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Abstract Given two images, we want to predict which exhibits a particular visual at-
tribute more than the other—even when the two images are quite similar. For exam-
ple, given two beach scenes, which looksmore calm? Given two high-heeled shoes,
which is more ornate? Existing relative attribute methods rely on global ranking
functions. However, rarely will the visual cues relevant toa comparison be con-
stant for all data, nor will humans’ perception of the attribute necessarily permit a
global ordering. At the same time, not every image pair is even orderable for a given
attribute. Attempting to map relative attribute ranks to “equality” predictions is non-
trivial, particularly since the span of indistinguishablepairs in attribute space may
vary in different parts of the feature space. To address these issues, we introduce
local learningapproaches for fine-grained visual comparisons, where a predictive
model is trained on the fly using only the data most relevant tothe novel input. In
particular, given a novel pair of images, we develop local learning methods to (1)
infer their relative attribute ordering with a ranking function trained using only anal-
ogous labeled image pairs, (2) infer the optimal “neighborhood”, i.e., the subset of
the training instances most relevant for training a given local model, and (3) infer
whether the pair is even distinguishable, based on a local model for just noticeable
differencesin attributes. Our methods outperform state-of-the-art methods for rel-
ative attribute prediction on challenging datasets, including a large newly curated
shoe dataset for fine-grained comparisons. We find that for fine-grained compar-
isons,morelabeled data is not necessarily preferable to isolating theright data.
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Fig. 1: A global ranking function may be suitable forcoarseranking tasks, butfine-grainedranking
tasks require attention to subtle details—and which details are important may vary in different parts
of the feature space. We propose a local learning approach totrain comparative attributes based on
fine-grained analogous pairs.

1 Introduction

Attributes are visual properties describable in words, capturing anything from mate-
rial properties (metallic, furry), shapes (flat, boxy), expressions (smiling, surprised),
to functions (sittable, drinkable). Since their introduction to the recognition commu-
nity [19, 35, 37], attributes have inspired a number of useful applications in image
search [32, 34, 35, 50], biometrics [11, 45], and language-based supervision for
recognition [6, 37, 43, 49].

Existing attribute models come in one of two forms: categorical or relative.
Whereas categorical attributes are suited only for clear-cut predicates, such asmale
or wooden, relative attributes can represent “real-valued” properties that inherently
exhibit a spectrum of strengths, such asseriousor sporty. These spectra allow a
computer vision system to go beyond recognition into comparison. For example,
with a model for the relative attributebrightness, a system could judge which of two
images isbrighter than the other, as opposed to simply labeling them as bright/not
bright.

Attribute comparisons open up a number of interesting possibilities. In bio-
metrics, the system could interpret descriptions like, “the suspect istaller than
him” [45]. In image search, the user could supply semantic feedback to pinpoint his
desired content: “the shoes I want to buy are like these butmore masculine” [34], as
discussed in Chapter XXXXX of this book. For object recognition, human supervi-
sors could teach the system by relating new objects to previously learned ones, e.g.,
“a mule has a taillonger thana donkey’s” [6, 43, 49]. For subjective visual tasks,
users could teach the system their personal perception, e.g., about which human
faces aremore attractivethan others [1].

One typically learns a relative attribute in a learning-to-rank setting; training data
is ordered (e.g., we are told image A has it more than B), and a ranking function is
optimized to preserve those orderings. Given a new image, the function returns a
score conveying how strongly the attribute is present [1, 10, 14, 18, 34, 38, 41,
43, 46, 47]. While a promising direction, the standard ranking approach tends to



Fine-Grained Comparisons with Attributes 3

fail when faced withfine-grained visual comparisons. In particular, the standard
approach falls short on two fronts: (1) it cannot reliably predict comparisons when
the novel pair of images exhibits subtle visual attribute differences, and (2) it does
not permit equality predictions, meaning it is unable to detect when a novel pair of
images are so similar that their difference is indistinguishable.

Why do existing global ranking functions experience difficulties making fine-
grained attribute comparisons? The problem is that while a single learned function
tends to accommodate the gross visual differences that govern the attribute’s spec-
trum, it cannot simultaneously account for the many fine-grained differences among
closely related examples, each of which may be due to a distinct set of visual cues.
For example, what makes a slipper appearmore comfortablethan a high heel is dif-
ferent than what makes one high heel appear more comfortablethan another; what
makes a mountain scene appearmore naturalthan a highway is different than what
makes a suburb more natural than a downtown skyscraper (Fig.1).

Furthermore, at some point, fine-grained differences become so subtle that they
become indistinguishable. However, existing attribute models assume that all im-
ages are orderable. In particular, they assume thatat test time, the system can and
should always distinguish which image in a pair exhibits theattribute more. Imagine
you are given a pile of images of Barack Obama, and you must sort them according
to where he looks most to leastserious. Can you do it? Surely there will be some ob-
vious ones where he is more serious or less serious. There will even be image pairs
where the distinction is quite subtle, yet still perceptible, thus fine-grained. How-
ever, you are likely to conclude that forcing atotal order is meaningless: while the
images exhibit different degrees of the attribute seriousness, at some point the differ-
ences become indistinguishable. It is not that the pixel patterns in indistinguishable
image pairs are literally the same—they just cannot be characterized consistently as
anything other than “equally serious” (Fig. 2).

We contend that such fine-grained comparisons are critical to get right, since
this is where modeling relative attributes ought to have great power. Otherwise, we
could just learn coarse categories of appearance (“bright scenes”, “dark scenes”)
and manually define their ordering. In particular, fine-grained visual comparisons
are valuable for sophisticated image search and browsing applications, such as dis-
tinguishing subtle properties between products in an online catalog, as well as anal-
ysis tasks involving nuanced perception, such as detectingslight shades of human
facial expressions or distinguishing the identifying traits between otherwise similar-
looking people.

In light of these challenges, we introducelocal learning algorithms for fine-
grained visual comparisons. Local learning is an instance of “lazy learning”, where
one defers processing of the training data until test time. Rather than estimate a
single global model from all training data, local learning methods instead focus on
a subset of the data most relevant to the particular test instance. This helps learn
fine-grained models tailored to the new input, and makes it possible to adjust the ca-
pacity of the learning algorithm to the local properties of the data [7]. Local methods
include classic nearest neighbor classification as well as various novel formulations
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Fig. 2: At what point is the strength of an attribute indistinguishable between two images? While
existing relative attribute methods are restricted to inferring a total order, in reality there are images
that look different but where the attribute is nonetheless perceived as “equally strong”. For exam-
ple, in the fourth and fifth images of Obama, is the differencein seriousnessnoticeable enough to
warrant a relative comparison?

that use only nearby points to either train a model [2, 3, 7, 24, 57] or learn a feature
transformation [16, 17, 25, 51] that caters to the novel input.

The local learning methods we develop in this chapter address the questions of
(1) how to compare an attribute in highly similar images as well as (2) how to
determine when such a comparison is not possible. To learn fine-grained ranking
functions for attributes, given a novel test pair of images,we first identifyanalo-
goustraining pairs using a learned attribute-specific metric. Then we train a ranking
function on the fly using only those pairs [54]. Building on this framework, we fur-
ther explore how to predict the localneighborhooditself—essentially answering the
“how local” question. Whereas existing local learning workassumes a fixed number
of proximal training instances are most relevant, our approach infers the relevant set
as a whole, both in terms of its size and composition [55]. Finally, to decide when a
novel pair is indistinguishable in terms of a given attribute, we develop a Bayesian
approach that relies on local statistics of orderability tolearn a model ofjust notice-
able difference(JND) [56].

Roadmap The rest of the chapter proceeds as follows. In Section 2, we discuss re-
lated work in the areas of relative attributes, local learning, and fine-grained visual
learning. In Section 3, we provide a brief overview of the relative attributes rank-
ing framework. In Sections 4 and 5, we discuss in detail our proposed approaches
for fine-grained visual comparisons and equality prediction using JND. Finally, we
conclude in Sections 6 and 7 with further discussion and future work. The work
described in this chapter originally was presented in our previous conference pa-
pers [54, 55, 56].

2 Related Work

Attribute Comparison Attribute comparison has gained attention in the last sev-
eral years. The original “relative attributes” approach learns a global linear ranking
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function for each attribute [43]. Pairwise supervision is used for training: a set of
pairs ordered according to their perceived attribute strength is obtained from hu-
man annotators, and a ranking function that preserves thoseorderings is learned.
Given a novel pair of images, the ranker indicates which image has the attribute
more. It is extended to non-linear ranking functions in [38]by training a hierarchy
of rankers with different subsets of data, then normalizingpredictions at the leaf
nodes. In [14], rankers trained for each feature descriptor(color, shape, texture) are
combined to produce a single global ranking function. In [47], part-based represen-
tations weighted specifically for each attribute are used instead of global features.

Aside from learning to rank formulations, researchers haveapplied the Elo rating
system for biometrics [45], and regression over “cumulative attributes” for age and
crowd density estimation [11].

All the prior methods produce a single global function for each attribute, whereas
we propose to learn local functions tailored to the comparison at hand. While some
implementations (including [43]) augment the training pool with “equal” pairs to
facilitate learning, notably no existing work attempts to discern distinguishable from
indistinguishable pairs at test time. As we will see below, doing so is non-trivial.

Fine-Grained Visual Tasks Work on fine-grained visualcategorizationaims to
recognize objects in a single domain, e.g., bird species [9,20]. While such prob-
lems also require making distinctions among visually closeinstances, our goal is to
compare attributes, not categorize objects.

In the facial attractiveness ranking method of [10], the authors train a hierarchy
of SVM classifiers to recursively push a image into buckets ofmore/less attractive
faces. The leaf nodes contain images “unrankable” by the human subject, which
can be seen as indistinguishability for the specific attribute of human attractive-
ness. Nonetheless, the proposed method is not applicable toour problem. It learns
a ranking model specific to a single human subject, whereas welearn a subject-
independent model. Furthermore, the training procedure [10] has limited scalability,
since the subject must rankall training images into a partial order; the results focus
on training sets of 24 images for this reason. In our domains of interest, where thou-
sands or more training instances are standard, getting a reliable global partial order
on all images remains an open challenge.

Variability in Visual Perception The fact that humans exhibit inconsistencies
in their comparisons is well known in social choice theory and preference learn-
ing [8]. In existing global models [1, 10, 14, 18, 34, 38, 41, 43, 47], intransitive
constraints would be unaccounted for and treated as noise. While the HodgeRank
algorithm [28] also takes a global ranking approach, it estimates how much it suffers
from cyclic inconsistencies, which is valuable to know how much to trust the final
ranking function. However, that approach does not address the fact that the features
relevant to a comparison are not uniform across a dataset, which we find is critical
for fine-grained comparisons.

We are interested in modeling attributes where thereis consensus about com-
parisons, only they are subtle. Rather than personalize a model towards an ob-
server [1, 10, 31], we want to discover the (implicit) map of where the consensus for
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JND boundaries in attributes exists. The attribute calibration method of [48] post-
processes attribute classifier outputs so they can be fused for multi-attribute search.
Our method is also conscious that differences in attribute outputs taken at “face
value” can be misleading, but our goal and approach are entirely different.

Local Learning In terms of learning algorithms, lazy local learning methods are
relevant to our work. Existing methods primarily vary in howthey exploit the la-
beled instances nearest to a test point. One strategy is to identify a fixed number
of neighbors most similar to the test point, then train a model with only those ex-
amples (e.g., a neural network [7], SVM [57], ranking function [3, 24], or linear
regression [2]). Alternatively, the nearest training points can be used to learn a trans-
formation of the feature space (e.g., Linear Discriminant Analysis); after projecting
the data into the new space, the model is better tailored to the query’s neighborhood
properties [16, 17, 25, 51]. Inlocal selectionmethods, strictly the subset of nearby
data is used, whereas inlocally weightedmethods, all training points are used but
weighted according to their distance [2]. For all these prior methods, a test case is
a new data point, and its neighboring examples are identifiedby nearest neighbor
search (e.g., with Euclidean distance). In contrast, we propose to learn local ranking
functions for comparisons, which requires identifying analogous neighborpairs in
the training data. Furthermore, we also explore how topredict the variable-size set
of training instances that will produce an effective discriminative model for a given
test instance.

In information retrieval, local learning methods have beendeveloped to sort doc-
uments by their relevance to query keywords [3, 17, 24, 39]. They take strategies
quite similar to the above, e.g., building a local model for each cluster in the training
data [39], projecting training data onto a subspace determined by the test data dis-
tribution [17], or building a model with only the query’s neighbors [3, 24]. Though
a form of ranking, the problem setting in all these methods isquite different from
ours. There, the training examples consist of queries and their respective sets of
ground truth “relevant” and “irrelevant” documents, and the goal is to learn a func-
tion to rank a keyword query’s relevant documents higher than its irrelevant ones.
In contrast, we have training data comprised of paired comparisons, and the goal is
to learn a function to compare a novel query pair.

Metric Learning The question “what is relevant to a test point?” also brings to
mind the metric learning problem. Metric learning methods optimize the parameters
of a distance function so as to best satisfy known (dis)similarity constraints between
training data [4]. Most relevant to our work are those that learnlocal metrics; rather
than learn a single global parameterization, the metric varies in different regions of
the feature space. For example, to improve nearest neighborclassification, in [22] a
set of feature weights is learned for each individual training example, while in [52,
53] separate metrics are trained for clusters discovered inthe training data. Such
methods are valuable when the data is multi-modal and thus ill-suited by a single
global metric. In contrast to our approach, however, they learn local models offline
on the basis of the fixed training set, whereas our approachesdynamically train new
models as a function of the novel queries.
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Fig. 3: Illustration of a learned linear ranking function trained from ordered pairs. The goal is to
learn a ranking functionRA(x) that satisfies both the ordered and unordered pairwise constraints.
Given a novel test pair, the real-valued ranking scores of the images are compared to determine
their relative ordering.

3 Ranking Functions for Relative Attributes

First we describe how attribute comparisons can be addressed with a learning to rank
approach, as originally proposed by Parikh and Grauman [43]. Ranking functions
will also play a role in our solution, and the specific model weintroduce next will
further serve as the representative traditional “global” approach in our experiments.

Our approach addresses the relative comparison problem on aper attribute ba-
sis.1 As training data for the attribute of interestA (e.g.,comfortable), we are given
a pool of ground truth comparisons on pairs of images. Then, given a novel pair
of images, our method predicts which exhibits the attributemore, that is, which of
the two images appearsmore comfortable, or if the images are equal, or in other
words,totally indistinguishable. We first present a brief overview of Relative At-
tributes [43] as it sets the foundation as a baseline global ranking approach.

The Relative Attributes approach treats the attribute comparison task as a learning-
to-rank problem. The idea is to use ordered pairs (and optionally “equal” pairs) of
training images to train a ranking function that will generalize to new images. Com-
pared to learning a regression function, the ranking framework has the advantage
that training instances are themselves expressed comparatively, as opposed to re-
quiring a rating of the absolute strength of the attribute per training image.

For each attributeA to be learned, we take as input two sets of annotated training
image pairs. The first set consists of ordered pairs,Po = {(i, j)}, for which humans
perceive imagei to have the attribute more than imagej. That is, each pair inPo has
a “noticeable difference”. The second set consists of unordered, or “equal” pairs,

1 See Chapter XXXXX for discussion on methods for jointly training multiple attributes.
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Pe = {(m,n)}, for which humans cannot perceive a difference in attributestrength.
See Section 4.3 for discussion on how such human-annotated data can be reliably
collected.

Let xi ∈ R
d denote thed-dimensional image descriptor for imagei, such as a

GIST descriptor or a color histogram, and letRA be a linear ranking function:

RA(x) = wT
Ax. (1)

Using a large-margin approach based on the SVM-Rank framework [29], the goal
for a global relative attribute is to learn the parameterswA ∈ R

d that optimize the
rank function parameters to preserve the orderings inPo, maintaining a margin be-
tween them in the 1D output space, while also minimizing the separation between
the unordered pairs inPe. By itself, the problem is NP-hard, but [29] introduces
slack variables and a large-margin regularizer to approximately solve it. The learn-
ing objective is:

minimize
(

1
2||wA||

2
2+C

(

∑ξ 2
i j +∑γ2

m,n

))

(2)

s.t. wT
A
(xi − x j)≥ 1− ξi j ;∀(i, j) ∈ Po

|wT
A
(xm− xn)| ≤ γpq;∀(m,n) ∈ Pe

ξi j ≥ 0;γmn≥ 0,

where the constantC balances the regularizer and ordering constraints, andγpq and
ξi j denote slack variables. By projecting images onto the resulting hyperplanewA,
we obtain a 1D global ranking for that attribute, e.g., from least to mostcomfortable.

Given a test pair(xr ,xs), if RA(xr) > RA(xs), then imager exhibits the attribute
more than images, and vice versa. While [43] uses this linear formulation, itis also
kernelizable and so can produce non-linear ranking functions.

Our local approach defined next draws on this particular ranking formulation,
which is also used in both [43] and in the hierarchy of [38] to produce state-of-
the-art results. Note however that our local learning idea would apply similarly to
alternative ranking methods.

4 Fine-Grained Visual Comparisons

Existing methods train a global ranking function using all available constraintsPo

(and sometimesPe), with the implicit assumption that more training data should
only help better learn the target concept. While such an approach tends to capture
the coarse visual comparisons, it can be difficult to derive asingle set of model pa-
rameters that adequately represents both these big-picture contrastsandmore subtle
fine-grained comparisons (recall Fig. 1). For example, for adataset of shoes, it will
map all the sneakers on one end of theformalspectrum, and all the high heels on the
other, but the ordering among closely related high heels will not show a clear pat-
tern. This suggests there is an interplay between the model capacity and the density
of available training examples, prompting us to explore local learning solutions.
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Fig. 4: Given a novel test pair (blue△) in a learned metric space, our local approach (a) selects
only the most relevant neighbors (green#) for training, which leads to ranking test image 2 over 1
in terms ofsporty. In contrast, the standard global approach defined in Sect. 3(b) uses all training
data (green# & red ×) for training; the unrelated training pairs dilute the training data. As a
result, the global model accounts largely for the coarse-grained differences, and incorrectly ranks
test image 1 over 2. The end of each arrow points to the image with moreof the attribute (sporty).
Note that the rank of each point is determined by itsprojectionontow.

In the following, we next introduce our local ranking approach (Sect. 4.1) and the
mechanism to selecting fine-grained neighboring pairs withattribute-specific metric
learning (Sect. 4.2). On three challenging datasets from distinct domains, including
a newly curated large dataset of 50,000 Zappos shoe images that focuses on fine-
grained attribute comparisons (Sect. 4.3), we show our approach improves the state-
of-the-art in relative attribute predictions (Sect. 4.4).After the results, we briefly
overview an extension of the local attribute learning idea that learns theneighbor-
hood of relevant training data that ought to be used to train a model on the fly
(Sect. 4.5).

4.1 Local Learning for Visual Comparisons

The solution to overcoming the shortcomings of existing methods discussed above
is not simply a matter of using a higher capacity learning algorithm. While a low
capacity model can perform poorly in well-sampled areas, unable to sufficiently
exploit the dense training data, a high capacity model can produce unreliable (yet
highly confident) decisions in poorly sampled areas of the feature space [7]. Dif-
ferent properties are required in different areas of the feature space. Furthermore,
in our visual ranking domain, we can expect that as the amountof available train-
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ing data increases, more human subjectiveness and orderinginconsistencies will
emerge, further straining the validity of a single global function.

Our idea is to explore a local learning approach for attribute ranking. The idea
is to train a ranking function tailored to each novel pair of imagesXq = (xr ,xs)
that we wish to compare. We train the custom function using only a subset of all
labeled training pairs, exploiting the data statistics in the neighborhood of the test
pair. In particular, we sort all training pairsPA by their similarity to(xr ,xs), then
compose a local training setP ′

A
consisting of the topK neighboring pairs,P ′

A
=

{(xk1,xk2)}
K
k=1. We explain in the next section how we define similarity between

pairs. Then, we train a ranking function using Equation 2 on the fly, and apply it to
compare the test images.

While simple, our framework directly addresses the flaws that hinder existing
methods. By restricting training pairs to those visually similar to the test pair, the
learner can zero in on features most important for that kind of comparison. Such a
fine-grained approach helps to eliminate ordering constraints that are irrelevant to
the test pair. For instance, when evaluating whether a high-topped athletic shoe is
more or lesssportythan a similar looking low-topped one, our method will exploit
pairs with similar visual differences, as opposed to tryingto accommodate in a sin-
gle global function the contrasting sportiness of sneakers, high heels, and sandals
(Fig. 4).

4.2 Selecting Fine-Grained Neighboring Pairs

A key factor to the success of the local rank learning approach is how we judge
similarity between pairs. Intuitively, we would like to gather training pairs that are
somehowanalogousto the test pair, so that the ranker focuses on the fine-grained
visual differences that dictate their comparison. This means that not only should
individual members of the pairs have visual similarity, butalso the visual contrasts
between the two test pair images should mimic the visual contrasts between the
two training pair images. In addition, we must account for the fact that we seek
comparisons along a particular attribute, which means onlycertain aspects of the
image appearance are relevant; in other words, Euclidean distance between their
global image descriptors is likely inadequate.

To fulfill these desiderata, we define a paired distance function that incorporates
attribute-specific metric learning. LetXq = (xr ,xs) be the test pair, and letXt =
(xu,xv) be a labeled training pair for which(u,v) ∈PA. We define their distance as:

DA (Xq,Xt) = min
(

D′
A ((xr ,xs),(xu,xv)) ,D

′
A ((xr ,xs),(xv,xu))

)

, (3)

whereD′
A

is the product of the two items’ distances:

D′
A ((xr ,xs),(xu,xv)) = dA(xr ,xu)×dA(xs,xv). (4)

The product reflects that we are looking for pairs where each image is visu-
ally similar to one of those in the novel pair. It also ensuresthat the constraint
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pairs are evaluated for distance as a pair instead of as individual images.2 If both
query-training couplings are similar, the distance is low.If some image coupling
is highly dissimilar, the distance is greatly increased. The minimum in Equation 3
and the swapping of(xu,xv) → (xv,xu) in the second term ensure that we account
for the unknown ordering of the test pair; while all trainingpairs are ordered with
RA(xu)> RA(xv), the first or second argument ofXq may exhibit the attribute more.
When learning a local ranking function for attributeA, we sort neighbor pairs for
Xq according toDA, then take the topK to formP ′

A
.

When identifying neighbor pairs, rather than judge image distancedA by the
usual Euclidean distance on global descriptors, we want to specialize the function
to the particular attribute at hand. That’s because often a visual attribute does not
rely equally on each dimension of the feature space, whetherdue to the features’ lo-
cations or modality. For example, if judging image distancefor the attributesmiling,
the localized region by the mouth is likely most important; if judging distance for
comfortthe features describing color may be irrelevant. In short, it is not enough to
find images that are globally visually similar. For fine-grained comparisons we need
to focus on those that are similar in terms of the property of interest.

To this end, we learn a Mahalanobis metric:

dA(xi ,x j) = (xi − x j)
TMA(xi − x j), (5)

parameterized by thed×d positive definite matrixMA. We employ the information-
theoretic metric learning (ITML) algorithm [15], due to itsefficiency and kerneliz-
ability. Given an initiald×d matrixMA0 specifying any prior knowledge about how
the data should be compared, ITML produces theMA that minimizes the LogDet
divergenceDℓd from that initial matrix, subject to constraints that similar data points
be close and dissimilar points be far:

min
MA�0

Dℓd(MA,MA0) (6)

s.t. dA(xi ,x j)≤ c (i, j) ∈ SA

dA(xi ,x j)≥ ℓ (i, j) ∈DA.

The setsSA andDA consist of pairs of points constrained to be similar and dis-
similar, andℓ andc are large and small values, respectively, determined by thedis-
tribution of original distances. We setMA0 = Σ−1, the inverse covariance matrix
for the training images. To composeSA andDA, we use image pairs for which hu-
man annotators found the images similar (or dissimilar)according to the attribute
A. While metric learning is usually used to enhance nearest neighbor classification
(e.g., [23, 27]), we employ it to gauge perceived similarityalong an attribute.

2 A more strict definition of “analogous pair” would further constrain that there be low distortion
between the vectors connecting the query pair and training pair, respectively, i.e., forming a par-
allelogram in the metric space. This is similarly efficient to implement. However, in practice, we
found the stricter definition is slightly less effective than the product distance. This indicates that
some variation in the intra-pair visual differences are useful to the learner.
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UT-Zap50K (pointy) OSR (open) PubFig (smiling) 
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FG-LocalPair LocalPair FG-LocalPair LocalPair FG-LocalPair LocalPair 

Fig. 5: Example fine-grained neighbor pairs for three test pairs (top row) from the datasets tested in
this chapter. We display the top 3 pairs per query. FG-LocalPair and LocalPair denote results with
and without metric learning (ML), respectively.UT-Zap50K pointy : ML puts the comparison
focus on the tip of the shoe, caring less about the look of the shoe as a whole.OSR open: ML
has less impact, as openness in these scenes relates to theirwhole texture.PubFig smiling: ML
learns to focus on the mouth/lip region instead of the entireface. For example, while the LocalPair
(non-learned) metric retrieves face pairs that more often contain the same people as the top pair,
those instances are nonetheless less relevant for the fine-grained smiling distinction it requires. In
contrast, our FG-LocalPair learned metric retrieves nearby pairs that may contain different people,
yet are instances where the degree of smiling is most useful as a basis for predicting the relative
smiling level in the novel query pair.

Figure 5 shows example neighbor pairs. They illustrate how our method finds
training pairs analogous to the test pair, so the local learner can isolate the informa-
tive visual features for that comparison. Note how holistically, the neighbors found
with metric learning (FG-LocalPair) may actually look lesssimilar than those found
without (LocalPair). However, in terms of the specific attribute, they better isolate
the features that are relevant. For example, images of the same exact person need not
be most useful to predict the degree ofsmiling, if others better matched to the test
pair’s expressions are available (last example). In practice, the local rankers trained
with learned neighbors are substantially more accurate.

4.3 Fine-Grained Attribute Zappos Dataset

Having explained the basic approach, we now describe a new dataset amenable to
fine-grained attributes. We collected a new UT Zappos50K dataset (UT-Zap50K3)
specifically targeting the fine-grained attribute comparison task. The dataset is fine-
grained due to two factors: 1) it focuses on a narrow domain ofcontent, and 2) we
develop a two-stage annotation procedure to isolate those comparisons that humans
find perceptually very close.

3 UT-Zap50K dataset and all related data are publicly available for download at
vision.cs.utexas.edu/projects/finegrained



Fine-Grained Comparisons with Attributes 13

Shoes Sandals Slippers Boots 

Fig. 6: Sample images from each of the high-level shoe categories of UT-Zap50K.

The image collection is created in the context of an online shopping task, with
50,000 catalog shoe images from Zappos.com. For online shopping, users care about
precise visual differences between items. For instance, itis more likely that a shop-
per is deciding between two pairs of similar men’s running shoes instead of between
a woman’s high heel and a man’s slipper. The images are roughly 150×100 pixels
and shoes are pictured in the same orientation for convenient analysis. For each im-
age, we also collect its meta-data (shoe type, materials, manufacturer, gender, etc.)
that are used to filter the shoes on Zappos.com.

Using Mechanical Turk (mTurk), we collect ground truth comparisons for 4 rel-
ative attributes:open, pointy at the toe, sporty, andcomfortable. The attributes are
selected for their potential to exhibit fine-grained differences. A worker is shown
two images and an attribute name, and must make a relative decision (more, less,
equal) and report the confidence of his decision (high, mid, low). We repeat the
same comparison for 5 workers in order to vote on the final ground truth. We col-
lect 12,000 total pairs, 3,000 per attribute. After removing the low confidence or
agreement pairs, and “equal” pairs, each attribute has between 1,500 to 1,800 total
ordered pairs.

Of all the possible 50,0002 pairs we could get annotated, we want to priori-
tize the fine-grained pairs. To this end, first, we sampled pairs with a strong bias
(80%) towards intra-category and -gender images (based on the meta-data). We call
this collectionUT-Zap50K-1. We found∼40% of the pairs came back labeled as
“equal” for each attribute. While the “equal” label can indicate that there’s no per-
ceivable difference in the attribute, we also suspected that it was an easy fallback
response for cases that required a little more thought—thatis, those showing fine-
grained differences. Thus, we next posted the pairs rated as“equal” (4,612 of them)
back onto mTurk as new tasks, butwithout the “equal” option. We asked the work-
ers to look closely, pick one image over the other, and give a one sentence rationale
for their decisions. We call this setUT-Zap50K-2.

Interestingly, the workers are quite consistent on these pairs, despite their diffi-
culty. Out of all 4,612 pairs, only 278 pairs had low confidence or agreement (and
so were pruned). Overall, 63% of the fine-grained pairs (and 66% of the coarser
pairs) had at least 4 out of 5 workers agree on the same answer with above average
confidence. This consistency ensures we have a dataset that is both fine-grained as
well as reliably ground truthed.

Compared to an existing Shoes attribute dataset [5] with relative attributes [34],
UT-Zap50K is about 3.5× larger, offers meta-data and 10× more comparative la-
bels, and most importantly, specifically targets fine-grained tasks. Compared to ex-
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isting popular relative attribute datasets like PubFig [36] and Outdoor Scenes [42],
which contain only category-level comparisons (e.g., “Viggo smilesless than Mi-
ley”) that are propagated down uniformly to all image instances, UT-Zap50K is
distinct in that annotators have madeimage-levelcomparisons (e.g., “this particular
shoe image ismore pointythan that particular shoe”). The latter is more costly to
obtain but essential for testing fine-grained attributes thoroughly.

In the next section we use UT-Zap50K as well as other existingdatasets to test
our approach. Later in Section 5 we will discuss extensions to the UT-Zap50K an-
notations that make it suitable for the just noticeable difference task as well.

4.4 Experiments and Results

To validate our method, we compare it to two state-of-the-art methods as well as
informative baselines.

4.4.1 Experimental Setup

Datasets We evaluate on three datasets:UT-Zap50K, as defined above, with
concatenated GIST and color histogram features; the Outdoor Scene Recognition
dataset [42] (OSR); and a subset of the Public Figures faces dataset [36] (PubFig).
OSR contains 2,688 images (GIST features) with 6 attributes, while PubFig con-
tains 772 images (GIST + Color features) with 11 attributes.We use the exact same
attributes, features, and train/test splits as [38, 43]. Our choice of features is based
on the intent to capture spatially localized textures (GIST) as well as global color
distributions, though of course alternative feature typescould easily be employed in
our framework.

Setup We run for 10 random train/test splits, setting aside 300 ground truth pairs
for testing and the rest for training. We cross-validateC for all experiments, and
adopt the sameC selected by the global baseline for our approach. We use no
“equal” pairs for training or testing rankers. We report accuracy in terms of the
percentage of correctly ordered pairs, following [38]. We present results using the
same labeled data for all methods.

For learning to rank, ourtotal training pairsPA consist of only ordered pairs
Po. For ITML, we use the ordered pairsPA for rank training to compose the set of
dissimilar pairsDA, and the set of “equal” pairs to compose the similar pairsSA.
We use the default settings forc andℓ in the authors’ code [15]. The setting ofK
determines “how local” the learner is; its optimal setting depends on the training
data and query. As in prior work [7, 57], we simply fix it for allqueries atK = 100
(though see Sect. 4.5 for a proposed generalization that learns the neighborhood size
as well). Values ofK = 50 to 200 give similar results.

Baselines We compare the following methods:
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Table 1: Results for the UT-Zap50K dataset.

Open Pointy Sporty Comfort
Global [43] 87.77 89.37 91.20 89.93

RandPair 82.53 83.70 86.30 84.77
LocalPair 88.53 88.87 92.20 90.90

FG-LocalPair 90.67 90.83 92.67 92.37

(a) UT-Zap50K-1 withcoarserpairs.

Open Pointy Sporty Comfort
Global [43] 60.18 59.56 62.70 64.04

RandPair 61.00 53.41 58.26 59.24
LocalPair 71.64 59.56 61.22 59.75

FG-LocalPair 74.91 63.74 64.54 62.51

(b) UT-Zap50K-2 withfine-grainedpairs.
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Fig. 7: Accuracy for the 30 hardest test pairs on UT-Zap50K-1.

• FG-LocalPair: the proposed fine-grained approach.

• LocalPair: our approach without the learned metric (i.e.,MA = I). This baseline
isolates the impact of tailoring the search for neighboringpairs to the attribute.

• RandPair: a local approach that selects its neighbors randomly. Thisbaseline
demonstrates the importance of selecting relevant neighbors.

• Global: a global ranker trained with all available labeled pairs, using Equation 2.
This is the Relative Attributes method [43]. We use the authors’ public code.

• RelTree: the non-linear relative attributes approach of [38], which learns a hi-
erarchy of functions, each trained with successively smaller subsets of the data.
Code is not available, so we rely on the authors’ reported numbers (available for
OSR and PubFig).

4.4.2 Zappos Results

Table 1a shows the accuracy on UT-Zap50K-1. Our method outperforms all base-
lines for all attributes. To isolate the more difficult pairsin UT-Zap50K-1, we sort
the test pairs by their intra-pair distance using the learned metric; those that are close
will be visually similar for the attribute, and hence more challenging. Figure 7 shows
the results, plotting cumulative accuracy for the 30 hardest test pairs per split. We
see that our method has substantial gains over the baselines(about 20%), demon-
strating its strong advantage for detecting subtle differences. Figure 8 shows some
qualitative results.

We proceed to test on even more difficult pairs. Whereas Figure 7 focuses on
pairs difficult according to the learned metric, next we focus on pairs difficult ac-
cording to our human annotators. Table 1b shows the results for UT-Zap50K-2. We
use the original ordered pairs for training and all 4,612 fine-grained pairs for testing
(Sect. 4.3). We outperform all methods for 3 of the 4 attributes. For the two more
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Fig. 8: Example pairs contrasting our predictions to the Global baseline’s. In each pair, the top item
is more sportythan the bottom item according to ground truth from human annotators. (1) We pre-
dict correctly, Global is wrong. We detect subtle changes, while Global relies only on overall shape
and color. (2) We predict incorrectly, Global is right. These coarser differences are sufficiently cap-
tured by a global model. (3) Both methods predict incorrectly. Such pairs are so fine-grained, they
are difficult even for humans to make a firm decision.

objective attributes,openandpointy, our gains are sizeable—14% over Global for
open. We attribute this to their localized nature, which is accurately captured by our
learned metrics. No matter how fine-grained the difference is, it usually comes down
to the top of the shoe (open) or the tip of the shoe (pointy). On the other hand, the
subjective attributes are much less localized. The most challenging one iscomfort,
where our method performs slightly worse than Global, in spite of being better on
the coarser pairs (Table 1a). We think this is because the locations of the subtleties
vary greatly per pair.

4.4.3 Scenes and PubFig Results

We now shift our attention to OSR and PubFig, two commonly used datasets for
relative attributes [34, 38, 43]. The paired supervision for these datasets originates
from category-wise comparisons [43], and as such there are many more training
pairs—on average over 20,000 per attribute.

Tables 2 and 3 show the accuracy for PubFig and OSR, respectively. See [54] for
attribute-specific precision recall curves. On both datasets, our method outperforms
all the baselines. Most notably, it outperforms RelTree [38], which to our knowledge
is the very best accuracy reported to date on these datasets.This particular result
is compelling not only because we improve the state-of-the-art, but also because
RelTree is a non-linear ranking function. Hence, we see thatlocal learning with
linear models is performing better than global learning with a non-linear model.
With a lower capacity model, but the “right” training examples, the comparison is
better learned. Our advantage over the global Relative Attributes linear model [43]
is even greater.

On OSR, RandPair comes close to Global. One possible cause isthe weak su-
pervision from the category-wise constraints. While thereare 20,000 pairs, they are
less diverse. Therefore, a random sampling of 100 neighborsseems to reasonably
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Table 2: Accuracy comparison for the OSR dataset. FG-LocalPair denotes the proposed approach.

Natural Open Perspective LargeSize Diagonal CloseDepth
RelTree [38] 95.24 92.39 87.58 88.34 89.34 89.54
Global [43] 95.03 90.77 86.73 86.23 86.50 87.53

RandPair 92.97 89.40 84.80 84.67 84.27 85.47
LocalPair 94.63 93.27 88.33 89.40 90.70 89.53

FG-LocalPair 95.70 94.10 90.43 91.10 92.43 90.47

Table 3: Accuracy comparison for the PubFig dataset.

Male White Young Smiling Chubby Forehead Eyebrow Eye Nose Lip Face
RelTree [38] 85.33 82.59 84.41 83.36 78.97 88.83 81.84 83.15 80.43 81.87 86.31
Global [43] 81.80 76.97 83.20 79.90 76.27 87.60 79.87 81.67 77.40 79.17 82.33

RandPair 74.43 65.17 74.93 73.57 69.00 84.00 70.90 73.70 66.13 71.77 73.50
LocalPair 81.53 77.13 83.53 82.60 78.70 89.40 80.63 82.40 78.17 79.77 82.13

FG-LocalPair 91.77 87.43 91.87 87.00 87.37 94.00 89.83 91.40 89.07 90.43 86.70

mimic the performance when using all pairs. In contrast, ourmethod is consistently
stronger, showing the value of our learned neighborhood pairs.

While metric learning (ML) is valuable across the board (FG-LocalPair> Lo-
calPair), it has more impact on PubFig than OSR. We attributethis to PubFig’s
more localized attributes. Subtle differences are what makes fine-grained compar-
ison tasks hard. ML discovers the features behind those subtletieswith respect to
each attribute. Those features could be spatially localized regions or particular im-
age cues (GIST vs. color). Indeed, our biggest gains compared to LocalPair (9% or
more) are onwhite, where we learn to emphasize color bins, oreye/nose, where we
learn to emphasize the GIST cells for the part regions. In contrast, the LocalPair
method compares the face images as a whole, and is liable to find images of the
same person as more relevant, regardless of their properties in that image (Fig. 5).

4.4.4 Runtime Evaluation

Learning local models on the fly, though more accurate for fine-grained attributes,
does come at a computational cost. The main online costs are finding the near-
est neighbor pairs and training the local ranking function.For our datasets, with
K = 100 and 20,000 total labeled pairs, this amounts to about 3 seconds. There are
straightforward ways to improve the run-time. The neighborfinding can be done
rapidly using well known hashing techniques, which are applicable to learned met-
rics [27]. Furthermore, we could pre-compute a set of representative local models.
For example, we could cluster the training pairs, build a local model for each clus-
ter, and invoke the suitable model based on a test pair’s similarity to the cluster
representatives. We leave such implementation extensionsas future work.
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Fig. 9: Overview of our compressed sensing based approach.yn and ˆyq represent theM-
dimensional neighborhood indicator vectors for a trainingand testing instance, respectively.φ
is a D×M random matrix whereD denotes the compressed indicators’ dimensionality.f is the
learned regression function used to map the original image feature space to the compressed label
space. By reconstructing back to the full label space, we getan estimate of ˆyq indicating which
labeled training instances together will form a good neighborhood for the test instancexq.

4.5 Predicting Useful Neighborhoods

This section expands on the neighbor selection approach described in Section 4.2,
briefly summarizing our NIPS 2014 paper [55]. Please see thatpaper for more de-
tails and results.

As we have seen above, the goal of local learning is to tailor the model to the
properties of the data surrounding the test instance. However, so far, like other prior
work in local learning we have made an important core assumption: that the in-
stances mostusefulfor building a local model are those that arenearestto the test
example. This assumption is well-motivated by the factors discussed above, in terms
of data density and intra-class variation. Furthermore, aswe saw above, identifying
training examples solely based on proximity has the appeal of permitting special-
ized similarity functions (whether learned or engineered for the problem domain),
which can be valuable for good results, especially in structured input spaces.

On the other hand, there is a problem with this core assumption. By treating the
individual nearness of training points as a metric of their utility for local training,
existing methods fail to model how those training points will actually be employed.
Namely, the relative success of a locally trained model is a function of the entire
setor distributionof the selected data points—not simply the individual pointwise
nearness of each one against the query. In other words, the ideal target subset con-
sists of a set of instances that together yield a good predictive model for the test
instance. Thus, local neighborhood selection ought to be considered jointly among
training points.

Based on this observation, we have explored ways tolearn the properties of a
“good neighborhood”. We cast the problem in terms of large-scale multi-label clas-
sification, where we learn a mapping from an individual instance to an indicator
vector over the entire training set that specifies which instances are jointly useful to
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the query. The approach maintains an inherent bias towards neighborhoods that are
local, yet makes it possible to discover subsets that (i) deviate from a strict nearest-
neighbor ranking and (ii) vary in size. We stress that learning what a goodneighbor
looks like (metric learning’s goal) is distinct from learning what a goodneighbor-
hoodlooks like (our goal). Whereas a metric can be trained with pairwise constraints
indicating what should be near or far, jointly predicting the instances that ought to
compose a neighborhood requires a distinct form of learning.

The overall pipeline includes three main phases, shown in Figure 9. (1) First,
we devise an empirical approach to generate ground truth training neighborhoods
(xn,yn) that consist of an individual instancexn paired with a set of training in-
stance indices capturing its target “neighbors”, the latter being represented as a
M-dimensional indicator vectoryn, whereM is the number of labeled training in-
stances. (2) Next, using the Bayesian compressed sensing approach of [30], we
projectyn to a lower-dimensional compressed label spacezn using a random matrix
φ . Then, we learn regression functionsf1(xn), ..., fD(xn) to map the original features
xn to the compressed label space. (3) Finally, given a test instancexq, we predicts
its neighborhood indicator vector ˆyq usingφ and the learned regression functionsf .
We use this neighborhood of points to train a classifier on thefly, which in turn is
used to categorizexq.4

In [55] we show substantial advantages over existing local learning strategies,
particularly when attributes are multi-modal and/or its similar instances are difficult
to match based on global feature distances alone. Our results illustrate the value in
estimating the size and composition of discriminative neighborhoods, rather than
relying on proximity alone. See our paper for the full details [55].

5 Just Noticeable Differences

Having established the strength of local learning for fine-grained attribute compar-
isons, we now turn to task of predicting when a comparison is even possible. In
other words, given a pair of images, the output may be one of “more”, “less”, or
“equal”.

While some pairs of images have a clear ordering for an attribute (recall Fig. 2),
for others the difference may be indistinguishable to humanobservers. Attempting
to map relative attribute ranks to equality predictions is non-trivial, particularly since
the span of indistinguishable pairs in an attribute space may vary in different parts of
the feature space. In fact, as discussed above, despite the occasional use of unordered
pairs for training5, it is assumed in prior work that all test images will be orderable.
However, the real-valued output of a ranking function as trained in Section 3 will
virtually never be equal for two distinct inputs. Therefore, even though existing

4 Note that the neighborhood learning idea has been tested thus far only for classification tasks,
though in principle applies similarly to ranking tasks.
5 Empirically, we found the inclusion of unordered pairs during training in [43] to have negligible
impact at test time.
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Smiling 

Fig. 10: Analogous to the MacAdam ellipses in the CIE x,y color space (right) [21], relative at-
tribute space is likely not uniform (left). That is, the regions within which attribute differences
are indistinguishable may vary in size and orientation across the high-dimensional visual feature
space. Here we see the faces within each “equallysmiling” cluster exhibit varying qualities for
differentiating smiles—such as age, gender, and visibility of the teeth—but are still difficult or im-
possible to order in terms ofsmiling-ness. As a result, simple metrics and thresholds on attribute
differences are insufficient to detect just noticeable differences.

methods may learn to produce similar rank scores for equal pairs, it is unclear how
to determine when a novel pair is “close enough” to be considered un-orderable.

We argue that this situation calls for a model ofjust noticeable differenceamong
attributes. Just noticeable difference (JND) is a concept from psychophysics. It
refers to the amount a stimulus has to be changed in order for it to be detectable
by human observers at least half the time. For example, JND isof interest in color
perception (which light sources are perceived as the same color?) and image quality
assessment (up to what level of compression do the images look ok?). JNDs are de-
termined empirically through tests of human perception. For example, JND in color
can be determined by gradually altering the light source just until the human subject
detects that the color has changed [21].

Why is it challenging to develop a computational model of JNDfor relative at-
tributes? At a glance, one might think it amounts to learningan optimal threshold
on the difference of predicted attribute strengths. However, this begs the question
of how one might properly and densely sample real images of a complex attribute
(like seriousness) to gradually walk along the spectrum, so as to discover the right
threshold with human input. More importantly, an attributespace need not beuni-
form. That is, depending on where we look in the feature space, themagnitude of at-
tribute difference required to register a perceptible change may vary. Therefore, the
simplistic “global threshold” idea falls short. Analogousissues also arise in color
spaces, e.g., the famous MacAdam ellipses spanning indistinguishable colors in the
CIE x,y color space vary markedly in their size and orientation depending on where
in the feature space one looks (leading to the crafting of color spaces like CIE Lab
that are more uniform). See Figure 10.

We next introduce a solution to infer when two images are indistinguishable for a
given attribute. Continuing with the theme of local learning, we develop a Bayesian
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approach that relies onlocal statistics of orderability. Our approach leverages both
a low-level visual descriptor space, within which image pair proximity is learned,
as well as a mid-level visual attribute space, within which attribute distinguisha-
bility is represented (Fig. 11). Whereas past ranking models have attempted to in-
tegrate equality intotraining, none attempt to distinguish between orderable and
un-orderable pairs at test time.

Our method works as follows. First, we construct a predictedattribute space us-
ing the standard relative attribute framework (Sect. 3). Then, on top of that model,
we combine a likelihood computed in the predicted attributespace (Sect. 5.1.1) with
a local prior computed in the original image feature space (Sect. 5.1.2). We show
our approach’s superior performance compared to various baselines for detecting
noticeable differences, as well as demonstrate how attribute JND has potential ben-
efits for an image search application (Sect. 5.2).

5.1 Local Bayesian Model of Distinguishability

The most straightforward approach to infer whether a novel image pair is distin-
guishable would be to impose a threshold on their rank differences, i.e., to predict
“indistinguishable” if |RA(xr)−RA(xs)| ≤ ε. The problem is that unless the rank
space is uniform, a global thresholdε is inadequate. In other words, the rank mar-
gin for indistinguishable pairs need not be constant acrossthe entire feature space.
By testing multiple variants of this basic idea, our empirical results confirm this is
indeed an issue, as we will see in Section 5.2.

Our key insight is to formulate distinguishability prediction in a probabilistic,
local learning manner. Mindful of the non-uniformity of relative attribute space,
our approach uses distributions tailored to the data in the proximity of a novel test
pair. Furthermore, we treat the relative attribute ranks asan imperfect mid-level
representation on top of which we can learn to target the actual (sparse) human
judgments about distinguishability.

Let D ∈ {0,1} be a binary random variable representing the distinguishability of
an image pair. For a distinguishable pair,D = 1. Given a novel test pair(xr ,xs), we
are interested in the posterior:

P(D|xr ,xs) ∝ P(xr ,xs|D)P(D), (7)

to estimate how likely two images are distinguishable. To make a hard decision we
take the maximum a posteriori estimate over the two classes:

d∗ = argmax
d

P(D = d|xr ,xs). (8)

At test time, our method performs a two-stage cascade. If thetest pair ap-
pears distinguishable, we return the response “more” or “less” according to whether
RA(xr)< RA(xs) (whereR is trained in either a global or local manner). Otherwise,
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Fig. 11: Overview of our Bayesian approach. (1) Learn a ranking functionRA using all annotated
training pairs (Sect. 3), as depicted in Figure 3. (2) Estimate the likelihood densities of the equal and
ordered pairs, respectively, using the pairwise distancesin relative attribute space. (3) Determine
the local prior by counting the labels of the analogous pairsin the image descriptor space. (4)
Combine the results to predict whether the novel pair is distinguishable (not depicted). Best viewed
in color.

we say the test pair is indistinguishable. In this way we unify relative attributes with
JND, generating partially ordered predictions in spite of the ranker’s inherent totally
ordered outputs.

Next, we derive models for the likelihood and prior in Equation 7, accounting for
the challenges described above.

5.1.1 Likelihood Model

We use a kernel density estimator (KDE) to represent the distinguishability likeli-
hood over image pairs. The likelihood captures the link between the observed rank
differences and the human-judged just noticeable differences.

Let ∆r,s denote the difference in attribute ranks for imagesr ands:

∆r,s = |RA(xr)−RA(xs)|. (9)

Recall thatPo andPe refer to the sets of ordered and equal training image pairs,
respectively. We compute the rank differences for all training pairs inPo andPe,
and fit a non-parametric Parzen density:

P(xr ,xs|D) =
1
|P| ∑

i, j∈P
Kh (∆i, j −∆r,s) , (10)

for each set in turn. HereP refers to the ordered pairsPo when representing distin-
guishability (D = 1), and the equal pairsPe when representing indistinguishability
(D = 0). The Parzen density estimator [44] superimposes a kernelfunction Kh at
each data pair. In our implementation, we use Gaussian kernels. It integrates local
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estimates of the distribution and resists overfitting. The KDE has a smoothing pa-
rameterh that controls the model complexity. To ensure that all density is contained
within the positive absolute margins, we apply a positive support to the estimator.
Namely, we transform∆i, j using a log function, estimate the density of the trans-
formed values, and then transform back to the original scale. See (a) in Figure 11.

The likelihood reflects how well the equal and ordered pairs are separated in the
attribute space. However, critically,P(xr ,xs|D = 1) need not decrease monotoni-
cally as a function of rank differences. In other words, the model permits returning
a higher likelihood for certain pairs separated by smaller margins. This is a direct
consequence of our choice of the non-parametric KDE, which preserves local mod-
els of the original training data. This is valuable for our problem setting because
in principle it means our method can correct imperfections in the original learned
ranks and account for the non-uniformity of the space.

5.1.2 Prior Model

Finally, we need to represent the prior over distinguishability. The prior could sim-
ply count the training pairs, i.e., letP(D = 1) be the fraction of all training pairs
that were distinguishable. However, we again aim to accountfor the non-uniformity
of the visual feature space. Thus, we estimate the prior based only on a subset of
data near the input images. Intuitively, this achieves a simple prior for the label
distribution in multiple pockets of the feature space:

P(D = 1) =
1
K
|P ′

o|, (11)

whereP ′
o ⊂Po denotes the set ofK neighboring ordered training pairs.P(D = 0) is

defined similarly for the indistinguishable pairsPe. Note that while the likelihood
is computed over the pair’s rank difference, the locality ofthe prior is with respect
to the image descriptor space. See (b) in Figure 11.

To localize the relevant pocket of the image space, we adopt the metric learning
strategy detailed in Section 4.2. Using the learned metric,pairs analogous to the
novel input(xr ,xs) are retrieved based on a product of their individual Mahalanobis
distances, so as to find pairs whose members both align.

5.2 Experiments and Results

We present results on the core JND detection task (Sect. 5.2.2) on two challenging
datasets and demonstrate its impact for an image search application (Sect. 5.2.3).

5.2.1 Experimental Setup

Datasets and Ground Truth Our task requires attribute datasets that (1) have
instance-level relative supervision, meaning annotatorswere asked to judge attribute
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comparisons on individual pairs of images, not object categories as a whole and (2)
have pairs labeled as “equal” and “more/less”. To our knowledge, our UT-Zap50K
and LFW-10 [47] are the only existing datasets satisfying those conditions.

To train and evaluate just noticeable differences, we must have annotations of ut-
most precision. Therefore, we take extra care in establishing the (in)distinguishable
ground truth for both datasets. We perform pre-processing steps to discard unreli-
able pairs, as we explain next. This decreases the total volume of available data, but
it is essential to have trustworthy results.

TheUT-Zap50K dataset is detailed in Section 4.3. As ordered pairsPo, we use
all coarse and fine-grained pairs for which all 5 workers agreed and had high confi-
dence. Even though the fine-grained pairs might be visually similar, if all 5 workers
could come to agreement with high confidence, then the imagesare most likely dis-
tinguishable. As equal pairsPe, we use all fine-grained pairs with 3 or 4 workers in
agreement and only medium confidence. Since the fine-grainedpairs have already
been presented to the workers twice, if the workers are stillunable to come to an
consensus with high confidence, then the images are most likely indistinguishable.
The resulting dataset has 4,778 total annotated pairs, consisting of on average 800
ordered and 350 indistinguishable (equal) pairs per attribute.

TheLFW-10 dataset [47] consists of 2,000 face images, taken from the Labeled
Faces in the Wild [26] dataset.6 It contains 10 relative attributes, likesmiling, big
eyes, etc., with 1,000 labeled pairs each. Each pair was labeled by 5 people. As
ordered pairsPo, we use all pairs labeled “more” or “less” by at least 4 workers.
As equal pairsPe, we use pairs where at least 4 workers said “equal”, as well as
pairs with the same number of “more” and “less” votes. The latter reflects that a
split in decision signals indistinguishability. Due to thesmaller scale of LFW-10,
we could not perform as strict of a pre-processing step as in UT-Zap50K; requir-
ing full agreement on ordered pairs would eliminate most of the labeled data. The
resulting dataset has 5,543 total annotated pairs, on average 230 ordered and 320
indistinguishable pairs per attribute.

Baselines We are the first to address the attribute JND task. No prior methods infer
indistinguishability at test time [32, 38, 43, 46, 47]. Therefore, we develop multiple
baselines to compare to our approach:

• Rank Margin : Use the magnitude of∆r,s as a confidence measure that the pair
r,s is distinguishable. This baseline assumes the learned rankfunction produces
a uniform feature space, such that aglobal thresholdon rank margins would be
sufficient to identify indistinguishable pairs. To computea hard decision for this
method (for F1-scores), we threshold the Parzen window likelihood estimated
from the training pairs byε, the mid-point of the likelihood means.

• Logistic Classifier [32]: Train a logistic regression classifier to distinguishtrain-
ing pairs inPo from those inPe, where the pairs are represented by their rank
differences∆i, j . To compute a hard decision, we threshold the posterior at 0.5.
This is the method used in [32] to obtain a probabilistic measure of attribute

6 cvit.iiit.ac.in/projects/relativeParts
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Fig. 12: Just noticeable difference detection accuracy forall attributes. We show the precision-
recall (top row) and ROC curves (bottom row) for the shoes (left) and faces (right) datasets. Leg-
ends show AUC values for ROC curves. Note that the Mean Shift baseline does not appear here,
since it does not produce confidence values.

equality. It is the closest attempt we can find in the literature to represent equal-
ity predictions, though the authors do not evaluate its accuracy. This baseline also
maintains a global view of attribute space.

• SVM Classifier: Train a nonlinear SVM classifier with a RBF kernel to distin-
guish ordered and equal pairs. We encode pairs of images as single points by
concatenating their image descriptors. To ensure symmetry, we include training
instances with the two images in either order.7

• Mean Shift: Perform mean shift clustering on the predicted attribute scores
RA(xi) for all training images. Images falling in the same cluster are deemed
indistinguishable. Since mean shift clusters can vary in size, this baseline does
not assume a uniform space. Though unlike our method, it fails toleverage dis-
tinguishability supervision as it processes the ranker outputs.

Implementation Details For UT-Zap50K, we use 960-dim GIST and 30-bin Lab
color histograms as image descriptors. For LFW-10, they are8,300-dim part-based
features learned on top of dense SIFT bag of words features (provided by the au-
thors). We reduce their dimensionality to 100 with PCA to prevent overfitting. The
part-based features [47] isolate localized regions of the face (e.g., exposing cues
specific to the eyes vs. hair). We experimented with both linear and RBF kernels
for RA. Since initial results were similar, we use linear kernels for efficiency. We
use Gaussian kernels for the Parzen windows. We set all hyperparameters (h for the
KDE, bandwidth for Mean Shift,K for the prior) on held-out validation data. To
maximize the use of training data, in all results below, we use leave-one-out evalu-
ation and report results over 4 folds of random training-validation splits.
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Table 4: JND detection on UT-Zap50K (F1 scores).

Open Pointy Sporty Comf. All Attributes
Margin 48.95 67.48 66.93 57.09 60.11± 1.89

Logistic 10.49 62.95 63.04 45.76 45.56± 4.13
SVM 48.82 50.97 47.60 40.12 46.88± 5.73

M. Shift 54.14 58.23 60.76 61.60 58.68± 8.01
Ours 62.02 69.45 68.89 54.63 63.75± 3.02

Table 5: JND detection on LFW-10 (F1 scores). NaN occurs whenrecall=0 and precision=inf.

Bald DarkHair BigEyes GdLook Masc. Mouth Smile Teeth Forehead Young All Attributes
Margin 71.10 55.81 74.16 61.36 82.38 62.89 60.56 65.26 67.4934.20 63.52± 2.67

Logistic 75.77 53.26 86.71 64.27 87.29 63.41 59.66 64.83 75.00 NaN63.02± 1.84
SVM 79.06 32.43 89.70 70.98 87.35 70.27 55.01 39.09 79.74 NaN60.36± 9.81

M. Shift 66.37 56.69 54.50 51.29 69.73 68.38 61.34 65.73 73.99 23.1959.12± 10.51
Ours 81.75 69.03 89.59 75.79 89.86 72.69 73.30 74.80 80.4932.89 74.02± 1.66

5.2.2 Just Noticeable Difference Detection

We evaluate just noticeable difference detection accuracyfor all methods on both
datasets. Figure 12 shows the precision-recall curves and ROC curves, where we
pool the results from all 4 and 10 attributes in UT-Zap50K andLFW-10, respec-
tively. Tables 4 and 5 report the summary F1-scores and standard deviations for
each individual attribute. The F1-score is a useful summarystatistic for our data due
to the unbalanced nature of the test set: 25% of the shoe pairsand 80% of the face
pairs are indistinguishable for some attribute.

Overall, our method outperforms all baselines. We obtain sizeable gains—roughly
4-18% on UT-Zap50K and 10-15% on LFW-10. This clearly demonstrates the ad-
vantages of our local learning approach, which accounts forthe non-uniformity of
attribute space. The “global approaches”, Rank Margin and Logistic Classifier, re-
veal that a uniform mapping of the relative attribute predictions is insufficient. In
spite of the fact that they include equal pairs during training, simply assigning simi-
lar scores to indistinguishable pairs is inadequate. Theirweakness is likely due both
to noise in those mid-level predictions as well as the existence of JND regions that
vary in scale. Furthermore, the results show that even for challenging, realistic im-
age data, we can identify just noticeable differences at a high precision and recall,
up to nearly 90% in some cases.

The SVM baseline is much weaker than our approach, indicating that discrim-
inatively learning what indistinguishable image pairs look like is insufficient. This
result underscores the difficulty of learning subtle differences in a high-dimensional
image descriptor space, and supports our use of the compact rank space for our
likelihood model.

Looking at the per-attribute results (Tables 4 and 5), we seethat our method also
outperforms the Mean Shift baseline. While Mean Shift captures dominant clusters
in the spectrum of predicted attribute ranks for certain attributes, for others (like
pointy or masculine) we find that the distribution of output predictions are more

7 We also implemented other encoding variants, such as takingthe difference of the image de-
scriptors or using the predicted attribute scoresRA(xi) as features, and they performed similarly
or worse.
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Fig. 13: Example predictions. The top four rows are pairs ourmethod correctly classifies as indis-
tinguishable (left panel) and distinguishable (right panel), whereas the Rank Margin baseline fails.
Each row shows pairs for a particular attribute. The bottom row shows failure cases by our method;
i.e., the bottom left pair is indistinguishable for pointiness, but we predict distinguishable.

Distinguishable Indistinguishable 

= 0 , > = 1 ,  = 0 , < = 1 ,  

Open 

... ... ... ... : 

Sporty 

... ... ... ... : 

Fig. 14: Example just noticeable differences. In each row, we take leftmost image as a starting
point, then walk through nearest neighbors in relative attribute space until we hit an image that is
distinguishable, as predicted by our method. For example, in row 2, our method finds the left block
of images to be indistinguishable forsportiness; it flags the transition from the flat dress shoe to
the pink “loafer-like sneaker” as being a noticeable difference.

evenly spread. Despite the fact that the rankers are optimized to minimize margins
for equal pairs, simple post-processing of their outputs isinadequate.

We also see that that our method is nearly always best, exceptfor two attributes:
comfort in UT-Zap50K andyoungin LFW-10. Of the shoe attributes,comfort is
perhaps the most subjective; we suspect that all methods mayhave suffered due to
label noise for that attribute. Whileyoungwould not appear to be subjective, it is
clearly a more difficult attribute to learn. This makes sense, as youth would be a
function of multiple subtle visual cues like face shape, skin texture, hair color, etc.,
whereas something likebaldnessor smilinghas a better visual focus captured well
by the part features of [47]. Indeed, upon inspection we find that the likelihoods
insufficiently separate the equal and distinguishable pairs. For similar reasons, the
Logistic Classifier baseline [32] fails dramatically on both openandyoung.

Figure 13 shows qualitative prediction examples. Here we see the subtleties of
JND. Whereas past methods would be artificially forced to make a comparison for
the left panel of image pairs, our method declares them indistinguishable. Pairs may
look very different overall (e.g., different hair, race, headgear) yet still be indistin-
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“Something similarly streamlined like this!”

Fig. 15: The modified WhittleSearch framework. The user can now express an “equality” feedback,
speeding up the process of finding his envisioned target.

guishablein the context of a specific attribute. Meanwhile, those that are distin-
guishable (right panel) may have only subtle differences.

Figure 14 illustrates examples of just noticeable difference “trajectories” com-
puted by our method. We see how our method can correctly predict that various
instances are indistinguishable, even though the raw images can be quite diverse
(e.g., a strappy sandal and a flat dress shoe are equallysporty). Similarly, it can de-
tect a difference even when the image pair is fairly similar (e.g., a lace-up sneaker
and smooth-front sneaker are distinguishable foropennesseven though the shapes
are close).

Figure 16 displays 2D t-SNE [40] embeddings for a subset of 5,000 shoe images
based on the original image feature space and our learned attribute space for the
attributepointy. To compute the embeddings for our method, we represent eachim-
agexi by its posterior probabilities of being indistinguishableto every other image.
i.e.v(xi) = [P(D= 0|xi ,x1),P(D = 0|xi ,x2), ...,P(D = 0|xi ,xN)] whereN is the total
number of images in the embedding. We see that while the former produces a rather
evenly distributed mapping without distinct structures, the latter produces a map-
ping containing unique structures along with “pockets” of indistinguishable images.
Such structures precisely reflect the non-uniformity we pointed out in Figure 10.

5.2.3 Image Search Application

Finally, we demonstrate how JND detection can enhance an image search applica-
tion. Specifically, we incorporate our model into the WhittleSearch framework of
Kovashka et al. [34], overviewed in Chapter XXXXX of this book. WhittleSearch
is an interactive method that allows a user to provide relative attribute feedback,
e.g., by telling the system that he wants images “moresporty” than some reference
image. The method works by intersecting the relative attribute constraints, scoring
database images by how many constraints they satisfy, then displaying the top scor-
ing images for the user to review. See [34] for details.

We augment that pipeline such that the user can express not only “more/less”
preferences, but also “equal” preferences (Fig. 15). For example, the user can now
say, “I want images that are equallysportyas imagex.” Intuitively, enriching the
feedback in this manner should help the user more quickly zero in on relevant im-
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Fig. 16: t-SNE visualization of the original feature space (top) and our learned attribute space
(bottom) for the attributepointy. Shoes with similar level ofpointinessare placed closer together
in our learned space, forming loose “pockets” of indistinguishability. Best viewed on PDF.
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Fig. 17: Image search results. We enhance an existing relative attribute search technique called
WhittleSearch [34] with our JND detection model. The resulting system finds target images more
quickly (left) and produces a better overall ranking of the database images (right).

ages that match his envisioned target. To test this idea, we mimic the method and
experimental setup of [34] as closely as possible, including their feedback genera-
tion simulator.

We evaluate a proof-of-conceptexperiment on UT-Zap50K, which is large enough
to allow us to sequester disjoint data splits for training our method and performing
the searches (LFW-10 is too small). We select 200 images at random to serve as
the mental targets a user wants to find in the database, and reserve 5,000 images
for the database. The user is shown 16 reference images and expresses 8 feedback
constraints per iteration.

Figure 17 shows the results. Following [34], we measure the relevance rank of
the target as a function of feedback iterations (left, loweris better), as well as the
similarity of all top-ranked results compared to the target(right, higher is better). We
see that JNDs substantially bolster the search task. In short, the user gets to the target
in fewer iterations because he has a more complete way to express his preferences—
and the system understands what “equally” means in terms of attribute perception.

6 Discussion

Our results show the promise of local models for addressing fine-grained visual
comparisons. We saw how concentrating on the most closely related training in-
stances is valuable for isolating the precise visual features responsible for the subtle
distinctions. Our methods expand the viability of local learning beyond traditional
classification tasks to include ranking. Furthermore, in aninitial step towards elim-
inating the assumption of locality as the only relevant factor in local learning, we
introduced a novel approach to learn the composition and size of the most effective
neighborhood conditioned on the novel test input. Finally,we explored how local
statistical models can address the “just noticeable difference” problem in attributes,
successfully accounting for the non-uniformity of indistinguishable pairs in the fea-
ture space.

There are several interesting considerations worthy of further discussion and new
research.

While global rankers produce comparable values for all testpairs, our local rank-
ing method’s predictions (Sect. 4) are test-pair specific. This is exactly what helps
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accuracy for subtle, fine-grained comparisons, and, to someextent, mitigates the
impact of inconsistent training comparisons. However, in some applications, it may
be necessary to produce a full ordering of many images. In that case, one could try
feeding our method’s predictions to a rank aggregation technique [12], or apply a
second layer of learning to normalize them, as in [11, 14, 38].

One might wonder if we could do as well by training one global ranking function
per category—i.e., one for high heels, one for sneakers, etc. This would be another
local learning strategy, but it appears much too restrictive. First of all, it would
require category-labeled examples (in addition to the orderingsPA), which may
be expensive to obtain or simply not apropos for data lackingclear-cut category
boundaries (e.g., is the storefront image an “inside city scene” or a “street scene”?).
Furthermore, it would not permit cross-category comparison predictions; we want to
be able to predict how images from different categories compare in their attributes,
too.

As discussed in Section 4.4.4, straightforward implementations of lazy local
learning come with noticeable runtime costs. In our approach, the main online costs
are nearest neighbor search and rank function training. While still only seconds
per test case, as larger labeled datasets become available these costs would need to
be countered with more sophisticated (and possibly approximate) nearest neighbor
search data structures, such as hashing or kd-trees. Another idea is to cache a set of
representative models, pre-computing offline a model for each prototypical type of
new input pair. Such an implementation could also be done in ahierarchical way,
letting the system discover a fine-grained model in a coarse to fine manner.

An alternative approach to represent partial orders (and thus accommodate indis-
tinguishable pairs) would be ordinal regression, where training data would consist
of ordered equivalence classes of data. However, ordinal regression has severe short-
comings for our problem setting. First, it requires a consistent ordering of all train-
ing data (via the equivalence classes). This is less convenient for human annotators
and more challenging to scale than the distributed approachoffered by learning-to-
rank, which pools any available paired comparisons. For similar reasons, learning-
to-rank is much better suited to crowdsourcing annotationsand learning universal
(as opposed to person-specific [1, 10]) predictors. Finally, ordinal regression re-
quires committing to a fixed number of buckets. This makes incremental supervision
updates problematic. Furthermore, to represent very subtle differences, the number
of buckets would need to be quite large.

Our work offers a way to learn a computational model for just noticeable differ-
ences. While we borrow the term JND from psychophysics to motivate our task, of
course the analogy is not 100% faithful. In particular, psychophysical experiments to
elicit JND often permit systematically varying a perceptual signal until a human de-
tects a change, e.g., a color light source, a sound wave amplitude, or a compression
factor. In contrast, the space of all visual attribute instantiations does not permit such
a simple generative sampling. Instead, our method extrapolates from relatively few
human-provided comparisons (fewer than 1,000 per attribute in our experiments)
to obtain a statistical model for distinguishability, which generalizes to novel pairs
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based on their visual properties. It remains interesting future work to explore the
possibility of generative models for comparative attribute relationships.

Just noticeable difference models—and fine-grained attributes in general—appear
most relevant forcategory-specificattributes. Within a category domain (e.g., faces,
cars, handbags, etc.), attributes describe fine-grained properties, and it is valuable to
represent any perceptible differences (or realize there are none). In contrast, com-
parative questions about very unrelated things or extra-domain attributes can be
nonsensical. For example, do we need to model whether the shoes and the table are
equally ornate? or whether the dog or the towel ismore fluffy? Accordingly, we fo-
cused our experiments on domains with rich vocabularies of fine-grained attributes,
faces and shoes.

Finally, we note that fine-grained differences, as addressed in this chapter, are a
separate problem fromsubjectiveattributes. That is, our methods address the prob-
lem where there may be a subtle distinction, yet the distinction is non-controversial.
Other work considers ways in which to personalize attributemodels [31, 33] or
discover which are subjective properties [13]. It would be interesting to investigate
problems where both subjectivity and fine-grained distinctions interact.

7 Conclusion

Fine-grained visual comparisons have many compelling applications, yet traditional
global learning methods can fail to capture their subtleties. We proposed several
local learning-to-rank approaches based on analogous training comparisons, and we
introduced a new dataset specialized to the problem. On multiple attribute datasets,
we find our ideas improve the state-of-the-art.
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