
necessarily all), the user can select any seen category de-
picting a stronger and/or weaker presence of the attribute
to which to relate the unseen category. While alternative
list-based learning to rank techniques are available [23], we
choose the pairwise learning technique as described in Sec-
tion 3.1 to ensure this ease of supervision.

During testing, a novel image is to be classified into any
of the N categories. Our zero-shot learning setting is more
general than the model proposed by Lampert et al. [2], in
that the supervisor may not only associate attributes with
categories, but also express how the categories relate along
any number of the attributes. We expect this richer repre-
sentation to allow better divisions between both the unseen
and seen categories, as we demonstrate in the experiments.

We propagate the category relationships provided during
training to the corresponding images, i.e., for seen classes
c
(s)
i and c(s)j , c(s)i � c

(s)
j =⇒ i � j;∀i ∈ c(s)i ,∀j ∈ c(s)j

for attribute am.2 We then learn all M relative attributes as
described in Section 3.1. Predicting the real-valued rank of
all images in the training dataset I allows us to transform
xi ∈ Rn → x̃i ∈ RM , such that each image i is now
represented as an M -dimensional vector x̃i indicating its
rank score for all M attributes.

We now build a generative model for each of the S
seen categories in RM . We use a Gaussian distribution,
and estimate the mean µ(s)

i ∈ RM and M × M covari-
ance matrix Σ(s)

i from the ranking-scores of the training im-

2This generalizes naturally to allow stronger supervision per image in-
stance, when available.

ages from class c(s)i , so we have c(s)i ∼ N (µ(s)
i ,Σ(s)

i ), for
i = 1, . . . , S.

The parameters of the generative model corresponding
to each of the U unseen categories are selected under the
guidance of the input relative descriptions. In particular,
given an unseen category c(u), we employ the following:

1. If c(u)
j is described as c(s)i � c

(u)
j � c

(s)
k , where c(s)i

and c(s)k are seen categories, then we set them-th com-
ponent of the mean µ(u)

jm to 1
2 (µ(s)

im + µ(s)
km).

2. If c(u)
j is described as c(s)i � c

(u)
j , we set µ(u)

jm to

µ
(s)
im − dm, where dm is the average distance between

the sorted mean ranking-scores µ(s)
im’s of seen classes

for attribute am. It is reasonable to expect the unseen
class to be as far from the specified seen class as other
seen classes tend to be from each other.

3. Similarly, if c(u)
j is described as c(u)

j � c
(s)
k , we set

µ
(u)
jm to µ(s)

im + dm.

4. If am is not used to describe c(u)
j , we set µ(u)

jm to be the
mean across all training image ranks for am and the
m-th diagonal entry of Σ(u)

j to be the variance of the
same.

In the first three cases, we simply set Σ(u)
j = 1

S

∑S
i=1 Σ(s)

i .

Given a test image i, we compute x̃i ∈ RM indicating
the relative attribute ranking-scores for the image. It is then
assigned to the seen or unseen category that assigns it the
highest likelihood:

c∗ = argmax
j∈{1,...,N}

P (x̃i | µj ,Σj) . (12)

From a Bayesian perspective, our approach to setting the
parameters of the unseen categories’ generative models can
be considered to be priors transferred from the knowledge
of the models for the seen categories. Under reasonable pri-
ors, the choice of mean and covariances correspond to the
minimum mean-squared error and maximum likelihood es-
timates. Related formulations of transfer through parameter
sharing have been studied by Fei-Fei et al. [30] and Stark et
al. [31] for learning shape-based object models with few
training images, though no prior models consider transfer-
ring knowledge based on relative comparisons, as we do
here.

We note that if one or more images from the unseen
categories were subsequently to become available, our esti-
mated parameters could easily be updated in light of the ad-
ditional evidence. Furthermore, our general approach could
potentially support more specific supervision about the rela-
tive relationships, should it be available (e.g., bears (unseen)
are significantly more furry than cows (seen)).



3.3. Describing Images in Relative Terms

The second application of relative attributes that we pro-
pose is that of describing novel images. The goal is to be
able to relate any new example to other images according
to different properties—whether its class happens to be fa-
miliar or not. This basic functionality would allow, for in-
stance, the meaningful search example applications given in
the introduction. (See recent work in [32] for other forms
of image description based on object-action-scene tags.)

During training, we are given a set of training images
I = {i}, each represented by a feature-vector xi ∈ Rn, a
list A = {am} of M attributes along with Om = {(i, j)}
s.t. i � j and Sm = {(i, j)} s.t. i ∼ j in relative strength
of am.3. We learnM ranking-functions as described in Sec-
tion 3.1, and evaluate them on all training images in I .

Given a novel image j to be described, we evaluate all
learnt ranking functions rm(xj). For each attribute am, we
identify two reference images i and k from I that will be
used to describe j via relative attributes. In principle, with a
good ranking function any reference images could be infor-
mative. In our implementation, we adhere to the following
guidelines. To avoid generating an overly precise descrip-
tion, we wish to select i and k such that they are not very
similar to j in terms of attribute strength. However, to avoid
trivial descriptions, they must not be too far from j, either.

Hence, we pick i and k such that i � j and j � k in
strength of am, and 1

8

th of the images in I lie between i
and j, as well as between j and k. In the case of boundary
conditions where no such i or k exist, i is chosen to be the
image in I with the least strength of am, and k is set to the
image in I with the highest strength of am. The image j
can then be described in terms of all or a subset of the M
attributes, relative to any identified pairs (i, k). Figure 7
shows an example description generated by our approach,
as well as an illustration of selected pairs (i, k).

While more elaborate analysis of the dataset
distribution—and even psychophysics knowledge of
the sensitivity of humans to change in different attributes—
could make the selection of reference images more
effective, we employ this straightforward technique as a
proof-of-concept and leave such analysis for future work.

4. Experiments

We evaluate our approach on two datasets: (1) Outdoor
Scene Recognition (OSR) Dataset [11] containing 2688
images from 8 categories. We use the 512-dimensional
gist [11] descriptor as our image features. (2) A subset
of the Public Figure Face Database (PubFig) [12] con-
taining 800 images from 8 random identities (100 images

3While this application does not require category labels, the relative
supervision can be provided for categories which is propagated to images.

Binary Relative
OSR TI S HC OMF

natural 0 0 0 0 1 1 1 1 T≺I∼S≺H≺C∼O∼M∼F
open 0 0 0 1 1 1 1 0 T∼F≺I∼S≺M≺H∼C∼O

perspective 1 1 1 1 0 0 0 0 O≺C≺M∼F≺H≺I≺S≺T
large-objects 1 1 1 0 0 0 0 0 F≺O∼M≺I∼S≺H∼C≺T

diagonal-plane 1 1 1 1 0 0 0 0 F≺O∼M≺C≺I∼S≺H≺T
close-depth 1 1 1 1 0 0 0 1 C≺M≺O≺T∼I∼S∼H∼F

PubFig ACHJ MS V Z
Masculine-looking 1 1 1 1 0 0 1 1 S≺M≺Z≺V≺J≺A≺H≺C

White 0 1 1 1 1 1 1 1 A≺C≺H≺Z≺J≺S≺M≺V
Young 0 0 0 0 1 1 0 1 V≺H≺C≺J≺A≺S≺Z≺M

Smiling 1 1 1 0 1 1 0 1 J≺V≺H≺A∼C≺S∼Z≺M
Chubby 1 0 0 0 0 0 0 0 V≺J≺H≺C≺Z≺M≺S≺A

Visible-forehead 1 1 1 0 1 1 1 0 J≺Z≺M≺S≺A∼C∼H∼V
Bushy-eyebrows 0 1 0 1 0 0 0 0 M≺S≺Z≺V≺H≺A≺C≺J

Narrow-eyes 0 1 1 0 0 0 1 1 M≺J≺S≺A≺H≺C≺V≺Z
Pointy-nose 0 0 1 0 0 0 0 1 A≺C≺J∼M∼V≺S≺Z≺H

Big-lips 1 0 0 0 1 1 0 0 H≺J≺V≺Z≺C≺M≺A≺S
Round-face 1 0 0 0 1 1 0 0 H≺V≺J≺C≺Z≺A≺S≺M

Table 1. Binary and relative attribute assignments used in our experiments.
Note that none of the relative orderings violate the binary memberships.
The OSR dataset includes images from the following categories: coast
(C), forest (F), highway (H), inside-city (I), mountain (M), open-country
(O), street (S) and tall-building (T). The 8 attributes shown above are listed
in [11] as the properties subjects used to organize the images.The PubFig
dataset includes images of: Alex Rodriguez (A), Clive Owen (C), Hugh
Laurie (H), Jared Leto (J), Miley Cyrus (M), Scarlett Johansson (S), Viggo
Mortensen (V) and Zac Efron (Z). The 11 attributes shown above are a
subset of the attributes provided with the dataset. They were chosen for
their simplicity, sufficient variation among the 8 categories, and to avoid
redundancy (e.g. using Young instead of Old, Middle Aged, Youth, Child).

each). We use a concatenation of the gist descriptor and a
45-dimensional Lab color histogram as our image features.

Table 1 provides more details about the datasets, and
shows the binary memberships and relative orderings of
categories by attributes. These were collected using the
judgements of a colleague unfamiliar with the details of this
work. We see the limitation of binary attributes in distin-
guishing between some categories, while the same set of at-
tributes used relatively tease them apart. Although we have
a full ordering, in our experiments we sample random pairs
of categories as supervision (as noted below). Recall that
different pairs of categories can be related for different at-
tributes. Note that we collect the binary supervision only to
train baseline approaches; our approach uses only the rela-
tive supervision.

As a sanity check, we first demonstrate the superiority of
our learnt ranks to capture relative orderings, as compared
to an approach that treats the score of binary classifiers as
a rank (Section 4.1). Then we evaluate the use of relative
attributes for the two new tasks (Sections 4.2 and 4.3).

4.1. Learned Ranking vs. Classifier Scores

We train a binary linear SVM hm by transferring the bi-
nary supervision listed in Table 1 to the training images for
each attribute. For an image-pair (i, j) in a held-out test set
(2648 images for OSR, 560 for PubFig), we evaluate the
learnt classifier, and if hm(xi) > hm(xj) we predict i � j,



else i ≺ j for am. For comparison, we learn a linear ranking
function rm for each attribute using the relative constraints
in Table 1, and compare rm(xi) to rm(xj) on the same test
pairs. Both methods’ predictions are then compared to the
ground-truth relative ordering.

The learnt ranking function’s accuracy is 89% and 82%
on the OSR and PubFig datasets, respectively, as compared
to 80% and 67% if using the binary classifier scores, con-
firming the advantage of a ranking function to effectively
capture relative information.

4.2. Zero-Shot Learning Results

We compare our zero-shot approach to two baselines:

Baselines: Our first baseline is the Direct Attribute Pre-
diction (DAP) model of Lampert et al. [2], which uses bi-
nary attribute descriptions for all categories. We train linear
SVMs by transferring the binary supervision in Table 1 to
training images from the seen categories. A test image x is
assigned to a category using

c∗ = argmax
c∈{1,...,N}

M∏
m=1

P (am = bcm | x), (13)

where P (am = bcm | x) is computed by transforming the
binary classifier score via a sigmoid function, and bcm is the
ground-truth binary bit taken by attribute am for class c as
seen in Table 1. If am is not used to describe an unseen
category, P (am = bcm | x) is uniform (0.5).

We call our second baseline “score-based relative at-
tributes” (SRA). It follows the same approach as in Sec-
tion 3.2, except that it replaces rank values with the binary
classifier output score. It is a stronger baseline than DAP,
as it has the same benefits of the generative modeling of
seen classes and relative descriptions of unseen classes as
our approach. It is not limited by the binary description of
the categories, which may be deprived as seen in Table 1.

Set up: We compare all methods in several different sce-
narios. Unless specified, we use 2 unseen and 6 seen cate-
gories. To train the ranking functions, we use 4 category-
pairs among seen categories, and unseen categories are de-
scribed relative to the two closest seen categories for each
attribute (one stronger, one weaker). We use 30 training im-
ages per class, and the rest for testing, and report mean per-
class accuracy over 10 random train/test and seen/unseen
splits.

Proportion of unseen categories: We first study zero-
shot learning accuracy as the proportion of unseen cate-
gories increases. Figure 3 shows the results.

First, we see even when all 8 categories are seen (0 un-
seen), our approach significantly outperforms both base-
lines. This validates the power of relative attributes for the
classical recognition task. Also, SRA’s gains over DAP with
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Figure 3. Zero-shot learning performance as the proportion of unseen cat-
egories increases. Total number of classes N remains constant at 8.
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Figure 4. Zero-shot learning performance as more pairs of seen categories
are related (i.e. labeled) during training.

0 unseen categories demonstrate the benefit of the genera-
tive modeling of the categories in SRA.

Further, as we would expect, accuracy for all three ap-
proaches decreases with more unseen categories. However,
our method remains better than the baselines for most of
the spectrum, until only 3 seen categories remain, at which
point it performs similarly to SRA. This is expected, since
beyond that with only 2 seen categories, the relative and bi-
nary supervision becomes equivalent. Both still compare
favorably to DAP due to the benefit of relative description.

In general, we can expect that with even more total cate-
gories, the description power of relative attributes will also
increase, as unseen categories would have more categories
to be related to (even with a fixed number of attributes). A
binary description, on the other hand, can only lose discrim-
inative power as more categories are added.

Amount of supervision: We next study the impact of
varying the amount of supervision.

Figure 4 shows the results as we increase the number
of pairs of seen categories used to generate relative con-
straints, where for each attribute we randomly select the
category pairs to be related from all

(
6
2

)
possibilities. Our

performance is quite robust to the number and choice of
pairs; as few as two pairs suffice.4 When using only one
pair, our method receives significantly less supervision than
the two baselines, for which all six categories are labeled
(hence their flat curves). In spite of this, our approach per-
forms favorably on OSR, though suffers compared to SRA
on PubFig.

4While there are a total of 15 possible pairs to be labeled, as few as 5
of them could determine a unique ordering on all categories.
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Figure 5. Zero-shot learning performance as fewer attributes are used to
describe the unseen categories.
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Figure 6. Zero-shot learning performance as the unseen categories are de-
scribed via looser relationships.

Figure 5 shows the results as we decrease the number
of attributes used to describe the unseen category during
training. Note that the number of attributes used to describe
the seen categories during training remains the same (see
item 4 in Sec. 3.2). The accuracy of all methods degrades;
however, the approaches using relative attributes (SRA and
ours) decay gracefully, whereas DAP suffers more dramat-
ically. This illustrates how each attribute conveys stronger
distinguishing power when used relatively. This is a key re-
sult. This scenario exemplifies the high level of flexibility in
supervision of unseen categories that our approach enables,
which is crucial for practical applications.

Quality of supervision: What happens if the relation-
ships described for an unseen class are ‘looser’? That
is, what if the annotator relates it to seen classes whose
attribute strengths are more distant, e.g., says “Miley is
younger than Vitto” rather than “Miley is younger than
Scarlett” (a person closer in age)? Ideally, the supervisor
would have freedom to specify any reference categories;
that is the most natural form of description, and does not
require the supervisor to know the exhaustive list of seen
categories. Thus, we next evaluate performance as we in-
crease the number of relative ranks away (looseness) from
the seen categories used to describe the unseen category.5

Figure 6 shows the results. We see our approach is very
robust to the looseness of the constraints. We attribute this

5At any level of looseness, if there exists no seen category at a desired
distance from the unseen category in either direction, we simply use a one-
ended constraint. Hence, when the constraints are at a looseness of 3,
since only 6 out of 8 categories are seen, some of which often have similar
attribute strengths, a large percentage of the constraints are one-sided.

Not	  natural	   Natural	  

Not	  open	   Open	  

Shows	  perspec2ve	  Shows	  no	  perspec2ve	  

Not	  open	   Open	  

…	  

Image	  is	  open,	  …	  

Less	  natural	  than	  

More	  open	  than	   Less	  open	  than	  

Shows	  more	  perspec3ve	  than	  

More	  natural	  than	  

Shows	  less	  perspec3ve	  than	  

More	  open	  than	  

…	  

Less	  open	  than	  
Image	  is	  

Figure 7. Part of example description generated for left image by binary
attribute baseline (middle) and our method (right). See text for details.

to the power of relative attributes to jointly carve out re-
gions in the space of attribute strengths corresponding to
the unseen category. This makes the distance of the refer-
ence categories less relevant, as long as the relationships are
correctly indicated.

4.3. Describing Images Results

Next we demonstrate our approach to generate relative
descriptions of novel images. To quantify their effective-
ness, we perform a human subject study that pits the binary
attribute baseline against our relative approach. Our method
reports the properties predicted relative to reference images
(see Sec. 3.3), while the baseline reports the predicted pres-
ence/absence of attributes only. The human subject must
guess which image led to the auto-generated descriptions.
To our knowledge, these are the first results to quantify how
well algorithm-generated attribute descriptions can commu-
nicate to humans.

We recruited 18 subjects, only some familiar with vi-
sion. We randomly selected 20 PubFig and 10 OSR im-
ages. For each of the 30 test cases, we present the subject
a description using three randomly selected attributes plus
a multiple-choice set of three images, one of which is cor-
rect. The subject is asked to rank their guesses for which
fits the description best. See Figure 8(a). To avoid bias, we
divided the subjects into two groups; each group saw either
the binary or the relative attributes, but not both. Further,
we display reference images for either group’s task, to help
subjects understand the attribute meanings.

Figure 8(b) shows the results. Subjects are significantly
more likely to identify the correct image using our method’s
description, i.e., 48% vs. 34% in the first choice. This re-
inforces our claim that relative attributes can better capture
the “concept” of the image, and suggests their real promise
for improved guided search or interactive learning.

We note that we augmented the baseline’s binary de-
scriptions with prototype images (showing stark contrast of
attribute presence), even though, unlike our approach, they
are not an intrinsic part of the generated description. We
suspect that subjects would perform even worse with purely
textual binary descriptions. Thus, the human study is, if
anything, generous to the baseline.

Our approach can be used to generate purely textual de-
scriptions as well, where an image is described relative to
other categories instead of images. Figure 8 (c) shows ex-
amples. Here our method selects the categories to compare



More	  chubby	  than	   Less	  chubby	  than	  

More	  smiling	  than	   Less	  smiling	  than	  

More	  VisibleForehead	  than	  Less	  VisibleForehead	  than	  

Which	  image	  is?	  

Best	  
Fit	  

Second	  
Fit	  

Worst	  
Fit	  

Move	  these	  three	  “labels”	  onto	  the	  three	  
images	  above	  according	  to	  your	  choices.	  	  

(a) Human Study Interface
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(b) Results (both datasets)

more	  natural	  than	  tallbuilding;	  less	  natural	  
than	  forest;	  more	  open	  than	  tallbuilding;	  
less	  open	  than	  coast;	  more	  perspec5ve	  than	  
tallbuilding	  

more	  natural	  than	  insidecity;	  less	  
natural	  than	  highway;	  more	  open	  than	  
street;	  less	  open	  than	  coast;	  more	  
perspec5ve	  than	  highway;	  less	  
perspec5ve	  than	  insidecity;	  

more	  natural	  than	  tallbuilding;	  less	  natural	  than	  
mountain;	  more	  open	  than	  mountain;	  less	  perspec5ve	  
than	  opencountry;	  

more	  White	  than	  AlexRodriguez;	  more	  
Smiling	  than	  JaredLeto;	  less	  Smiling	  than	  
ZacEfron;	  more	  VisibleForehead	  than	  
JaredLeto;	  less	  VisibleForehead	  than	  
MileyCyrus;	  

more	  White	  than	  AlexRodriguez;	  less	  
White	  than	  MileyCyrus;	  less	  Smiling	  than	  
HughLaurie;	  more	  VisibleForehead	  than	  
ZacEfron;	  less	  VisibleForehead	  than	  
MileyCyrus;	  

more	  Young	  than	  CliveOwen;	  less	  Young	  than	  ScarleJJohansson;	  
more	  BushyEyebrows	  than	  ZacEfron;	  less	  BushyEyebrows	  than	  
AlexRodriguez;	  more	  RoundFace	  than	  CliveOwen;	  less	  RoundFace	  
than	  ZacEfron;	  

A	   B	   C	   D	   E	   F	  

(c) Images described relative to categories
Figure 8. Auto-generated descriptions of images in (c) A: (bin) not nat-
ural, not open, perspective (rel) more natural than tallbuilding; less natu-
ral than forest; more open than tallbuilding; less open than coast; more
perspective than tallbuilding; B: (bin) not natural, not open, perspec-
tive (rel) more natural than insidecity; less natural than highway; more
open than street; less open than coast; more perspective than highway;
less perspective than insidecity; C: (bin) natural, open, perspective (rel)
more natural than tallbuilding; less natural than mountain; more open than
mountain; less perspective than opencountry; D: (bin) White, not Smil-
ing, VisibleForehead (rel) more White than AlexRodriguez; more Smiling
than JaredLeto; less Smiling than ZacEfron; more VisibleForehead than
JaredLeto; less VisibleForehead than MileyCyrus; E: (bin) White, not
Smiling, not VisibleForehead (rel) more White than AlexRodriguez; less
White than MileyCyrus; less Smiling than HughLaurie; more VisibleFore-
head than ZacEfron; less VisibleForehead than MileyCyrus; F: (bin) not
Young, BushyEyebrows, RoundFace (rel) more Young than CliveOwen;
less Young than ScarlettJohansson; more BushyEyebrows than ZacEfron;
less BushyEyebrows than AlexRodriguez; more RoundFace than Clive-
Owen; less RoundFace than ZacEfron.

to such that at least 50% of the images in the category have
an attribute strength larger than (less than) that computed
for the image to be described. Echoing our quantitative
results, we can qualitatively see that the relative descrip-
tions are more precise and informative than the binary ones.
More results can be found on the authors’ websites.

5. Conclusion
We introduced relative attributes, which allow for a

richer language of supervision and description than the
commonly used categorical (binary) attributes. We pre-
sented two novel applications: zero-shot learning based on
relationships and describing images relative to other images
or categories. Through extensive experiments as well as a
human subject study, we clearly demonstrated the advan-
tages of our idea. Future work includes exploring more
novel applications of relative attributes, such as guided
search or interactive learning, and automatic discovery of
relative attributes.
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