
Pyramid Match Hashing: Sub-Linear Time
Indexing Over Partial Correspondences

Kristen Grauman
University of Texas at Austin

Austin, TX 78712
grauman@cs.utexas.edu

Trevor Darrell
Massachusetts Institute of Technology

Cambridge, MA 02139
trevor@csail.mit.edu

Abstract

Matching local features across images is often useful
when comparing or recognizing objects or scenes, and ef-
ficient techniques for obtaining image-to-image correspon-
dences have been developed [6, 4, 11]. However, given a
query image, searching a very large image database with
such measures remains impractical. We introduce a sub-
linear time randomized hashing algorithm for indexing sets
of feature vectors under their partial correspondences. We
develop an efficient embedding function for the normalized
partial matching similarity between sets, and show how
to exploit random hyperplane properties to construct hash
functions that satisfy locality-sensitive constraints. The re-
sult is a bounded approximate similarity search algorithm
that finds (1 + ε)-approximate nearest neighbor images in
O(N1/(1+ε)) time for a database containing N images rep-
resented by (varying numbers of) local features. By design
the indexing is robust to outlier features, as it favors strong
one-to-one matchings but does not penalize for additional
distant features. We demonstrate our approach applied to
image retrieval for images represented by sets of local ap-
pearance features, and show that searching over correspon-
dences is now scalable to large image databases.

1. Introduction

Representations that decompose images into local
patches or regions have proven to be very useful, in large
part due to their tendency to be preserved under a vari-
ety of imaging conditions and transformations. To lever-
age local representations when performing image-to-image
comparisons, many effective retrieval and object recogni-
tion algorithms evaluate similarity by establishing corre-
spondences (or a matching) between sets of local parts,
e.g., [6, 7, 3, 11, 4].

As advances are made in terms of powerful representa-
tions and sophisticated matching techniques, it is critical to

consider how they might scale to accommodate image re-
trieval with very large databases and recognition with a very
large number of categories or exemplars. If a retrieval sys-
tem is to index all of the images on the web by their visual
content, it cannot conceivably operate with a naive linear
scan, where a matching is computed between a query and
every image in the database. Likewise, if a recognition en-
gine based on correspondences is to ever cope with the thou-
sands of categories humans easily recognize, it must not re-
quire that a novel input be matched against every stored ex-
emplar for all categories.

Although researchers have developed the means to per-
form each individual matching efficiently [6, 11, 4], index-
ing over those correspondences remains a significant com-
putational challenge. While various tree data structures
have been explored to efficiently index features or keypoints
themselves [19, 17, 16, 21, 18], existing methods are lim-
ited to handling only these single vector inputs, and because
they index features independently, do not allow us to evalu-
ate one-to-one matchings.

In this work we present a sub-linear time randomized
hashing algorithm for indexing sets of feature vectors ac-
cording to their partial correspondences. We construct
an embedding and locality-sensitive hash functions under
which feature sets can be efficiently indexed, with guar-
antees on the expected error induced by the approximation
relative to the significant gains in query speed we achieve.
Specifically, we find the (1+ ε)-approximate nearest neigh-
bor (NN) images in O(N1/(1+ε)) time for a database con-
taining N images, each of which is represented by a set of
local features. The matching effected is partial and robust:
images may be described by varying numbers of features,
and the presence of very distant (“outlier”) features in an
image cannot significantly skew the correspondence simi-
larity that is measured for an otherwise good match.

We demonstrate our approach for image retrieval tasks
with large image databases, and show that for very little
loss in accuracy over a brute force linear scan, we obtain
significant computational advantages—typically, only 1-3%

1

kgrauman
Text Box
 Technical Report, Department of Computer Sciences, University of Texas at Austin. To appear, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2007.

of a database needs to be searched. In our experiments
we have focused on image matching with local appearance
features; however, the approach is general and applies to
any set-based representation where correspondences are a
meaningful comparison measure. Beyond content-based
image retrieval itself, the sub-linear time search tool we
provide has potential applications to recognition with ex-
emplars and other example-based learning problems where
a large amount of training data is valuable.

2. Related Work

Vision researchers have previously explored ways to mit-
igate the cost of establishing correspondences between sets
of local image features, either by introducing algorithmic
improvements for optimal solutions [6] or by designing ap-
proximations [4, 11]. In [6], Felzenszwalb and Hutten-
locher provide an efficient method using dynamic program-
ming and distance transforms to detect an object composed
of parts in a deformable configuration. To find an approx-
imation to the least-cost correspondences between pairs of
local shape features, Berg et al. optimize a linear bounding
problem and then use gradient descent [4]. We recently de-
veloped a linear-time approximation to the partial matching
between sets of features, and have demonstrated its use as a
kernel for discriminative classification of categories [11, 9].
In [15], Lazebnik et al. develop a variant of the pyramid
match that operates over spatial features and offers strong
recognition performance.

While these methods offer good complexity improve-
ments for the image-to-image matching problem, none ad-
dresses the problem of how to scale the correspondence
measure to index very large databases; despite the fast
matchings, a linear scan mode of computation is assumed.

Recent progress has been made using geometric embed-
dings and randomized algorithms to reduce computation re-
quirements for vision tasks. In the BoostMap method of
Athitsos et al. , a learned embedding function for the Cham-
fer distance is used to map data into a Euclidean space,
where comparisons are less expensive; however, retrievals
are performed with a linear scan [1]. In [14], Indyk and
Thaper develop a metric embedding for weighted bipar-
tite graph matching between equally-sized sets and apply it
to global color histogram matching with locality-sensitive
hashing [13] (LSH), a sub-linear time approach to approx-
imate similarity search. We further explore the matching
embedding and LSH for comparing sets of local shape fea-
tures in [10], and Shakhnarovich et al. design a variant of
LSH that is tuned to retrieve examples that are similar in
some parameter space and apply it to index global descrip-
tions of body pose [20].

In this work we also develop a form of locality-sensitive
hashing for sub-linear time search. However, in contrast to
previous techniques [14, 10, 20], our embedding allows in-

put feature sets to have varying cardinalities, and provides
for hashing over a normalized partial match. This is an im-
portant advantage for handling outlier “unmatchable” fea-
tures, as we will demonstrate in Section 4. In addition, un-
like [14, 10] with our hashing algorithm it is possible to
perform the feature space decomposition according to its
underlying structure, which means indexing can remain ac-
curate even for sets with high-dimensional features.

Several researchers have considered special tree data
structures to organize image feature vectors for fast ac-
cess [19, 17, 16, 21, 18]. Beis and Lowe develop the ap-
proximate Best-Bin-First technique, a variant of k−d trees,
to speed search for individual keypoints [2]. Shao et al. em-
ploy a Vantage Point tree to organize feature vectors [21],
while Lepetit et al. [16] and Obdrzalek and Matas [19] have
shown novel methods based on decision trees for efficiently
indexing features. In [18], Stewenius and Nister introduce a
“vocabulary-tree”, a hierarchical partition that reduces the
search time for similar features and allows bag-of-words
distances with very large vocabularies.

These approaches share our goal of realizing rapid
image-based search. However, they address the problem of
how, given a feature vector, to efficiently retrieve the most
similar feature vectors among a pool of feature vectors, with
similarity defined in terms of Euclidean distance. In con-
trast, we are concerned with the problem of how, given a
set of feature vectors, to efficiently retrieve the most simi-
lar sets from a database of sets, with similarity defined in
terms of one-to-one correspondences (a matching). While
the bag-of-words representation in [18] describes quantized
features jointly, unlike our approach it does not allow a par-
tial match and cannot formally guarantee sub-linear time
image search without assumptions about the frequency with
which features will occur in query images.

In addition, the approaches above are intended for ac-
cessing images that contain instances of the same object, a
scenario where identifying a few very similar features has
been shown to be sufficient to reach stored images of the
same object. Our framework applies to general matchings
not only between object instances, but also between tex-
tures or categories, which often exhibit stronger appearance
variation and may not be isolated from a database on the
basis of a few discriminative features alone. Instead, the
joint matching of all component features may be preferable;
such matchings have been shown to yield good category-
level comparisons (e.g. [11, 15]).

3. Approach

The main contribution of this work is a novel embedding
for a set of vectors that enables sub-linear time approximate
similarity search over partial correspondences with random
hyperplane hash functions. The idea is to encode a point set
with a weighted multi-resolution histogram in such a way

(a) Pyramid match embedding (b) Pyramid match hashing

Figure 1. Overview of the approach. The pyramid match (a) takes two sets of feature vectors as input (for instance, two sets of image patch
descriptors), maps the vectors to multiresolution histograms, and intersects them to efficiently approximate the optimal partial matching
(correspondence) between the original feature sets. Our novel embedding of the pyramid match and associated random hash functions
allow sub-linear time indexing over correspondences (b); the pyramid match is applied only to a small portion of the database examples,
but we still guarantee a specified retrieval accuracy with high probability.

that a dot product between any two such encodings will re-
flect the similarity of the original point sets according to
an approximate, normalized partial matching between their
component feature vectors. Then, by drawing on a prop-
erty of random hyperplanes, we designate randomized hash
functions which guarantee that examples with strong match-
ing similarity will (with high probability) hash into the same
buckets. Approximate similarity search in the Hamming
space of the hash keys then identifies the approximate near-
est neighbors according to the approximate matching score,
in sub-linear time in the number of database examples.

In image retrieval terms, this means we first take a col-
lection of images, each one of which is represented in some
fashion by a set of feature vectors. For example, each could
be described by a set of SIFT [17] descriptors extracted
at salient points, or a set of shape context [3] histograms
or geometric blur descriptors [4] extracted at edge points,
or a set of color distributions, etc. The database items
are prepared by mapping every set of vectors to a single
high-dimensional vector via the embedding function. After
this embedding, the dot product between any two examples
would reflect the partial matching similarity between the
original feature sets, that is, the strength of the correspon-
dence between their local parts. All embedded database ex-
amples are next encoded as binary hash key strings, with
each bit determined with a random hash function designed
to probabilistically give similar responses for examples with
similar dot products. These hash keys are stored in such a
way that they are accessible in sub-linear time.

Given a query image, local features of the chosen type
are extracted, and the embedding function is applied to form
the vector encoding for the query set. Then, rather than
compute the dot product between the embedded query and

every embedded database item, we apply the same random-
ized hash functions used for the database items to index into
the stored database hash keys, thereby (with high probabil-
ity) obtaining in sub-linear time the most similar database
neighbors in terms of normalized partial match correspon-
dences between the original local image features. See Fig-
ure 1 for a schematic overview of our approach.

We consider point sets from the input space S, which
contains sets of vectors drawn from feature space F : S ={
X|X = {x1, . . . ,xm}

}
, where each feature is a d-

dimensional vector, xi ∈ F ⊆ �d, and m = |X|.
A partial matching between two point sets is an assign-

ment that maps all points in the smaller set to some subset
of the points in the larger (or equally-sized) set. Given point
sets X and Y, where m = |X|, n = |Y|, and m ≤ n, a par-
tial matching M (X,Y;π) = {(x1,yπ1), . . . , (xm,yπm

)}
pairs each point in X to some unique point in Y ac-
cording to the permutation of indices specified by π =
[π1, . . . , πm], 1 ≤ πi ≤ n, where πi specifies which point
yπi

∈ Y is matched to xi ∈ X, for 1 ≤ i ≤ m. The cost
of a partial matching is the sum of the distances between
matched points: C (M(X,Y;π)) =

∑
xi∈X ||xi − yπi

||1.
The optimal partial matching M(X,Y;π∗) uses the as-

signment π∗ that minimizes the matching cost:

π∗ = argmin
π

C (M(X,Y;π)) . (1)

Given a database of feature sets D = {X1, . . . ,XN} ⊆
S, and a query set of features Q ∈ S, the nearest neighbor
in D in terms of correspondences is the set R∗ that has the
minimal partial matching cost to Q:

R∗ = argmin
Xi,1≤i≤N

C (M(Q,Xi;π∗)) . (2)

Let C = C (M(Q,R∗; π̂∗)), where π̂∗ refers to a
bounded approximation for π∗. In this work we develop a
sub-linear time hashing algorithm that guarantees retrieval
in O(N (1/1+ε)) time of an approximate nearest-neighbor R̂

for Q such that C
(
M(Q, R̂; π̂∗)

)
≤ (1 + ε)C.

3.1. Approximate Partial Correspondences

To construct our embedding for sub-linear time hashing
over correspondences, we build upon a matching technique
called the pyramid match, which we introduced in [11, 9].
The pyramid match is a low-distortion approximation for
the least-cost correspondence between two sets of vectors
that requires only linear time in the number of vectors per
set to compute. We will briefly summarize the relevant math
of the pyramid match algorithm here, but see [11] for details
and intuition for why this approximation works.

Point sets are converted to multi-resolution histograms
(pyramids): Ψ(X) = [H0(X), . . . , HL−1(X)], where X ∈
S, L = �log2 A�, A is the feature value range, Hi(X)
is a histogram vector formed over points in X using d-
dimensional bins of side length 2i.1 These pyramids are
represented sparsely, with up to m = |X| nonzero entries
per level.

The (un-normalized) pyramid match score is defined as:

P̃Δ (Ψ(Y), Ψ(Z)) = wL−1IL−1 +

L−2X
i=0

(wi − wi+1) Ii, (3)

where Y,Z ∈ S, and Ii is the intersection between the
ith histogram in Ψ(Y) and Ψ(Z), respectively [11]. To
measure matching similarity, the weights wi are set to be
inversely proportional to the size of the histogram bins at
level i, with the constraint that wi ≥ wi+1 (e.g., wi = 1

2i is
a valid option).

To avoid favoring large sets and to form a measure that
respects the triangle inequality (see Appendix), we will con-
sider the pyramid match value normalized by the product of
each input’s self-similarity:

PΔ (Ψ(Y), Ψ(Z)) =
P̃Δ (Ψ(Y), Ψ(Z))q

P̃Δ (Ψ(Y), Ψ(Y)) × P̃Δ (Ψ(Z), Ψ(Z))
.

(4)

The pyramid match will serve as our approximation to
the optimal partial matching (π̂∗). Below we develop an
embedding for the pyramid match and the locality-sensitive
hashing functions that will allow sub-linear time nearest
neighbor search on top of it.

3.2. Locality Sensitive Hashing

A locality sensitive hashing scheme is a distribution on
a family F of hash functions operating on a collection of

1Non-uniformly shaped bins are also possible, and may be formed by
hierarchical clustering on a corpus of features [12].

objects, such that for two objects x, y,

Pr
h∈F

[h(x) = h(y)] = sim(x, y), (5)

where sim(x, y) is some similarity function defined on the
collection of objects [5]. In other words, the probability that
two inputs collide in the hash table is equal to the similar-
ity between them, and so highly similar objects will be in-
dexed by the hash table with high probability. Such a hash-
ing scheme has been shown to support efficient data struc-
tures for performing approximate nearest-neighbor queries
on a database of objects, when hash functions that are ap-
propriate for both the data objects and similarity function of
interest can be defined [13, 5].

3.3. Random Hyperplane Hash Functions

In [8], Goemans and Williamson provide a randomized
algorithm for the MAX-CUT problem using semidefinite
programming. As part of this work, they prove that given
a collection of vectors {�v1, . . . , �vn} belonging to the unit
sphere, and a randomly generated vector �r, the probability
that any two vectors �vi and �vj each has a dot product with �r
having an opposite sign is related to the vectors as follows:

Pr [sgn(�vi · �r) 	= sgn(�vj · �r)] =
1
π

cos−1(�vi · �vj). (6)

That is, the probability a random hyperplane separates two
vectors is directly proportional to the angle cos−1(�vi · �vj).

In [5], Charikar considers how this property may be ex-
ploited for locality sensitive hashing. Given a database of
vectors in �d, a vector �r is chosen at random from the d-
dimensional Gaussian distribution with zero mean and unit
variance. The corresponding hash function h�r accepts a
vector �u ∈ �d, and is defined as:

h�r(�u) =
{

1, if �r · �u ≥ 0
0, if �r · �u < 0 . (7)

Then, drawing on the relationship in Eqn. 6, a valid locality
sensitive hashing scheme is:

Pr [h�r(�vi) = h�r(�vj)] = 1 − θ(�vi, �vj)
π

, where (8)

θ(�vi, �vj) = cos−1

(
�vi · �vj√|�vi| |�vj |

)
.

In the following, we show that we can achieve hashing
over the pyramid match kernel with this hash function fam-
ily. We develop an embedding function for the pyramid
mapping Ψ(X) of point set X that incorporates the weights
and computation of the pyramid matching PΔ. When con-
sidered as a type of unary encoding, we have an embedding
for each point set that under a dot product yields the un-
normalized pyramid match similarity value.

Given a histogram H that contains r bins, and a weight
w, let [wH] denote an r-dimensional vector giving the
counts in each bin of the histogram, with each count scaled

by w. Note that this weighting is distributive over histogram
intersection; that is, a weighted histogram intersection value
is equivalent to the intersection of the weighted histograms,
or w I (H(Y),H(Z)) = I ([wH(Y)], [wH(Z)]).

Let U([wH]) denote the following (padded) unary en-
coding of the histogram H weighted by w:

U ([wH]) =

0
BB@

wH(1)z }| {
1, . . . , 1,

P − wH(1)z }| {
0, . . . , 0| {z }

first bin

, . . . ,

wH(r)z }| {
1, . . . , 1,

P − wH(r)z }| {
0, . . . , 0| {z }

last bin

1
CCA ,

(9)
where P is the maximum possible weighted count in
any histogram bin, and H(j) is the count in bin j of
H .2 Let vi(X) refer to the histogram for set X at pyra-
mid level i, weighted by w = wi − wi+1: vi(X) =
[(wi − wi+1) Hi(X)].

The following embedding f serves to map the set of vec-
tors X to a single vector:

f(X) =
[
U(v0(X)), U(v1(X)), U(v2(X)), . . . ,

U(vL−2(X)), U([wL−1HL−1(X)])
]
.

(10)

The dot product between two such encodings for sets Y
and Z yields the un-normalized pyramid match score from
Eqn. 3 above:

f(Y) · f(Z) = P̃Δ (Ψ(Y),Ψ(Z)) . (11)

The length |f(Y)| of an encoding vector f(Y) is sim-
ply the sum of its total number of nonzero (one) entries.
Since self-intersection of a histogram returns the number
of total points in the histogram (I(H(Y),H(Y)) = |Y|),
the length of an embedding vector will be equivalent to the
original set’s self-similarity score under the pyramid match:

|f(Y)| = wL−1 |Y| +
L−2∑
i=0

(wi − wi+1) |Y|

= P̃Δ (Ψ(Y),Ψ(Y)) . (12)

Putting these pieces together, we have an embedding of
the pyramid match kernel that allows us to perform sub-
linear time similarity search with random hyperplane hash
functions. With the new embedding in Eqn. 10 and the guar-
antee from Eqn. 8, we have:

Pr [h�r(f(Y)) = h�r(f(Z))] = 1 − θ(f(Y), f(Z))

π
, where

θ(f(Y), f(Z)) = cos−1

f(Y) · f(Z)p|f(Y)| |f(Z)|

!

= cos−1 (PΔ (Ψ(Y), Ψ(Z))) .

2If weighted counts are real-valued, this process can in theory proceed
by scaling to a given precision and truncating to integers. With the nor-
malization factor also scaled, the output remains equivalent. However, as
described below, the unary encoding is never explicitly computed.

Notice that this last term is the normalized pyramid match
similarity value, where normalization is done according to
the product of the self-similarity scores.3

We do not need to explicitly expand the components
vi(X) into their unary encodings. Likewise, we do not
need to generate an entry for every dimension of the ran-
dom vector �r in Eqn. 7 to compute a hash bit from f(X).
Instead, the counts in Hi(X) indicate which entries in �r
will result in a nonzero contribution to 〈f(X) · �r〉, that is,
those entries where the encoding for vi(X) would be 1, not
0. For those required entries only, we generate values in �r
on demand: we seed a random number generator relative to
the index of the nonzero entry in f(X), obtain two uniform
random numbers in [0, 1], and then convert those to a nor-
mally distributed random number from N(0, 1) using the
Box-Muller transformation. The inner product between the
random vector and the embedding is then the sum of those
particular entries in �r, and the sign of this sum determines
the hash key bit h�r(f(X)).

To further improve the efficiency of computing hash key
bits, rather than sample random Gaussian values for �r re-
peatedly for each unit of a total weighted bin count V
(i.e., each of V 1-bits), we draw directly from the sum
of V Gaussians, which is normally distributed with mean∑V

i=1 μi = 0 and variance
∑V

i=1 σ2
i = V (hence the

√
Vl

term in step 5 of Algorithm 1).

3.4. Indexing in Hamming Space

Using k random hash functions (that is, k independent
instances of the vector �r above), for each database set X
we generate a k-dimensional binary hash key string that is
the concatenation of the hash key bits that result from Eqn. 7
with input �u = f(X). Now the problem of indexing into the
database with query set Q is reduced to hashing f(Q) with
these same k functions and retrieving items corresponding
to database bit vectors having minimal Hamming distances
to the query bit vector.

For this step, we employ the technique for approximate
nearest neighbor search in Hamming space developed by
Charikar [5], which guarantees that at most O(N1/(1+ε)) of
the N bit vectors must be examined to retrieve the (1 + ε)-
approximate nearest neighbors. Given the list of database
hash keys, M = O(N1/(1+ε)) random permutations of
the bits are formed, and each list of permuted hash keys is
sorted lexicographically to form M sorted orders. A query
hash key is indexed into each sorted order with a binary
search, and the 2M nearest examples found this way are
the approximate nearest neighbors. See [5] for details.

3Similar embeddings and hash functions are possible with the
“vocabulary-guided” pyramid match given in [12], since the intersected
pyramids there too can be written as a dot product between weighted his-
tograms. Because a vocabulary-guided pyramid uses irregularly shaped
histogram bins, for that embedding weights must be applied at the level of
the bins instead of at the level of the pyramid resolutions.

Given: Database of images {X1, . . . ,XN} each with fea-
ture vectors Xj =

{
x1, . . . ,xmj

}
, xi ∈ �d:

1: for all sets Xj , j = 1, . . . , N do
2: Compute embedding: Compute sparse multireso-

lution histogram Ψ(Xj) and then weighted vector
f(Xj), represented sparsely as {〈I, V 〉l}Z

l=1, a list
of d-dim. nonzero indices Il and their associated
weighted counts Vl, with Z = O(mjL).

3: Compute hash key:
4: for all Hash functions �ri, i = 1, . . . , k do
5: Generate next hash key bit:

h�ri
(f(Xj)) =

{
1, if

∑Z
l=1 �r

(l)
i

√
Vl ≥ 0

0, otherwise
,

where �r
(l)
i ∼ N(0, 1) is the Ith

l entry in random
vector �ri, generated via seeds relative to i and l.

6: end for
7: Concatenate k bits to form binary hash key:

[h�r1(f(Xj)), . . . , h�rk
(f(Xj))]

8: end for
9: Process hash keys for Hamming space approximate-

NN search according to [5]: generate M =
O(N1/(1+ε)) random k-dimensional permutations, per-
mute all database hash keys by each one, and sort each
list of permuted keys.

Given: Query image represented by set of features Q,
10: Compute embedding f(Q) and hash key

[h�r1(f(Q)), . . . , h�rk
(f(Q))] as in 2 and 3 above.

11: Apply each permutation to query hash key bits.
12: Perform binary search on each sorted, permuted or-

der of database hash keys, and collect the indices
[t1, . . . , t2M] corresponding to the database items’ hash
keys that are indexed in each.

13: Sort hashed examples according to
PΔ (Ψ(Q),Ψ(Xti

)), for i = 1, . . . , 2M .

Algorithm 1. Pyramid match hashing algorithm.

Having pulled up these nearest bit vectors, we then com-
pute the actual pyramid match similarity values between
their associated database pyramids and the query’s pyra-
mid. The retrieved neighbors are ranked according to these
scores, and this ranked list is the final output of the algo-
rithm. A useful property of our indexing approach is that
adding to the database does not require recomputing the pre-
processing steps; to add a new example to the database, its
hash key is computed, permuted, and then inserted into the
existing sorted orders. See Algorithm 1 for a summary of
the pyramid match hashing algorithm.

3.5. Normalized Partial Matches

To achieve a complete partial matching—where no
penalty whatsoever is accumulated for unmatched features
in a larger input set—it is necessary to normalize the match-

ing cost only according to the size of the smaller set. How-
ever, the hashing described above makes use of a normal-
ization factor that includes the sizes of both input sets. This
yields a correspondence measure between two variable-
sized sets that does include some penalty for the unmatched
points in the larger set, but remains robust to increasingly
distant outlier features.

For example, consider two sets; with the minimum car-
dinality normalization, their pyramid match score would re-
main constant if we were to add more and more features to
one of the sets. In contrast, with the product normaliza-
tion, the pyramid match value would slowly decrease as we
added those features. When is this a desired property for
image matching? If there is expected to be an unknown
amount of clutter, background, or unmatched features in
both of the images being matched, this normalization is rea-
sonable. The best matching will be the one that can find
good matches for all the features in both sets. An image
matching with more clutter (unmatchable features) will re-
ceive a lower similarity weight than an image matching with
fewer unmatched features. However, pyramid match hash-
ing will not care how different the unmatched features are to
any features in the other set; that is, the penalty is only rel-
ative to how many unmatched features there are. We verify
this property experimentally in Section 4.

Which normalization approach is most suitable may de-
pend on the application. We have shown how to perform
sub-linear time hashing with the product normalization, and
in the Appendix we prove that it is not possible to do locality
sensitive hashing with the alternative minimum cardinality
normalization.

4. Results

In this section we evaluate our indexing technique in
several ways. We first systematically test the pyramid
match’s robustness to outlying clutter features, and com-
pare it against an alternate approximate matching approach.
Then we demonstrate pyramid match hashing applied to im-
age retrieval on different data sets.

4.1. Robust Matching

The degree to which the unmatchable (or “outlier”) fea-
tures differ from the matched features will not affect our
matching scores, meaning that pyramid match hashing is
robust to increasingly distant outlier features. In contrast,
bijective matchings as in [14, 10] are not robust to increas-
ingly distant outliers. In bijective matching case, it is re-
quired that the sum of the total weight attached to points in
any input set be constant. One way to achieve equal weights
for variable-sized sets is to normalize the feature weights to
force an equal sum of weights for each set. However, do-
ing so alters the actual distribution of features that were ex-

(a) Costs with normalized fea-
ture weights to create equal-
mass sets

(b) Similarities with partial match and
normalization by both input cardinal-
ities

(c) Similarities with partial
match and normalization by
minimum cardinality

Figure 2. These examples illustrate differences between using a bijective matching to compare variable-sized sets whose feature weights
are normalized to sum to one (a), versus using a normalized partial matching to compare them without altering the feature weights (b),
versus using a partial matching normalized by only the minimum input cardinality (c). A circle with a number in it represents a feature
with that coordinate, and lines between features denote what is being matched. Each group above depicts two point sets containing 1-d
features. (The top example contains one feature in each set, the remaining three examples contain two features in one set, and one in the
other.) The same sets are matched for (a),(b) and (c). The numbers on the lines denote the cost (a) or similarity (b,c) associated with that
correspondence link. Total matching scores are displayed to the right for each set. Notice how outlier features skew the matching costs in
(a), while (b) assigns the same similarity to all three bottom matches. In addition, the cost for (a) does not distinguish between the left set’s
feature distributions in the top two examples, while the similarity in (b) does reflect their differences. When normalizing by the minimum
cardinality, there is absolutely no penalty for unmatched features (c); however, this matching does not obey the triangle inequality and thus
does not admit locality sensitive hash functions (see Appendix).

tracted from the image, and thus alters the meaning of the
matching computed between two sets (see Figure 2). The
hashing approach we have proposed does not require alter-
ing the input feature set; thus the true feature distribution is
preserved, as is the meaning behind matching parts of fea-
ture sets to one another. These properties hold by definition,
and we verify them empirically in this section.

In order to work with realistic data but still have con-
trol over the amount of clutter features, we established syn-
thetic class models. Each model is comprised of some fixed
number m′ of parts, and each part has a Gaussian model
that generates its d-dimensional appearance vector (in the
spirit of the “constellation model” used by Fergus et al. [7]
and others). Given these category models, we can then add
clutter features and noise, simulating in a controlled manner
the variations that occur with the patches extracted from real
images. The appearance of the clutter features is determined
by selecting a random vector from a uniform distribution on
the same range of values as the model features.

We generated 50 examples for two synthetic category
models, each of which was defined by a set of m′ = 35
features with d = 2, for a total of 100 point sets. We com-
puted pairwise similarities using the pyramid match normal-
ized by the product of the input sets’ cardinalities, pairwise
similarities using the optimal partial matching and the same

normalization, and pairwise distances based on the bijec-
tive matching approximation of [14]. To apply the bijec-
tive matching to unequally-sized sets, points in a set were
weighted so that all weights summed to one.

Then we added to every set up to 100 clutter features
having a value range bounded by a percentage Q of the
inlier features’ value range, and re-computed the resulting
pairwise matching scores. We tested for values of Q rang-
ing from 100% to 1000%, in increments of 200. (When
Q = 100%, the inlier and outlier features have the same
value range.) Figure 3 shows the results, with approxima-
tions’ ranking quality quantified by the Spearman correla-
tion coefficient. The two left-most points on the plot cor-
respond to matchings with equally-sized sets and no clutter.
The remaining points correspond to matchings with increas-
ingly more distant clutter or outlier features. The match
scores normalized by the sizes of both input sets remain ro-
bust to the addition of stronger outlier features (blue cir-
cles), whereas the bijective matching must incorporate the
distance of the outlier features in its matching and suffers as
that distance increases (green squares).

4.2. Image Retrieval Experiments

In this section we demonstrate our pyramid match hash-
ing algorithm applied to content-based image retrieval

0 100 200 300 400 500 600 700 800 900
0

0.2

0.4

0.6

0.8

1

Outliers’ percentage of inlier features’ value range

S
p

ea
rm

an
 r

an
k

co
rr

el
at

io
n

s
w

it
h

 o
p

ti
m

al
 p

ar
ti

al
 m

at
ch

n
o

rm
al

iz
ed

 b
y

b
o

th
 s

et
 s

iz
es

Approximation robustness to outliers

Bijective matching with
 normalized point set weights
Pyramid match partial match
 normalized by product of cardinalities

Figure 3. A partial match normalized by the product of the sizes of
both input sets will remain robust to distant outlier clutter features
(blue circles). This property cannot be simulated by re-weighting
point sets and computing a bijective matching (green squares).

where images are represented by sets of local SIFT [17]
image features. We consider two different data sets: the
Caltech-4 database and the Caltech-101 database. In all
experiments, we set ε = 1.0, which means that our query
times are bounded by O(

√
N) for N images.

We measure our performance with several metrics: (1)
the observed accuracy of the approximate-NN indexing,
(2) the extent to which our hash functions are in practice
locality-sensitive to the pyramid match, (3) the ranking of
hashed database neighbors relative to the ranking we would
obtain with a linear scan of all items, and (4) the relevance
of examples retrieved via hashing, again relative to the re-
sults of a linear scan.4 For metrics (1) and (3) we display
results with ‘box and whisker plots’: each box has lines at
the lower quartile, median value (red line), and upper quar-
tile values, whiskers extend from each end of the box to
show the extent of the rest of the data, and outliers are de-
noted with pluses. For metrics (2) and (4) we summarize
the error/accuracy distributions in terms of μ and σ.

To measure the approximate-NN indexing accuracy (1),
we measure for each data set the probability in practice
that we obtain some (1 + ε)-neighbor for each query.
In other words, we count how often we hash to one
(or more) database hash keys that are within (1 + ε)C
of the query, if the true nearest item is at distance C
from it. To measure the hash function accuracy (2),
we compute the error Pr(h�r(f(X)) = h�r(f(Y))) −(
1 − cos−1(PΔ(Ψ(X),Ψ(Y)))

π

)
, for all queries X and all

database examples Y. The probability of two sets having
equal hash key bits is estimated by averaging over 80 ran-
dom hash functions (�r). The ranking quality (3) is com-

4Precision-recall is not an appropriate error metric here due to the guar-
antees of the method, which are to retrieve some approximate-NN, not to
rank all examples.

20 40 80

60

70

80

90

100

P
er

ce
n

ta
g

e
o

f
q

u
er

ie
s

(%
)

Number of hash functions (k)

Frequency of hashing a (1+ε)−NN

20 40 80

95

96

97

98

99

100

T
o

p
 p

er
ce

n
ti

le
 o

f
ra

n
ke

d
 d

at
ab

as
e

it
em

s
am

o
n

g
 t

o
p

 5
 h

as
h

ed
 N

N

Number of hash functions (k)

Ranking accuracy among hashed NN

(a) Caltech-4 database

20 40 60 80

60

70

80

90

100

P
er

ce
n

ta
g

e
o

f
q

u
er

ie
s

(%
)

Number of hash functions (k)

Frequency of hashing a (1+ε)−NN

20 40 80

98.5

99

99.5

100

T
o

p
 p

er
ce

n
ti

le
 o

f
ra

n
ke

d
 d

at
ab

as
e

it
em

s
am

o
n

g
 t

o
p

 5
 h

as
h

ed
 N

N

Number of hash functions (k)

Ranking accuracy among hashed NN

(b) Caltech-101 database

Figure 4. Image retrieval results for Caltech-4 (a) and Caltech-101
(b) databases. Left plots measure extent to which approximate-NN
guarantee is realized; right plots show ranking quality of hashed
NN relative to a linear scan of the entire database.

puted in terms of the top percentile among the top K hashed
NN (according to the ranking a linear scan would provide),
while the relevance of hashed NN (4) is measured by the
ratio of the number of top K hashed NN having the same
label as the query divided by the same count for the top K
NN according to a linear scan. We set K = 5. All results
are collected for five repeated runs, due to the random ele-
ments of the algorithm. Figure 4 displays plotted results for
both databases using metrics (1) and (3).

Note that for these last two metrics, exhaustive search us-
ing the pyramid match is our baseline because the method
we have proposed is meant to approximate the quality of
such a search at a small fraction of the cost. Our implemen-
tation of the pyramid match requires on average 0.1 ms to
compare two sets averaging 1400 features each, on a ma-
chine with a 2.4 GHz processor and 2 GB of memory. We
have previously shown that the performance of the pyramid
match itself offers a close approximation to the optimal par-
tial matching [9, 11], and so we do not focus our results on
this aspect.

The Caltech-4 database contains 3188 total images span-
ning four different categories of objects. We withheld 20
images from each category to query the remaining images.
The approximate-NN accuracy (top left plot) is very strong
in practice here, with nearly a 100% chance of fulfilling the
(1 + ε) guarantee when k ≥ 40. As expected, a larger num-

ber of hash functions provides better accuracy. The distribu-
tion of errors between the hash function bit agreement and
the pyramid match scores (metric 2) has a mean of -0.01
(σ = 0.04), again verifying our theoretical properties for
this data. The top right plot demonstrates that our hashed
NN match the quality of the NN obtained with a linear
scan very well, with ranking percentiles of median values
of 99.8. The mean relevance ratio is 0.97 (σ = 0.12) and
the median ratio is 1.0 for the closest 5 neighbors. On aver-
age, a query with pyramid match hashing required searching
only 79 images, or 2.5% of the database. Thus, our pyramid
match hashing algorithm greatly improves the efficiency of
partial match search with very little loss in accuracy over
the state-of-the-art [11].

The Caltech-101 database contains about 9,000 images
spanning 101 object categories. Because there are only 30
images in some categories, we withheld 10 images from
each class to use as queries on the rest of the database. For
this data, an average query required searching only 115 im-
ages, or 1.5% of the database. The realized approximate-
NN accuracy follows a similar trend as above, with nearly
perfect satisfaction of the indexing guarantee for 40 hash
bits or more (bottom left plot). The mean hash function er-
ror (metric 2) is 0 (σ = 0.03); this again is evidence that the
relationship between the pyramid match and our hash func-
tions holds in practice. The ranking quality of the pyramid
match hashing relative to the linear scan is high on this data,
with median percentiles of 99.9 for 20 to 100 hash functions
(bottom right plot). The mean ratio of relevant examples re-
trieved with hashing versus a linear scan is 0.76 (σ = 0.4),
and the median value is 1.0 for this data. This distribution
is wider than it was for the Caltech-4 data, suggesting that
the large number of categories makes the retrieval of all rel-
evant examples more challenging. Still, on average 76% of
relevant examples found in the top 5 NN with a linear scan
are also found by the hashing retrieval.

For both data sets, using more hash functions improves
the indexing accuracy because it increases the probability
that similar examples collide; however this accuracy comes
at the cost of a linear increase in hash key computation time.

5. Conclusions

We have developed a sub-linear time randomized hash-
ing algorithm that enables scalable search over a normalized
partial matching for very large databases. We have demon-
strated our approach on retrieval tasks for images repre-
sented by sets of local appearance features, and we have
analyzed its accuracy and theoretical guarantees in various
ways. Nothing about the method is specific to a given repre-
sentation; it can be applied in any case where it is useful to
index sets of feature vectors based on their correspondence.
In the future we are interested in exploring how pyramid
match hashing might have impact on large-scale recognition

or clustering problems where a traditional linear processing
of the training data would not be feasible.

Appendix: Existence of Locality-Sensitive
Hash Functions

The proposed hashing framework relies on a metric-case
of a matching between variable-sized sets, where similarity
is normalized according to the product of both sets’ self-
similarities. In fact the metric property is necessary to al-
low locality sensitive hashing. For a metric space M un-
der metric distance D, the triangle inequality states that
D(x, z) ≤ D(x, y) + D(y, z), ∀x, y, z ∈ M . In [5] it is
shown that for any similarity function that admits a locality
sensitive hash function family as defined in Eqn. 5, the dis-
tance function 1−sim(x, y) satisfies the triangle inequality.

Given this fact, we can show that there is no locality sen-
sitive hash function family corresponding to the similarity
of the partial matching over sets X and Y normalized by
the minimum input set size. Let the partial match similarity
judge similarity between points as being inversely propor-
tional to their distance, as it is in the pyramid match. The
corresponding distance for 1 − sim(x, y) is then

Dp(X,Y;π) = 1−
(1

min(|X|, |Y|)
∑
xi∈X

1
||xi − yπi

|| + 1

)
.

The partial match computed with this normalization does
not satisfy the triangle inequality, as we can see with a sim-
ple counter-example. For sets with one-dimensional fea-
tures: X = {[1]}, Y = {[2]}, and Z = {[1], [2]}, the pair-
wise distances are Dp(X,Y;π∗) = 1

2 , Dp(X,Z;π∗) = 0,
and Dp(Z,Y;π∗) = 0. This breaks the triangle inequal-
ity, since Dp(X,Z;π∗) + Dp(Z,Y;π∗) < Dp(X,Y;π∗).
Therefore, a partial matching score normalized by the min-
imum input set size does not admit a locality sensitive hash
function.

References

[1] V. Athitsos, J. Alon, S. Sclaroff, and G. Kollios.
BoostMap: A Method for Efficient Approximate Sim-
ilarity Rankings. In CVPR, 2004. 2

[2] J. Beis and D. Lowe. Shape Indexing Using Approxi-
mate Nearest-Neighbour Search in High Dimensional
Spaces. In CVPR, 1997. 2

[3] S. Belongie, J. Malik, and J. Puzicha. Shape Matching
and Object Recognition Using Shape Contexts. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 24(24):509–522, 2002. 1, 3

[4] A. Berg, T. Berg, and J. Malik. Shape Matching and
Object Recognition Low Distortion Correspondences.
In CVPR, 2005. 1, 2, 3

[5] M. Charikar. Similarity Estimation Techniques from
Rounding Algorithms. In Proceedings of the 34th An-

nual ACM Symposium on Theory of Computing, 2002.
4, 5, 6, 9

[6] P. Felzenszwalb and D. Huttenlocher. Pictorial Struc-
tures for Object Recognition. IJCV, 61(1), 2005. 1,
2

[7] R. Fergus, P. Perona, and A. Zisserman. Object Class
Recognition by Unsupervised Scale-Invariant Learn-
ing. In CVPR, 2003. 1, 7

[8] M. Goemans and D. Williamson. Improved Approx-
imation Algorithms for Maximum Cut and Satisfi-
ability Problems Using Semidefinite Programming.
JACM, 42(6):1115–1145, 1995. 4

[9] K. Grauman. Matching Sets of Features for Efficient
Retrieval and Recognition. PhD thesis, MIT, 2006. 2,
4, 8

[10] K. Grauman and T. Darrell. Fast Contour Match-
ing Using Approximate Earth Mover’s Distance. In
CVPR, 2004. 2, 6

[11] K. Grauman and T. Darrell. The Pyramid Match Ker-
nel: Discriminative Classification with Sets of Image
Features. In ICCV, 2005. 1, 2, 4, 8, 9

[12] K. Grauman and T. Darrell. Approximate Correspon-
dences in High Dimensions. In NIPS 19. 2007. 4,
5

[13] P. Indyk and R. Motwani. Approximate Nearest
Neighbors: Towards Removing the Curse of Dimen-
sionality. In 30th Symposium on Theory of Computing,
1998. 2, 4

[14] P. Indyk and N. Thaper. Fast Image Retrieval via Em-
beddings. In Intl Wkshp on Stat. and Comp. Theories
of Vision, 2003. 2, 6, 7

[15] S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of
Features: Spatial Pyramid Matching for Recognizing
Natural Scene Categories. In CVPR, 2006. 2

[16] V. Lepetit, P. Lagger, and P. Fua. Randomized Trees
for Real-Time Keypoint Recognition. In CVPR, 2005.
1, 2

[17] D. Lowe. Distinctive Image Features from Scale-
Invariant Keypoints. IJCV, 60(2), 2004. 1, 2, 3, 8

[18] D. Nister and H. Stewenius. Scalable Recognition
with a Vocabulary Tree. In CVPR, 2006. 1, 2

[19] S. Obdrzalek and J. Matas. Sub-linear Indeing for
Large Scale Object Recognition. In British Machine
Vision Conference, 2005. 1, 2

[20] G. Shakhnarovich, P. Viola, and T. Darrell. Fast
Pose Estimation with Parameter-Sensitive Hashing. In
ICCV, 2003. 2

[21] H. Shao, T. Svoboda, V. Ferrari, T. Tuytelaars, and
L. V. Gool. Fast Indexing for Image Retrieval Based
on Local Appearance with Re-ranking. In ICIP, 2003.
1, 2

	Text1:

