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Abstract

Pyramid intersection is an efficient method for computingapproximate partial
matching between two sets of feature vectors. We introduaeveal pyramid em-
bedding based on a hierarchy of non-uniformly shaped biatstétkes advantage
of the underlying structure of the feature space and renaaiograte even for sets
with high-dimensional feature vectors. The matching snity is computed in
linear time and forms a Mercer kernel. Whereas previous nragcpproxima-
tion algorithms suffer from distortion factors that incsedinearly with the fea-
ture dimension, we demonstrate that our approach can nraggastant accuracy
even as the feature dimension increases. When used as a ikeangiscrimina-
tive classifier, our approach achieves improved objectgeition results over a
state-of-the-art set kernel.

1 Introduction

When a single data object is described by a set of feature ngedgtds often useful to consider
the matching or “correspondence” between two sets’ elesnienbrder to measure their overall
similarity or recover the alignment of their parts. For exdenin computer vision, images are often
represented as collections of local part descriptionsetad from regions or patches (e.g., [11, 12]),
and many recognition algorithms rely on establishing theespondence between the parts from
two images to quantify similarity between objects or lopalan object within the image [2, 3, 7].
Likewise, in text processing, a document may be represeagedbag of word-feature vectors; for
example, Latent Semantic Analysis can be used to recovead“meaning” subspace on which
to project the co-occurrence count vectors for every wofdT8@e relationship between documents
may then be judged in terms of the matching between the sésalifmeaning features.

The critical challenge, however, is to compute the corradpaces between the feature sets in an
efficient way. The optimal correspondences—those that nimeithe matching cost—require cubic
time to compute, which quickly becomes prohibitive for silzke sets and makes processing realistic
large data sets impractical. Due to the optimal matchingfemexity, researchers have developed
approximation algorithms to compute close solutions faraatfon of the computational cost [4, 8,
1, 7]. However, previous approximations suffer from digtor factors that increase linearly with
the dimension of the features, and they fail to take advantdigtructure in the feature space.

In this paper we present a new algorithm for computing an@pprate partial matching between
point sets that can remain accurate even for sets with higlestsional feature vectors, and benefits
from taking advantage of the underlying structure in theéuieaspace. The main idea is to derive a
hierarchical, data-dependent decomposition of the feapace that can be used to encode feature
sets as multi-resolution histograms with non-uniformlgyséd bins. For two such histogranpya-
mid9, the matching cost is efficiently calculated by counting ttumber of features that intersect
in each bin, and weighting these match counts accordingdmggic estimates of inter-feature dis-
tances. Our method allows for partial matchings, which re¢hat the input sets can have varying
numbers of features in them, and outlier features from tigefeset can be ignored with no penalty



to the matching cost. The matching score is computed in tingat in the number of features per
set, and it forms a Mercer kernel suitable for use withintaxigkernel-based algorithms.

In this paper we demonstrate how, unlike previous set magcigpproximations (including our orig-
inal pyramid match algorithm [7]), the proposed approaah maintain consistent accuracy as the
dimension of the features within the sets increases. Weshlsew how the data-dependent hierarchi-
cal decomposition of the feature space produces more deaoaespondence fields than a previous
approximation that uses a uniform decomposition. Finaliyng our matching measure as a kernel
in a discriminative classifier, we achieve improved objecignition results over a state-of-the-art
set kernel on a benchmark data set.

2 Reated Work

Several previous matching approximation methods havecaissidered a hierarchical decomposi-
tion of the feature space to reduce matching complexityabiguffer from distortion factors that
scale linearly with the feature dimension [4, 8, 1, 7]. Irsthiork we show how to alleviate this
decline in accuracy for high-dimensional data by tuninghtezarchical decomposition according
to the particular structure of the data, when such struexiss.

We build on our pyramid match algorithm [7], a partial matghiapproximation that also uses
histogram intersection to efficiently count matches inmipli¢dormed by the bin structures. However,
in contrast to [7], our use of data-dependent, non-unifoim bnd a more precise weighting scheme
results in matchings that are consistently accurate facstred, high-dimensional data.

The idea of partitioning a feature space with vector quatitn (VQ) is fairly widely used in prac-
tice; in the vision literature in particular, VQ has beendigeestablish a vocabulary of prototypical
image features, from “textons” to the “visual words” of [16} variant of the pyramid match ap-
plied to spatial features was shown to be effective for matclyuantized features in [10]. More
recently, the authors of [13] have shown that a tree-stradtuector quantization (TSVQ [5]) of im-
age features provides a scalable means of indexing intoydasmgye feature vocabulary. The actual
tree structure employed is similar to the one constructéhisnwork; however, whereas the authors
of [13] are interested in matching individual features t@ @mother to access an inverted file, our
approach computes approximate correspondences besstsarfi features. Note the distinction be-
tween the problem we are addressing—approximate matchietggebn sets—and the problem of
efficiently identifying approximate or exact nearest néighfeature vectors (e.g., viad trees): in
the former, the goal is a one-to-one correspondence betsatsmf vectors, whereas in the latter, a
single vector is independently matched to a nearby vector.

3 Approach

The main contribution of this work is a new very efficient apgmate bipartite matching method
that measures the correspondence-based similarity betwesrdered, variable-sized sets of vec-
tors, and can optionally extract an explicit correspondefield. We call our algorithm the
vocabulary-guideqVG) pyramid matchsince the histogram pyramids are defined by the “vocabu-
lary” or structure of the feature space, and the pyramidsiseel to count implicit matches.

The basic idea is to first partition the given feature spatedrpyramid of non-uniformly shaped re-
gions based on the distribution of a provided corpus of featactors. Point sets are then encoded as
multi-resolution histograms determined by that pyramid] an efficient intersection-based compu-
tation between any two histogram pyramids yields an appraté matching score for the original
sets. The implicit matching version of our method estim#tesinter-feature distances based on
their respective distances to the bin centers. To produ@xplicit correspondence field between
the sets, we use the pyramid construct to divide-and-cartaeptimal matching computation. As
our experiments will show, the proposed algorithm in pcpirovides a good approximation to the
optimal partial matching, but is orders of magnitude fakiazompute.

Preliminaries. We consider a feature spaéeof d-dimensional vectorst” C R¢. The point sets
our algorithm matches will come from the input spagewhich contains sets of feature vectors
drawn fromF: S = {X|X = {x1,...,Xm }}, Where eaclx; € F, and the valuen = |X| may
vary across instances of setsSn Throughout the text we will use the terms feature, vectod a
point interchangeably to refer to the elements within a set.



(a) Uniform bins (b) Vocabulary-guided bins

Figure 1: Rather than carve the feature space into uniformly-shaped partitiotls Wef let the vocabulary
(structure) of the feature space determine the partitions (right). Asu#t,réeee bins are better concentrated on
decomposing the space where features cluster, particularly for mgdrdional feature spaces. These figures
depict the grid boundaries for two resolution levels for a 2-D featureespln both (a) and (b), the left plot
contains the coarser resolution level, and the right plot contains the fireer Beatures are red points, bin
centers are larger black points, and blue lines denote bin boundaries.

A partial matching between two point sets is an assignmexttritaps all points in the smaller set
to some subset of the points in the larger (or equally-sizetl) Given point setX andY, where
m = |X|, n = [Y|, andm < n, a partial matching\ (X, Y;7) = {(x1,¥x,),---» Xm, Yr, )}
pairs each point ifK to some unique point ifY’ according to the permutation of indices specified
bym = [m1,...,mm], 1 < < n, wherer; specifies which poiny ., € Y is matched tx; € X,
for 1 < i < m. The cost of a partial matching is the sum of the distancesdsst matched points:
CM(X,Y;m)) = >, ex|xi — ¥ ll2- The optimal partial matching((X,Y;7*) uses the
assignmentr* that minimizes this costr* = argmin, C (M(X,Y;x)). Itis this matching that
we wish to efficiently approximate. In Section 3.2 we desetilow our algorithm approximates
the costC (M(X,Y;7*)); for a small increase in computational cost we can also exesplicit
correspondences to estimateitself.

3.1 Building Vocabulary-Guided Pyramids

The first step is to generate the structure of the vocabgaiged (VG) pyramid to define the bin
placement for the multi-resolution histograms used in tregching. This is a one-time process
performed before any matching takes place. We would likebthe in the pyramid to follow the
feature distribution and concentrate partitions wheref¢lagures actually fall. To accomplish this,
we perform hierarchical clustering on a sample of repregietfeature vectors frorf'.

We randomly select some example feature vectors from therfetype of interest to form the repre-
sentative feature corpus, and perform hierarchieadeans clustering with the Euclidean distance to
build the pyramid tree. Other hierarchical clustering téghes, such as agglomerative clustering,
are also possible and do not change the operation of the cheHur this unsupervised clustering
process there are two parameters: the number of levels itraébd,, and the branching facta.
The initial corpus of features is clustered itdop-level groups, where group membership is deter-
mined by the Voronoi partitioning of the feature corpus adowy to thek cluster centers. Then the
clustering is repeated recursively— 1 times on each of these groups, filling out a tree wittotal
levels containings’ bins (nodes) at level, where levels are counted from the root=£ 0) to the
leaves { = L — 1). The bins are irregularly shaped and sized, and their bemigglare determined
by the Voronoi cells surrounding the cluster centers. (SgerE 1.) For each bin in the VG pyramid
we record its diameter, which we estimate empirically basethe maximal inter-feature distance
between any points from the initial feature corpus that veessigned to it.

Once we have constructed a VG pyramid, we can embed poinfreatsS as multi-resolution
histograms. A point’s placement in the pyramid is determiibg comparing it to the appropriaie
bin centers at each of the pyramid levels. The histogram count is incremented for ihgdmong
the k choices) that the point is nearest to in terms of the samandistfunction used to cluster the
initial corpus. We then push the point down the tree and oaoetito increment finer level counts
only along the branch (bin center) that is chosen at each I8eea point is first assigned to one of
the top-level clusters, then it is assigned to onésothildren, and so on recursively. This amounts
to a total ofk L distances that must be computed between a point and the jokgdoim centers.

Given the bin structure of the VG pyramid, a point 3etis mapped to its pyramid¥ (X) =
[Ho(X),...,Hy_1(X)], with H;(X) = [(p,n,d)1,...,(P,n,d)], and whereH;(X) is ak’-
dimensional histogram associated with levéh the pyramid,p € Z* for entries inH;(X), and



0 < i < L. Each entry in this histogram is a trip{e, n, d) giving the bin index, the bin count, and
the bin’s points’ maximal distance to the bin center, retipely.

Storing the VG pyramid itself requires space (k) d-dimensional feature vectors, i.e., all of
the cluster centers. However, each point set’s histograstoied sparsely, meaning onfy(mL)
nonzero bin counts are maintained to encode the entire pgrfama set withm features. This is
an important point: we do not store(k%) counts for every point seff;(X) is represented by at
mostm triples having: > 0. We achieve a sparse implementation as follows: each vectoset is
pushed through the tree as described above. At everyidewe record &p, n, d) triple describing
the nonzero entry for the current bin. The vegtoe= [p1,...,ps], p; € [1, k] denotes the indices
of the clusters traversed from the root so farc Z* denotes the count for the bin (initially 1),
andd € R denotes the distance computed between the inserted pairtharcurrent bin’s center.
Upon reaching the leaf levgh is anL-dimensional path-vector indicating which of thdins were
chosen at each level, and every path-vector uniquely ifiensome bin on the pyramid.

Initially, an input set withm features yields a total of.L such triples—there is one nonzero entry
per level per point, and each has= 1. Then each of thd. lists of entries is sorted by the index
vectors p in the triple), and they are collapsed to a list of sorted eooezntries with unique indices:
when two or more entries with the same index are found, theyeplaced with a single entry with
the same index fop, the summed counts far, and the maximum distance fdér The sorting is done
in linear time using integer sorting algorithms. Maintaigithe maximum distance of any pointin a
bin to the bin center will allow us to efficiently estimateeripoint distances at the time of matching,
as described in Section 3.2.

3.2 Vocabulary-Guided Pyramid Match

Given two point sets’ pyramid encodings, we efficiently cangpthe approximate matching score
using a simple weighted intersection measure. The VG pyfamiulti-resolution partitioning of
the feature space is used to direct the matching. The basitiam is to start collecting groups of
matched points from the bottom of the pyramid up, i.e., froithiw increasingly larger partitions.
In this way, we will first consider matching the closest psi(dt the leaves), and as we climb to
the higher-level clusters in the pyramid we will allow inasingly further points to be matched. We
define the number afewmatches within a bin to be a count of the minimum number of tsa@ither

of the two input sets contributes to that bin, minus the numebenatches already counted by any of
its child bins. A weighted sum of these counts yields an axiprate matching score.

Let n;;(X) denote the element from (p,n,d);, the j** bin entry of histogranmt,(X), and let
cn, (ni; (X)) denote the element for the ht" child bin of that entry,l < h < k. Similarly, let
d;;(X) refer to the elemend from the same triple. Given point se¥ andY, we compute the
matching score via their pyramids(X) and¥(Y) as follows:
L—-1 k* k
C(W(X), ¥(Y)) =YD wiy |min (ny(X),ni;(Y)) = Y min (e (ni3(X)), en (ni;(Y))) | . (1)
i=0 j=1 h=1
The outer sum loops over the levels in the pyramids; the sksam loops over the bins at a given
level, and the innermost sum loops over the children of arglvi@. The firstmin term reflects
the number of matchable points in the current bin, and thersbmin term tallies the number of
matches already counted at finer resolutions (in child bildte that as the leaf nodes have no
children, wheni = L — 1 the last sum is zero. All matches are new at the leaves. Thehingt
scores are normalized according to the size of the inpuirsetsler to not favor larger sets.

The number of new matches calculated for a bin is weightedy an estimate of the distance
between points contained in the Bindith a VG pyramid match there are two alternatives for the
distance estimate: (a) weights based on the diameters pf/thenid’s bins, or (b) input-dependent
weights based on the maximal distances of the points in théabits center. Option (a) is a con-
servative estimate of the actual inter-point distanceblérbin if the corpus of features used to build
the pyramid is representative of the feature space; itsradgas are that it provides a guaranteed
Mercer kernel (see below) and eliminates the need to storgt@nded in the entry triples. Option
(b)'s input-specific weights estimate the distance betveagrtwo points in the bin as the sum of the
stored maximal to-center distances from either input@et:= d;;(X) + d;;(Y). This weighting

170 use our matching as a cost function, weights are set as the distdimates; to use as a similarity
measure or kernel, weights are set as (some function of) the invettse distance estimates.



gives a true upper bound on the furthest any two points coeifddm one another, and it has the po-
tential to provide tighter estimates of inter-feature aligtes (as we confirm experimentally below);
however, we cannot guarantee this weighting will yield a déekernel.

Just as we encode the pyramids sparsely, we derive a meaosnfmute intersections in Eqgn. 1
without ever traversing the entire pyramid tree. Given tparse listd4;(X) andH;(Y) which have
been sorted according to the bin indices, we obtain the mimiraounts in linear time by moving
pointers down the lists and processing only those nonzergesrihat share an index, making the
time required to compute a matching between two pyramfi@ia L). A key aspect of our method is
that we obtain a measure of matching quality between twot gaits without computing pair-wise
distances between their features—@apmn?) savings over sub-optimal greedy matchings. Instead,
we exploit the fact that the points’ placement in the pyrareitects their distance from one another.
The only inter-feature distances computed are ithedistances needed to insert a point into the
pyramid, and this small one-time cost is amortized evergtime re-use a histogram to approximate
another matching against a different point set.

We first suggested the idea of using histogram intersecticcotint implicit matches in a multi-
resolution grid in [7]. However, in [7], bins are constrwtt® uniformly partition the space, bin
diameters exponentially increase over the levels, andsettions are weighted indistinguishably
across an entire level. In contrast, here we have develogsaamid embedding that partitions
according to the distribution of features, and weightingesoes that allow more precise approxima-
tions of the inter-feature costs. As we will show in Sectigoodr VG pyramid match remains accu-
rate and efficient even for high-dimensional feature spaghiée the uniform-bin pyramid match is
limited in practice to relatively low-dimensional featare

For the increased accuracy our method provides, there are somplexity trade-offs versus [7],
which does not require computing any distances to place aiespinto bins; their uniform shape
and size allows points to be placed directly via division by 4ize. On the other hand, sorting the
bin indices with the VG method has a lower complexity, sifeevalues only range tio, the branch
factor, which is typically much smaller than the aspecortitat bounds the range in [7]. In addition,
as we show in Section 4, in practice the cost of extractingxticit correspondence field using the
uniform-bin pyramid in high dimensions approaches thecubst of the optimal measure, whereas
it remains linear with the proposed approach, assumingfesiare not uniformly distributed.

Our approximation can be used to compare sets of vectorsyiease where the presence of low-
cost correspondences indicates their similarity (e.@rest-neighbor retrieval). We can also employ
the measure as a kernel function for structured inputs. Aliieg to Mercer’s theorem, a kernel is
p.s.d if and only if it corresponds to an inner product in sdeaure space [15]. We can re-write
Eqn. 1 as:C (U(X), ©(Y)) = Y10 S5 (wij — pij) min (ng;(X), n;(Y)), wherep;; refers

to the weight associated with the parent bin of jie node at level. Since themin operation is
p.d. [14], and since kernels are closed under summationcaiishg by a positive constant [15], we
have that the VG pyramid match is a Mercer kernebjf > p;;. This inequality holds if every
child bin receives a similarity weight that is greater thenparent bin, or rather that every child
bin has a distance estimate that is less than that of its pdredeed this is the case for weighting
option (a), wherev;; is inversely proportional to the diameter of the bin. It Feoly definition of the
hierarchical clustering: the diameter of a subset of pamist be less than or equal to the diameter
of all those points. We cannot make this guarantee for weightitigrofb).

In addition to scalar matching scores, we can optionallyaettexplicit correspondence fields
through the pyramid. In this case, the VG pyramid decomptsesequired matching computa-
tion into a hierarchy of smaller matchings. Upon encounteg bin with a nonzero intersection,
the optimal matching is computed between only those featiuoen the two sets that fall into that
particular bin. All points that are used in that per-bin nhirtg are then flagged as matched and may
not take part in subsequent matchings at coarser resauticthe pyramid.

4 Resaults

In this section, we provide results to empirically demaaigtiour matching’s accuracy and efficiency
on real data, and we compare it to a pyramid match using ammifmartitioning of the feature
space. In addition to directly evaluating the matching es@nd correspondence fields, we show
that our method leads to improved object recognition parfarce when used as a kernel within a
discriminative classifier.
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Figure 2: Comparison of optimal and approximate matching rankings on image ldefia. The set rankings
produced with the VG pyramid match are consistently accurate for inogeésature dimensions, while the
accuracy with uniform bins degrades about linearly in the feature dimerRight: Example rankings for both
approximations af = [8,128].

Approximate Matching Scores: In these experiments, we extracted local SIFT [11] featfres
images in the ETH-80 database, producing an unordered sdtooftrm = 256 vectors for every
example. In this casé; is the space of SIFT image features. We sampled some fe&tone800 of

the images to build the VG pyramid, and 100 images were usexstoéhe matching. In order to test
across varying feature dimensions, we also used somengdeatures to establish a PCA subspace
that was used to project features onto varying numbers ashaBor each feature dimension, we
built a VG pyramid withk = 10 andL = 5, encoded the 100 point sets as pyramids, and computed
the pair-wise matching scores with both our method and thienepleast-cost matching.

If our measure is approximating the optimal matching we#, sihould find the ranking we induce
to be highly correlated with the ranking produced by thermptimatching for the same data. In
other words, the images should be sorted similarly by eithethod. Spearman’s rank correlation

coefficientR provides a good quantitative measure to evaluate fis: 1 — 6 Ziv D?/N(N?-1),
whereD is the difference in rank for th& corresponding ordinal values assigned by the two mea-
sures. The left plot in Figure 2 shows the Spearman coroelattores against the optimal measure
for both our method (with both weighting options) and theragpmation in [7] for varying feature
dimensions for the 10,000 pair-wise matching scores forletest sets. Due to the randomized
elements of the algorithms, for each method we have plotiediean and standard deviation of the
correlation for 10 runs on the same data.

While the VG pyramid match remains consistently accuratédiigin feature dimensiong(= 0.95
with input-specific weights), the accuracy of the uniforrmsidegrades rapidly for dimensions
over 10. The ranking quality of the input-specific weightsaheme (blue diamonds) is somewhat
stronger than that of the “global” bin diameter weightinfpesme (green squares). The four plots
on the right of Figure 2 display the actual ranks computeddfiih approximations for two of the
26 dimensions summarized in the left plot. The black diagpdanote the optimal performance,
where the approximate rankings would be identical to théntgdtones; higher Spearman correla-
tions have points clustered more tightly along this diagioRar the low-dimensional features, the
methods perform fairly comparably; however, for the fulBiR features, the VG pyramid match
is far superior (rightmost column). The optimal measureiies about 1.2&per match, while our
approximation is about 25a(faster ats x 10~*s per match. Computing the pyramid structure from
the feature corpus took about three minutes in Matlab; thisane-time offline cost.

For a pyramid matching to work well, the gradation in bin sizg the pyramid must be such
that at most levels of the pyramid we can capture distinctiggoof points to match within the
bins. That is, unless all the points in two sets are equidistae bin placement must allow us to
match very near points at the finest resolutions, and grBdadt matches that are more distant
at coarser resolutions. In low dimensions, both uniform ataedependent bins can achieve this.
In high dimensions, however, uniform bin placement and eegptially increasing bin diameters
fail to capture such a gradation: once any features fronemifft point sets are close enough to
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Figure 4: Comparison of correspondence field errors (left) and associategwtation times (right). This
figure is best viewed in color. (Note that errors level out wdtfor all methods due to PCA.)

match (share bins), the bins are so large that almlbsif them match. The matching score is then
approximately the number of points weighted by a single kia.sIn contrast, when we tailor the
feature space partitions to the distribution of the datenew high dimensions the match counts
increase gradually across levels, thereby yielding moseruininating implicit matches. Figure 3
confirms this intuition, again using the ETH-80 image datefiabove.

Approximate Correspondence Fields: For the same image data, we ran the explicit matching
variant of our method and compared the induced correspaeddn those produced by the globally
optimal measure. For comparison, we also applied the sarfentéo pyramids with uniform bins.
We measure the error of an approximate matchibg the sum of the errors at every link in the field:
EMX,Y;7), M(X,Y;7")) = > ex |[¥# — ¥=:||2. Figure 4 compares the correspondence
field error and computation times for the VG and uniform pyidsnFor each approximation, there
are two variations tested: in one, an optimal assignmerdngocited for all points in the same bin;
for the other, a random assignment is made. The left plot shbesmean error per match for each
method, and the right plot shows the corresponding meanrgéogred to compute those matches.

The computation times are as we would expect: the optimatirgg is orders of magnitude more
expensive than the approximations. Using the random assighvariation, both approximations
have negligible costs, since they simply choose any cortibmaf points within a bin. However, in
high dimensions, the time required by the uniform bin pyimith the optimal per-bin matching
approaches the time required by the optimal matching it3éifs occurs for similar reasons as the
poorer matching score accuracy exhibited by the uniforns,biroth in the left plot and above in
Figure 2; since most or all of the points begin to match at tagetevel, the pyramid does not help
to divide-and-conquer the computation, and for high dirf@rss the optimal matching in its entirety
must be computed. In contrast, the expense of the VG pyraratdhimg remains steady and low,
even for high dimensions, since data-dependent pyramitisrloivide the matching labor into the
natural segments in the feature space.

For similar reasons, the errors are comparable for the apfyer-bin variation with either the VG
or uniform bins. The VG bins divide the computation so it candmne inexpensively, while the
uniform bins divide the computation poorly and must comptiexpensively, but about as accu-
rately. Likewise, the error for the uniform bins when usinger-bin random assignment is very
high for any but the lowest dimensions (red line on left plsthce such a large number of points
are being randomly assigned to one another. In contrast/@gins actually result in similar errors
whether the points in a bin are matched optimally or randofiblye and pink lines on left plot).



Pyramid matching methodl Mean recognition rate/clasg£128 /d=10) | Time/match (s){=128 /d=10)
Vocabulary-guided bins 99.0/97.7 6.1e-4/6.2e-4
Uniform bins 64.9/96.5 1.5e-3/5.7e-4

This again indicates that tuning the pyramid bins to the dlatstribution achieves a much more
suitable breakdown of the computation, even in high dimersi

Realizing Improvements in Recognition: Finally, we have experimented with the VG pyramid
match within a discriminative classifier for an object regitign task. We trained an SVM with
our matching as the kernel to recognize the four categoni¢ka Caltech-4 benchmark data set.
We trained with 200 images per class and tested with all theiging images. We extracted fea-
tures using both the Harris and MSER [12] detectors and tBeL3IFT [11] descriptor. We also
generated lower-dimensional & 10) features using PCA. To form a Mercer kernel, the weights
were set according to each bin diametgs: w;; = e~4ii/7 with o set automatically as the mean
distance between a sample of features from the training Be¢. table shows our improvements
over the uniform-bin pyramid match kernel. The VG pyramidchds more accurate and requires
minor additional computation. Our near-perfect perforoeaan this data set is comparable to that
reached by others in the literature; the real significancthefresult is that it distinguishes what
can be achieved with a VG pyramid embedding as opposed tonif@m histograms used in [7],
particularly for high-dimensional features. In additibiere the optimal matching requires Osier
match, over 500the cost of our method.

Conclusion: We have introduced a linear-time method to compute a majdhétween point sets
that takes advantage of the underlying structure in thaufeatpace and remains consistently ac-
curate and efficient for high-dimensional inputs on realgmaata. Our results demonstrate the
strength of the approximation empirically, compare it digagainst an alternative state-of-the-art
approximation, and successfully use it as a Mercer kernmedrficobject recognition task. We have
commented most on potential applications in vision and, teut in fact it is a generic matching
measure that can be applied whenever it is meaningful to acergets by their correspondence.

Acknowledgments: We thank Ben Kuipers for suggesting the use of Spearmarksaamelation.
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