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Abstract. Video inpainting is an important technique for a wide vari-
ety of applications from video content editing to video restoration. Early
approaches follow image inpainting paradigms, but are challenged by
complex camera motion and non-rigid deformations. To address these
challenges flow-guided propagation techniques have been proposed. How-
ever, computation of flow is non-trivial for unobserved regions and prop-
agation across a whole video sequence is computationally demanding. In
contrast, in this paper, we propose a video inpainting algorithm based
on proposals: we use 3D convolutions to obtain an initial inpainting esti-
mate which is subsequently refined by fusing a generated set of proposals.
Different from existing approaches for video inpainting, and inspired by
well-explored mechanisms for object detection, we argue that propos-
als provide a rich source of information that permits combining similarly
looking patches that may be spatially and temporally far from the region
to be inpainted. We validate the effectiveness of our method on the chal-
lenging YouTube VOS and DAVIS datasets using different settings and
demonstrate results outperforming state-of-the-art on standard metrics.

1 Introduction

Inpainting missing regions in a given image or video is a longstanding and im-
portant computer vision task with applications, e.g ., in image/video restoration.
Not surprisingly, a significant amount of work has been devoted, particularly to
image inpainting [6, 5, 4, 11, 1, 16, 15, 21, 40, 30, 37, 41], while leveraging temporal
coherence for video completion has become increasingly popular more recently [9,
10, 24, 31, 14, 17, 39, 33, 3, 18, 42, 20, 2, 25].

Early video completion methods follow classical image inpainting techniques:
missing regions are completed one frame at a time by finding patches which
match or, more recently, via deep nets applied independently per frame. These
methods are challenged by complex camera motion, non-rigid object deforma-
tions, motion blur, and the fact that retrieving a compelling patch is often com-
putationally expensive. Moreover, in those methods, temporal artifacts occur if
deep nets are applied independently per frame. To address those concerns, very
recently, an optical flow guided propagation method has been demonstrated suc-
cessfully [39]. However, computation of flow is non-trivial in unobserved regions.
Besides, propagation across a whole video sequence is computationally demand-
ing, preventing application of such methods on hardware with limited resources,
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Fig. 1. Video inpainting in challenging scenarios, such as complex motion, cluttered
background and large missing regions. We highlight the missing region in red in the
first row and show the results of our method in the second row. We consider three
different scenarios: (left) arbitrary region inpainting; (middle) object removal; (right)
fixed region inpainting.

like mobile devices. Moreover, even with optical flow available, we are generally
not able to infer parts missing due to occlusions.

Importantly, all the aforementioned methods directly infer an inpainted re-
sult. While direct inference is conceptually straightforward to implement via
deep nets, it emphasizes local spatial and temporal consistency over more global
context, as filters in deep nets often have a limited receptive field. To counter
this bias, here, inspired by the recent success of proposal based techniques for
object detection [12, 28], we develop a proposal-based approach.

Concretely, our suggested method first infers a coarse-grained inpainting.
This inpainting is subsequently refined by constructing a set of proposals for
each frame. Global spatio-temporal consistency is encouraged as proposals are
contiguous regions which are fused via a parametric mechanism. The proposals
are obtained via a top-k matching of (1) features of observed pixels with (2)
features of the coarse-grained inpainting for the missing pixels. Different from
existing work, this permits to effectively combine non-local (spatially and tem-
porally) cues and leads to appealing results illustrated in Fig. 1.

To compare with existing methods [41, 39, 25, 20, 18], we provide extensive
experiments on the challenging YouTube VOS [38] and DAVIS [26] datasets using
two settings: fixed region inpainting and moving object removal. We demonstrate
that our proposal-based approach achieves more accurate results than state-of-
the-art methods. Moreover, it is over 55× faster than FGI [39] at inference
time (0.69 vs. 37.63 seconds per frame) on the DAVIS dataset on fixed region
inpainting, as it does not rely on optical flow-based propagation.

2 Related Work

Inpainting in images and video data has been a long standing problem in com-
puter vision. In this section, we describe works most related to our method.
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Image Inpainting. Recent efforts in image inpainting have shifted to designing
of deep neural nets which fill holes of arbitrary shapes (free-from inpainting).
Among them, partial convolution [21] and gated convolution [41] go beyond the
standard convolution operator, and are proposed to better utilize the binary
mask during convolution for inpainting. Besides operator level inventions, Edge-
connect [23] first hallucinates edges for the missing regions, then uses the edges
to preserve object boundaries in inpainted results. Similarly, StructureFlow [29]
first recovers an edge-preserved smoothed version of the original image, then
synthesizes texture for the smoothed regions.

DeepFill [40] proposes to match features between missing and known regions,
and reconstructs missing pixels using the similarity scores from feature matching
with known pixels. Iizuka et al . [15] fuse both global context and local texture
information by training different discriminators for generative adversarial net-
works [8].

Different from the aforementioned works, our approach focuses on video in-
painting, and leverages both spatial and temporal cues. Inspired by [29] we design
a novel multiple stage framework for video inpainting. We first infer an initial
coarse grained version, then refine the initial result based on proposals. The pro-
posal component in our method is related to PatchMatch [1], extending it to be
learning-based and end-to-end trainable.

Video Inpainting. Unlike image inpainting, video inpainting imposes new chal-
lenges of generating temporally consistent results. Chang et al . [2] extend gated
convolutions [41] to 3D for free-form video inpainting and propose a tempo-
ral PatchGAN loss to enhance temporal consistency. Wang et al . [33] adopt an
approach where a temporal network operates on low-resolution input to ensure
temporal consistency and a spatial network recovers details using 2D convolution
at a higher resolution. Onion-Peel networks [25] design an asymmetric attention
block that computes similarities between the hole boundary pixels in the target
and the non-hole pixels in the references in a non-local manner [34].

Optical flow provides dense correspondence between frames. It has been used
to extrapolate unknown pixels in video inpainting [14]. Xu et al . [39] propose to
first inpaint optical flow, which is arguably an easier task than inpainting the
original video. Occluded missing pixels are then filled by an image inpainting
method [40]. Unlike Xu et al . [39], Zhang et al . [42] simultaneously inpaint both
RGB and optical flow with an internal learning approach that is inspired by the
‘Deep Image Prior’ [32]. VINet [17] also estimates both RGB and optical flow for
the missing pixels. Temporal consistency is encouraged via a recurrent feedback
and a ConvLSTM. Instead of computing optical flow explicitly, Copy-and-Paste
networks [20] estimate affine transformations to align pixels across frames, and
use a context matching module to fuse pixels from multiple reference frames to
a target frame.

Our approach differs from the aforementioned ones in that we introduce
the concept of ‘inpainting proposals.’ Bounding box proposals or anchor boxes
have been widely used in object detection [12, 28]. However, to the best of our
knowledge, proposals have not been considered for tasks like image or video



4 Y. Hu et al.

Video Coarse-grained Fine-grained

� � �

3D Inpainting Network
(Sec 3.2)

Mask

�

Proposal
Fusion

(Sec 3.4),
Feature

Extraction
Decoder

H

W

T

Proposal
Generation Net

(Sec 3.3)

Proposals

...

Fig. 2. Illustration of the proposed method. Our method takes as input the video and
the mask and employs the developed 3D inpainting network to obtain a coarse-grained
inpainting. We subsequently match pixels within the coarse-grained inpainting to ob-
served pixels, creating a pool of proposals that can be used to inpaint the unobserved
parts of the video. Finally we fuse the proposals via an attention mechanism and up-
sample via a decoder to obtain the final fine-grained inpainting.

inpainting. In this paper, we demonstrate that proposals enable pooling non-
local patches with similar content very effectively and result in more spatially
and temporally consistent inpainting results.
Proposals. Proposals have taken a primary role in object detection: a region-
based convolutional neural net (R-CNN) approach [7] evaluates a conv-net for a
computationally manageable number of candidate regions of interest (RoI). Each
RoI is assessed independently regarding a variety of metrics like ‘object-ness,’
‘class,’ etc. Extensions like RoI pooling [7, 13], region proposal networks [28] and
RoI alignment [12] have further improved the efficacy of proposals.

Inspired by the success of proposals in object detection, we introduce the
concept of proposals to video inpainting. As mentioned before, we think pro-
posals are ideal to quickly pool spatially and temporally non-local information
in the form of similar patches. We provide details of the developed approach
subsequently.

3 Proposal-based Video Completion

Given a video X = (x1, . . . , xT ) composed of T frames with a resolution of
W ×H, and corresponding masks M = (m1, . . . ,mT ) ∈ {0, 1}T×W×H specifying
the missing region for each frame, we want to recover the RGB values for pixels
that are missing. Let xit denote the RGB value of frame xt at location i, where
i = (u, v) ∈ R2, u ∈ {1, . . . ,W}, v ∈ {1, . . . ,H} and let the mask mi

t = 1
indicate pixels that are missing and need to be recovered. Unlike prior works,
we propose to first create a set of ‘inpainting proposals,’ which are most similar
to the missing regions. We then design a novel attention mechanism to fuse the
proposals from different spatial-temporal locations to fill the missing regions. In
this section, we first provide an overview of our proposal-based approach, then
detail each component of our approach respectively.

3.1 Overview

The developed approach is outlined in Fig. 2. Again, we are given a video X and
the corresponding mask M which indicates the location of the missing regions.
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Fig. 3. Illustration of (a) the 3D inpainting network and (b) the proposal generation
module. Note that every tensor in (a) is in fact 4D (W × H × T × C), and C is
the number of channels. To avoid generating overly blurry results, we do not apply
temporal striding in the 3D inpainting network. To simplify, we ignore the temporal
dimension when visualizing the 4D tensors. For proposal generation (b), we match
every unobserved pixel (dark blue square) with every observed pixel to find the top-
k candidates (dark orange square). The surrounding area following the shape of the
missing region is subsequently extracted and added to the pool of proposals.

We first apply our 3D inpainting network to recover a coarse-grained result Y .
We then generate inpainting proposals based on the coarse-grained result and
finally fuse the proposals via a classifier to generate the inpainting result Z.

Our approach is based on a 3D inpainting network, a proposal generation
mechanism and a classifier to fuse the extracted set of proposals. All three com-
ponents are jointly trained. We provide an overview of each component next
before discussing their details in subsequent sections.

3D inpainting network: We first inpaint the input video X with missing
regions specified in M via a 3D inpainting network which has an encoder-decoder
structure, shown in Fig. 3 (a). To cope with 3D video data, the 3D inpainting
network utilizes 3D gated convolutions [41, 2] to better integrate the information
from the binary mask. We also apply dilation to 3D gated convolutions instead of
using larger kernel sizes to reduce the computational cost. To reduce blurryness,
our 3D network only downsamples spatially by a factor of four, and keeps the
temporal length T unchanged through the whole network.

Despite our dedicated design choices, the coarse inpainting results from the
3D inpainting network still tend to be blurry. To improve this initial estimate we
develop a novel proposal generation network, which refines the inpainting result
and yields the final result Z after upsampling via a decoder. We provide more
details subsequently.

Proposal generation: Candidates for parts of a missing region of a particular
frame may appear anywhere in the video, i.e., good candidates are not nec-
essarily in adjacent frames and are not necessarily spatially close neither. Our
key idea is to inpaint the missing region by attending to the observed pixels in
the video, looking for candidate patches which fit the coarse inpainting. This
permits to effectively combine non-local information represented in the form of
candidate patches.

Intuitively, by generating proposals, the temporal and spatial information
can be propagated from the observed parts of the video to the missing region.
To this end, we develop the ‘proposal generation network’ to generate a set
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of inpainting proposals Pt by matching features between observed pixels and
unknown pixels of the coarse result, as shown in Fig. 3 (b). More specifically,
for every unobserved pixel in frame xt we match features of its coarse-grained
estimate to features of any observed pixel in the given video. For every pixel
we retain the top-k matching candidates as well as their surrounding pixels as
indicated by the mask mt.

We want to emphasize: a proposal is not locally confined to a single pixel.
Very much in contrast, a single proposal can be used to inpaint all missing pixels
in a frame.
Proposal fusion: We fuse a pool of proposals Pt at time t generated by the
proposal generation network and compute the final inpainting Z based on the
fused result. For this we train a classifier to produce a categorical distribution
over all the proposals in order to fuse them. This mechanism establishes depen-
dencies between the missing region and the observed region in a non-local way.
The classifier module in our method is a 3-layer CNN to predict a probability
distribution over all the proposals. The obtained categorical distribution is used
to fuse the proposals.

The fused proposals across all points in time are fed into a decoder to generate
the final inpainting Z. Note that the proposal generation network combined with
the classifier permits attending to regions that can be spatially and temporally
far apart albeit containing similar, useful fine-grained context for inpainting.

In the following, we describe in detail each of the three components of the
proposed method.

3.2 3D Inpainting Network

We first inpaint a given video X which contains missing regions specified in M
by using a 3D inpainting network. As illustrated in Fig. 3 (a), the architecture
of our 3D inpainting network consists of layers of 3D gated convolutions [41, 2]
with striding and dilation at different layers. In total, there are 19 layers in the
3D inpainting network to keep the computational cost low. We only do spatial
striding twice to reduce the resolution from W × H to W/4 × H/4 and keep
the temporal length T unchanged in all the layers. Upsampling in the decoder
is done with bilinear interpolation instead of deconvolution.

The coarse result Y is obtained by fusing the input video X with the raw
output of the 3D inpainting network Ȳ via

Y = M � Ȳ + (1−M)�X, (1)

where M is the mask indicating whether or not a pixel is observed, ‘�’ denotes
element-wise multiplication and 1 is the all-ones tensor. The coarse inpainting
result Y obtained via this 3D inpainting network tends to be blurry. To rectify
this we develop the ‘proposal generation network’ which we discuss next.

3.3 Proposal Generation

We describe how to generate the ‘inpainting proposals’ in the following. To
generate proposals, we match pixels of the inpainted region in the coarse-grained



Proposal-based Video Completion 7

result, i.e., pixels which were initially unobserved, to observed regions at any
spatial and temporal locations in the input video. Consequently, candidates at
any spatial and temporal distance are treated equally. Hence, we consider a much
more global context which differs from prior approaches for video inpainting [39]
and image inpainting [40].

Our approach hence performs spatially and temporally non-local matching.
There are three components in the proposed ‘proposal generation network’: fea-
ture extraction, matching and generating of proposals as discussed next.
Feature extraction: We first extract features from the coarse-grained inpaint-
ing Y which are then used for matching. To be more specific, we compute features
F = g(Y ) from the coarse-grained result Y via a deep net g, in our case an 8-
layer CNN. Note that the spatial downsampling factor of g is 8. Therefore the
feature map F is of dimension RT×w×h×c, where w is W/8 and h is H/8. Again,
no temporal down-sampling is employed. Let ft be the feature map at time t.
Matching is performed at the resolution of h × w instead of H ×W such that
matching can be performed more efficiently. We downsample the mask mt as
well with a factor of 8 to get m̄t which indicates the missing pixels at the h×w
resolution. We subsequently use the computed features for matching.
Top-k matching: After feature extraction, we find matches between pixels for
which the original video did not provide an RGB value, and pixels for which
the RGB value was observed. For this we use the obtained features. To be more
specific, let

Ut = {(i, t)|m̄i
t = 1,∀i}

denote the unobserved pixels at time t which are required to be inpainted. Fur-
ther, let

O =
{

(j, t′)|m̄j
t′ = 0,∀i,∀t′ ∈ {1, . . . , T}

}
refer to all the observed pixels across all times.

To find the top-k matches, we first compute the similarity map St ∈ R|Ut|×|O|
via

St(a, b) = d(fa, fb)

for all unobserved pixels a = (i, t) ∈ Ut at time t, and for all observed pixels
b = (j, t′) ∈ O irrespective of time and location. Note, given a = (i, t), fa refers
to the feature at location i in ft. So does fb for b = (j, t′). We use d(fa, fb) to
denote the similarity between two features. We use the classical cosine distance
as the distance function d in our implementation and leave exploration of more
complex distance functions to future work.

Based on the similarity map St, we select the top-k matches Ka as follows:

Ka = {b|b ∈ Topk(St(a, b))}.

Hence, for a given unobserved pixel a ∈ Ut, Ka consists of only the top-k matches
across all spatial locations and across all frames. The set Ka is then used to
generate the set of proposals Pt.
Generating proposals: We illustrate our method to generate proposals in
Fig. 3 (b). After finding the top-k matches for every a ∈ Ut, for each match, we
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crop its surrounding region and generate a proposal pa which refers to a set of
feature vectors. We emphasize that each proposal pa can be used to inpaint all
missing pixels in frame xt. Finally, we use these proposals to construct the set
of proposals Pt. Formally, we obtain

Pt = {p|p = crop(ft′ , j, i),∀a = (i, t) ∈ Ut,∀b = (j, t′) ∈ Ka} .

Note that the crop operation is location-aware. Concretely, our method does not
crop the rectangle with its center location at j but instead crops a rectangle with
the size of the missing region, while keeping the relative location of j inside the
cropped rectangle identical to the relative location of i inside the missing region.

Hence, note that we don’t only use a top-k match locally for the correspond-
ing pixel. Very much in contrast, we use the locally computed top-k match to
extract a proposal which provides information for all the missing pixels at time
t. This is crucial as it permits our method to create many viable candidates,
each of which can be used to inpaint all missing pixels at once.

Subsequently we detail how we propose to compute the final inpainting Z.

3.4 Proposals fusion

After generating the set of proposals Pt for the frame at time t, we fuse them via
a classifier. Let pn be one of the proposals in Pt, i.e., pn ∈ Pt and let p{1,...,|Pt|}
be the concatenation of all |Pt| proposals. Recall that ft is the feature map at
time t obtained from the coarse-grained inpainting. For each unobserved pixel
(i, t) ∈ Ut, we compute the categorical distribution Ai ∈ [0, 1]|Pt| over all the
proposals, via a classifier C with soft-max for normalization, i.e.,

Ai,n =
exp{C(p{1,...,|Pt|}, ft)i,n}∑
n′ exp{C(p{1,...,|Pt|}, ft)i,n′}

.

The classifier C operates on the concatenation of all the proposals as well as the
feature map ft. We then fuse the proposals using distribution Ai to obtain the
attended feature pit for pixel i at time t via

pit =

|Pt|∑
n=1

Ai,n · pin.

Here, pin refers to the feature at location i in proposal pn. The fused feature map
P = {(pit)}∀i,t is padded such that it has the same size as F . We subsequently
concatenate the feature map P with the extracted coarse-grained features F and
employ a decoder to compute the inpainting result Z̄. To obtain the final result
Z, we merge Z̄ with the input X following Eq. (1).

3.5 Training

The described approach is trained end-to-end. For training of the proposal gen-
eration mechanism we construct a dataset which contains the ground-truth com-
pletion Z∗, the coarse-grained result Y and the final result Z. We jointly learn
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end-to-end the parameters of the 3D inpainting network (Sec. 3.2), the param-
eters of the classifier (Sec. 3.4), and the decoder, by optimizing the following
objective:

L = LL1 + λ1LG + λ2LCE. (2)

The objective consists of a pixel-wise L1 error LL1, an adversarial loss LG and a
cross-entropy loss LCE for fusing the proposals. Hyper-parameters λ1 and λ2 are
used to adjust the impact of the different loss components. We describe details
for each of the individual loss terms in the following.
Reconstruction loss LL1: The L1 error is used for penalizing if the inpainting
result deviates from the ground-truth. We penalize both the coarse-grained result
as well as the refined result using the L1 loss, i.e., we use

LL1 = ‖M � (Z∗ − Ȳ )‖1 + γ‖(1−M)� (Z∗ − Ȳ )‖1
+ ‖M � (Z∗ − Z̄)‖1 + γ‖(1−M)� (Z∗ − Z̄)‖1. (3)

The hyper-parameter γ controls the loss occurring due to reconstruction of ob-
served parts of the image.
Adversarial loss LG: An adversarial loss is commonly used for inpainting [40,
41, 2]. Let D be the discriminator and G be the inpainting network, i.e., Z =
G(X,M) where X and M are input video and masks. As suggested in [41], we
use a fully convolutional network as the discriminator. Note that the output of
the discriminator is a tensor rather than a scalar. We compute the adversarial
loss on each of the elements in the output tensor using a discriminator and
accumulate by averaging.

The inpainting network minimizes the below objective to fool the discrimi-
nator, i.e.,

LG = −EX,M

[
D(G(X,M))

]
.

The discriminator is trained to differentiate the inpainting result from the real
video. We optimize the discriminator using the following objective containing a
hinge-loss activation function:

LD = EX,M

[
max

(
0,1−D(G(X,M))

)]
+ EZ∗

[
max

(
0,1+D(Z∗)

)]
,

where Z∗ is the ground truth video.
For stable training, we apply spectral normalization [22] to the discrimina-

tor. The discriminator is a fully convolutional net (FCN) with 6 layers of 3D
convolutions. Because of our use of FCNs, the size of the input video isn’t fixed
during training.
Cross entropy loss LCE: An important component of the proposed method
is the classifier C to compute the categorical distribution over all proposals
as described in Sec. 3.4. To train the classifier, we obtain the labels by first
extracting features using the feature extractor g described in Sec. 3.3 to get the
feature map zt of the ground-truth completion, i.e., zt = g(Z∗) . From it we
obtain the ground truth distribution A∗i via

A∗i,n =

{
1 if n = arg max

n′
‖zit − pin‖,

0 otherwise.
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Intuitively, we compare the feature of the ground-truth completion to the pro-
posals, find the one that best matches with the ground truth, and use this as the
training label. After obtaining the training label, we minimize the cross-entropy
loss between the predicted distribution A and the label A∗, i.e., we use

LCE = −
∑
i∈Ut

|Pt|∑
n=1

A∗i,n logAi,n.

3.6 Implementation Details

To optimize the objective given in Eq. (2) w.r.t. the network parameters, we
use the Adam optimizer [19] with a learning rate of 1e-4. We first train the 3D
inpainting network with only the L1 loss objective for 6,000 iterations with a
batch size of 64. Subsequently we train the entire framework using all objectives
for another 6,000 iterations. We use λ1 = 1, λ2 = 0.05, k = 1 and, T = 8. The
inference time of our method on the DAVIS dataset (resolution 854 × 480) is
around 0.69 seconds per frame using one NVIDIA V100 GPU.

4 Experimental Results

We evaluate the proposed approach on two datasets, following the experimental
setup of prior work [39]. For completeness we first provide experimental settings
before discussing our results.

4.1 Experimental setting

We first describe the datasets which we use for experiments before discussing
metrics for comparison with baselines and mask generation.
Datasets: We use the DAVIS [26] and YouTube VOS [38] datasets which are
both widely used in video inpainting [39, 36, 17]. DAVIS [26, 27] consists of 150
videos in total, providing high-quality pixel-level annotations for foreground ob-
jects. We follow the evaluation protocol in [39], and use 60 videos from the dev
split for training and the remaining 90 videos where we have object masks for
testing. YouTube VOS [38] is a much larger dataset with more than 4000 videos
in total. It is a more challenging dataset as its videos are much longer than DAVIS
(140 vs. 68.9 frames per video on average), have higher resolution, and cover a
large variety of different scenarios. We use the training set which contains 3,471
videos to learn the parameters of our proposed proposal-based video-inpainting
method, and evaluate on the test set which contains 541 videos. We use the 507
videos in the validation set for choosing hyperparameters.
Evaluation metrics: To measure the similarity between the inpainted videos
and the ground truth, we use three metrics: structural similarity (SSIM) [35],
peak signal-to-noise ratio (PSNR) and learned perceptual image patch similarity
(LPIPS) [43]. We compute the three metrics on the entire video and also on the
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Table 1. Results of our method compared to baselines on the YouTube VOS test
set [38].

Runtime Inpainted region only Entire frame

(per frame) SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓

Deepfill2 (ICCV’19) [41] 0.32 s 0.336 9.228 0.448 0.958 21.271 0.034

FGI (CVPR’19) [39] 112.32 s 0.355 10.890 0.409 0.959 22.934 0.032

OPN (ICCV’19) [25] 9.05 s 0.437 12.242 0.394 0.964 24.286 0.029

CPN (ICCV’19) [20] 1.40 s 0.412 11.795 0.478 0.962 23.845 0.036

VINet (CVPR’19) [18] 0.18 s 0.348 10.338 0.549 0.958 22.381 0.043

Ours 0.87 s 0.445 13.292 0.388 0.969 25.821 0.030

Table 2. Results of our method compared to baselines on the DAVIS dataset [26].

Runtime Inpainted region only Entire frame

(per frame) SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓

Deepfill2 (ICCV’19) [41] 0.09 s 0.237 8.899 0.435 0.951 20.970 0.035

FGI (CVPR’19) [39] 37.63 s 0.341 10.974 0.353 0.958 23.045 0.028

OPN (ICCV’19) [25] 4.17 s 0.344 11.930 0.379 0.958 24.002 0.029

CPN (ICCV’19) [20] 0.53 s 0.316 11.338 0.507 0.956 23.409 0.040

VINet (CVPR’19) [18] 0.18 s 0.254 9.388 0.570 0.951 21.459 0.045

Ours 0.69 s 0.348 12.453 0.381 0.959 24.511 0.031

inpainted region only. This permits to assess the quality of both the entire frame
and the inpainted region.

We evaluate the method on two inpainting scenarios, i.e., fixed region in-
painting and object removal.

4.2 Fixed Region Inpainting

Fixed region inpainting is a common task [39] in video inpainting to study the
ability of completing a fixed missing region. Though the mask is fixed, this task
is very challenging as the fixed regions can cover a large portion of the video
and often break the irregular object boundaries. Following the setup in [39],
given an input video of resolution W ×H, we mask out a rectangular region of
size W/4 × H/4 at the center of the frame. In the following we first compare
quantitatively to the state-of-the-art (SOTA) using the aforementioned metrics
before providing and discussing qualitative results on both YouTube VOS and
DAVIS.
Comparison to SOTA: We provide a comparison to state-of-the-art video in-
painting methods on YouTube VOS in Tab. 1. We evaluate SSIM, PSNR (higher
is better) and LPIPS (lower is better) on both the inpainted region only and the
entire frames (i.e., the entire inpainted result Z).

From the results reported in Tab. 1 we observe that the proposed approach
significantly improves all metrics. The improvements are slightly more pro-
nounced when looking at the inpainted region only.

We conduct a similar evaluation on the DAVIS dataset and provide results
in Tab. 2. We observe the recently proposed flow guided inpainting (FGI) [39]
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Fig. 4. Comparison of runtime vs. performance in PSNR (left) and LPIPS (right)
with all methods on the YouTube VOS dataset. Note that for PSNR higher is better,
and for LPIPS lower is better. Our method achieves better performance while running
efficiently compared to baselines.

GT Input Deepfill2 FGI

OPN CPN VINet Ours

Fig. 5. Video inpainting results of our method compared to the baselines.

to be a competitive baseline. While our proposal based video completion falls
short on the LPIPS metric, we observe improvements on PSNR and SSIM. Note
that the runtime of FGI is much higher than ours as it’s an iterative method
and doesn’t scale well with the length of the video.
Runtime: We report the average runtime of each method on the YouTube VOS
and DAVIS datasets in Tab. 1 and Tab. 2. Our method is the second fastest
one among the state-of-the-art video inpainting approaches on YouTube VOS
and the third fastest on DAVIS. Note that the flow based approach FGI usually
requires tens of iterations of propagation and is therefore time consuming. We
plot the runtime vs. PSNR and LPIPS in Fig. 4. Our method achieves better
performance while running efficiently compared to baselines.
Qualitative results: We provide qualitative results for video inpainting of our
method and existing baselines in Fig. 4.2. For challenging cases which exhibit
significant appearance changes we observe accurate video completion results.
Deepfill2 [41] is an image-based baseline. The completion is less smooth since
no temporal information is taken into account. FGI [39] largely relies on flow
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Input+Mask FGI OPN

CPN VINet Ours

Fig. 6. Object removal results of our method compared to video inpainting baselines
on the sequence drift-chicane of the DAVIS dataset.

Table 3. Ablation study of our method on YouTube VOS validation and test sets [38].

3D Inpainting Net Proposal Classifier
Performance on YouTube VOS Val Performance on YouTube VOS Test

SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓

X 0.421 14.33 0.415 0.418 11.80 0.458

X X 0.432 14.41 0.377 0.422 11.84 0.433

X X X 0.459 16.22 0.301 0.445 13.29 0.388

which is tricky especially when motion is complex. We observe other baselines to
produce overly smooth results (CPN [20]) and unrealistic completion (OPN [25]
and VINet [18]). We observe encouraging completions despite the fact that the
proposed approach can be extended in many different directions.

4.3 Video Object Removal

We study applicability of the proposed method to object removal in videos. We
use the DAVIS dataset [26] for this study as the dataset provides accurate object
segmentations which specify the region to inpaint. In Fig. 6, we show the object
removal results of our approach compared to the state-of-the-art video inpainting
baselines, FGI [39], OPN [25], CPN [20] and VINet [18] on the DAVIS dataset.
Compared to the baselines we observe our method to work well on object removal
in videos, producing realistic results. Our method can inpaint arbitrary-shaped
masks as shown in the first row of Fig. 1. More results can be found in the
supplementary.

4.4 Ablation Study

To better understand the impact of individual components of the proposed ap-
proach we report results of an ablation study in Tab. 3. We use the YouTube VOS
validation and test sets and the fixed region inpainting setup in this experiment.
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We report the metrics computed on the inpainted region only. Specifically, we
analyze the accuracy of our 3D inpainting net (discussed in Sec. 3.2). Using the
proposal generation mechanism (discussed in Sec. 3.3) and fusing the results via
a single convolution with learnable parameters reduces SSIM and PSNR metrics
while it improves LPIPS. Finally, by combining the three developed parts, i.e.,
3D inpainting, proposal generation and the classifier (discussed in Sec. 3.4) we
achieve the most accurate results. We observe the performance improvements to
generalize to the test set.

4.5 Failure Cases

The proposed approach is challenged by thin structures and small objects with
a large missing region ratio. This can be observed in Fig. 7.

Input Result Input Result

Fig. 7. Two failure cases. Input frame on the left, inpainting on the right.

5 Conclusion

We develop a proposal-based 3D video completion method. Different from prior
work, we argue that proposals accurately summarize spatially and temporally
non-local candidates that could be used for inpainting. To compute those pro-
posals we first employ a developed 3D inpainting network which yields an initial
coarse-grained estimate. To fuse the proposals we develop a classifier-based pre-
diction mechanism. Despite the simplicity of the proposed method, we show on
challenging datasets that the use of proposals indeed leads to accurate results.
Going forward, we think better strategies to fuse the proposals and more intri-
cate ways to match candidates can lead to even bigger improvements.
Acknowledgements: This work is supported in part by NSF under Grant No.
1718221 and MRI #1725729, UIUC, Samsung, 3M, and Cisco Systems Inc. (Gift
Award CG 1377144). We thank Cisco for access to the Arcetri cluster.
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