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Abstract

We present a Bayesian approach to image-based visual hull
reconstruction. The 3-D shape of an object of a known
class is represented by sets of silhouette views simultane-
ously observed from multiple cameras. We show how the
use of a class-specific prior in a visual hull reconstruction
can reduce the effect of segmentation errors from the silhou-
ette extraction process. In our representation, 3-D informa-
tion is implicit in the joint observations of multiple contours
from known viewpoints. We model the prior density using
a probabilistic principal components analysis-based tech-
nique and estimate a maximum a posteriori reconstruction
of multi-view contours. The proposed method is applied to a
dataset of pedestrian images, and improvements in the ap-
proximate 3-D models under various noise conditions are
shown.

1. Introduction
Reconstruction of 3-D shape using the intersection of ob-
ject silhouettes from multiple views can yield a surprisingly
accurate shape model, if accurate contour segmentation is
available. Algorithms for computing the visual hull of an
object have been developed based on the explicit geometric
intersection of generalized cones [11]. More recently meth-
ods that perform resampling operations purely in the image
planes have been developed [14], as well as approaches us-
ing weakly calibrated or uncalibrated views [18, 25].

Visual hull algorithms have the advantage that they can
be very fast to compute and re-render, and they are also
much less expensive in terms of storage requirements than
volumetric approaches such as voxel carving or coloring
[10, 19, 21]. With visual hulls view-dependent re-texturing
can be used, provided there is accurate estimation of the
alpha mask for each source view [15]. When using these
techniques a relatively small number of views (4-8) is of-
ten sufficient to recover models that appear compelling and
are useful for creating real-time virtual models of objects
and people in the real world, or for rendering new im-
ages for view-independent recognition using existing view-

dependent recognition algorithms [20].
Unfortunately most algorithms for computing visual

hulls are deterministic in nature, and they do not model
any uncertainty that may be present in the observed con-
tour shape in each view. They can also be quite sensitive
to segmentation errors: since the visual hull is defined as
the 3-D shape which is the intersection of the observed sil-
houettes, a small segmentation error in even a single view
can have a dramatic effect on the resulting 3-D model (see
Figure 4).

Traditional visual hull algorithms (e.g., [14]) have the
advantage that they are general – they can reconstruct any
3-D shape which can be projected to a set of silhouettes
from calibrated views. While this is a strength, it is also
a weakness of the approach. Even though parts of many
objects cannot be accurately represented by a visual hull
(e.g, concavities), the set of objects that can be represented
is very large, and often larger than the set of objects that
will be physically realizable. Structures in the world of-
ten exhibit local smoothness, which is not accounted for in
deterministic visual hull algorithms 1. Additionally, many
applications may have prior knowledge about the class of
objects to be reconstructed, e.g. pedestrian images as in the
gait recognition system of [20]. Existing algorithms cannot
exploit this knowledge when performing reconstruction or
re-rendering.

In this paper we show how to formulate a probabilistic
version of an image-based visual hull reconstruction, and
enforce a class-specific prior shape model on the recon-
struction. We learn a probability density of possible 3-D
shapes, and model the observation uncertainty of the sil-
houettes seen in each camera. From these we compute a
Bayesian estimate of the visual hull given the observed sil-
houettes. We use an explicit image-based algorithm, and
define our prior shape model as a density over the set of
object contours in each view. We restrict our focus to re-
constructing a single object represented by a closed contour

1In practice many implementations use preprocessing stages with mor-
phological filters to smooth segmentation masks before geometric inter-
section, but this may not reflect the statistics of the world and could lead to
a shape bias.
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in each view; this simplifies certain steps in contour pro-
cessing and representation. It is well known that the prob-
ability densities of contour models for many object classes
can be efficiently represented as linear manifolds [1, 2, 4],
which can be computed using probabilistic principal com-
ponent analysis (PPCA) techniques [22]. In essence, we
extend this approach to the case of multiple simultaneous
views used for visual hull reconstruction.

Figure 1: Schematic illustration of the geometry of visual
hull construction (as intersection of visual cones)

In the following section we review related previous
work on visual hulls and probabilistic contour models. We
then present our model for probabilistic image-based visual
hulls. Next, we show an application of this approach to the
reconstruction of pedestrian images. We demonstrate that
the Bayesian reconstructions are more accurate than recon-
structions based on the raw silhouettes. We conclude with a
discussion and the avenues for future work.

2. Previous work
A visual hull (VH) is defined by a set of camera locations,
the cameras’ internal calibration parameters, and silhouettes
from each view. Most generally, it is the maximal volume
that creates all possible silhouettes of an object. The VH is
known to include the object, and to be included in the ob-
ject’s convex hull. In practice, the VH is usually computed
with respect to a finite, often small, number of silhouettes.
(See Figure 1.) One efficient technique for generating the
VH computes the intersection of the viewing ray from each
designated viewpoint with each pixel in that viewpoint’s im-
age [14]. A variant of this algorithm approximates the sur-
face of the VH with a polygonal mesh [13]. See [11, 13, 14]

for the details of these methods.
While we restrict our attention to visual hulls from cali-

brated cameras, recent work has shown that visual hulls can
be computed from weakly calibrated or uncalibrated views
[18, 25]. Detailed models can be constructed from visual
hulls with view-dependent reflectance or texture and accu-
rate modeling of opacity [15].

A traditional application of visual hulls is the creation
of models for populating virtual worlds, either for detailed
models computed offline using many views (perhaps ac-
quired using a single camera and turntable), or for online
acquisition of fast and approximate models for real-time in-
teraction. Visual hulls can also be used in recognition ap-
plications. Recognition can be performed directly on 3-D
visibility structures from the visual hull (especially appro-
priate for the case of orthogonal virtual views), or the visual
hull can be used in conjunction with traditional 2-D recog-
nition algorithms. In [20] a system was demonstrated which
rendered virtual views of a moving pedestrian for integrated
face and gait recognition using existing 2-D recognition al-
gorithms.

In this paper we consider visual hulls constructed from
closed contours of pedestrian images. The authors of [1]
developed a single-view model of pedestrian contours, and
showed how a linear subspace model formed from princi-
pal components analysis (PCA) could represent and track
a wide range of motion [2]. The Active Shape Model of
[5] used a similar technique and was successfully applied to
model facial variation.

The use of linear manifolds estimated by PCA to rep-
resent an object class, and more generally an appearance
model, has been developed by several authors [4, 8, 23].
A probabilistic interpretation of PCA-based manifolds has
been introduced in [6, 24] as well as in [16], where it was
applied directly to face images. Snakes [9] and Conden-
sation (particle filtering) [7] have also been used to exploit
prior knowledge while tracking single contours.

While regularization or Bayesian maximum a posteriori
(MAP) estimation of single-view contours has received con-
siderable attention as described above, relatively little atten-
tion has been given to multi-view data from several cam-
eras simultaneously observing an object. With multi-view
data, a probabilistic model and MAP estimate can be com-
puted on implicit 3-D structures. In this paper we apply a
PPCA-based probability model to form Bayesian estimates
of multi-view contours used for visual hull reconstruction.

3. Bayesian image-based visual hulls

In this work, we derive a multi-view contour density model
for 3-D visual hull reconstruction. We represent the silhou-
ette shapes as sampled points on closed contours, with the
shape vectors for each view concatenated to form a single
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(a) Input

(b) Output

Figure 2: An example of VH data flow: (a) the input - a set of four images and the corresponding silhouettes; (b) the output -
the reconstructed 3-D model, seen here from two different viewpoints.

vector in the input space. Our algorithm can be extended to
a fixed number of distinguishable objects by concatenating
their shape vectors, and to disconnected shapes more gen-
eral than those representable by a closed contour if we adopt
the level-set approach put forth in [12].

As discussed above, many authors have shown that a
probabilistic contour model using PCA-based density mod-
els can be useful for tracking and recognition. An appeal-
ingly simple technique is to approximate a shape space with
a linear manifold [5]. In practice, it is often difficult to rep-
resent complex articulated structures using a single linear
manifold.

Following [4, 22], we construct a density model using
a mixture of Gaussians PPCA model that locally models
clusters of data in the input space with probabilistic linear
manifolds. We model the uncertainty of a novel observation
and obtain a MAP estimate for the low-dimensional coordi-
nates of the input vector, effectively using the class-specific
shape prior to restrict the range of probable reconstructions.

In the following section we see that if the 3-D object can
be described by linear bases, then an image-based visual
hull representation of the approximate 3-D shape of that ob-
ject should also lie on a linear manifold, at least for the case
of affine cameras.

3.1. Multi-view observation manifolds
If the vector of observed contour points of a 3-D object re-
sides on a linear manifold, then the affine projections of that
shape also form a linear manifold. Assume we are given a
3-D shape defined by the set of n points resulting from a
linear combination of 3n-D basis vectors. That is, the 3n-D
shape vector

p = (p1,p2, ...,pn)T

can be expressed as

p =
M∑

j=1

ajbj = BaT (1)

where a = (a1, ...aM ) are the basis coefficients for the M
3-D bases bj = (bj

1,b
j
2, ...,b

j
n)T , bj

i is the vector with the
3-D coordinate of point i in basis vector j, and B is the
basis matrix whose columns are the individual bj vectors.
A matrix whose columns are a set of observed 3-D shapes
will thus have rank less than or equal to M . Note that the
coefficients a are computed for each given p.

When a 3-D shape expressed as in (1) is viewed by a set
of K affine cameras with projection matrices Mk, we will
obtain a set of image points which can be described as

ck = (xk
1 ,xk

2 , ...,xk
n), 1 ≤ k ≤ K, (2)

where

xk
i = Mkpi = Mk

M∑
j=1

ajb
j
i =

M∑
j=1

ajMkb
j
i .

Therefore, ck itself belongs to a linear manifold in the set
of projected bases in each camera:

ck =
M∑

j=1

ajq
j
k = aqk, (3)

where qj
k is the projected image of 3-D basis bj in camera

k:
qj

k = (Mkb
j
1,Mkb

j
2, ...Mkbj

n)T .

A matrix whose columns are a set of observed 2-D points
will thus have rank less than or equal to M . For the con-
struction of (1) - (3), we assume an ideal dense sampling of
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points on the surface. The equations hold for the projection
of all points on that surface, as well as for any subset of
the points. If some points are occluded in the imaging pro-
cess, or we only view a subset of the points (e.g., those on
the occluding contour of the object in each camera view),
the resulting subset of points can still be expressed as in (3)
with the appropriate rows deleted. The rank constraint will
still hold in this reduced matrix.

It is clear from the above discussion that if the observed
points of the underlying 3-D shape lie on an M -dimensional
linear manifold, then the concatenation of the observed
points in each of the K views

on = (c1, c2, ..., cK)T

can also be expressed as a linear combination of similarly
concatenated projected basis views qj

k. Thus an observation
matrix constructed from multiple instances of on will still
be at most rank M .

3.2. Contour likelihood and prior
We should thus expect that when the variation in a set of 3-
D objects is well-approximated by a linear manifold, their
multi-view projection will also lie on a linear manifold of
equal or lower dimension. When this is the case, we can ap-
proximate the density using PPCA with a single Gaussian.
For more general object classes, object variation may only
locally lie on a linear manifold; in these cases a mixture of
manifolds can be used to represent the shape model [4, 22].

We construct a density model using a mixture of Gaus-
sians PPCA model that locally models clusters of data in the
input space with probabilistic linear manifolds. An obser-
vation is the concatenated vector of sampled contour points
from multiple views. Each mixture component is a prob-
ability distribution over the observation space for the true
underlying contours in the multi-view image. Parameters
for the C components are determined from the set of ob-
served data vectors on, 1 ≤ n ≤ N , using an EM algorithm
to maximize a single likelihood function

L =
N∑

n=1

log
C∑

i=1

πip(on|i) (4)

where p(o|i) is a single component of the mixture of Gaus-
sians PPCA model, and πi is the ith component’s mixing
proportion. A separate mean vector μi, principal axes Wi,
and noise variance σi are associated with each of the C
components. As this likelihood is maximized, both the ap-
propriate partitioning of the data and the respective princi-
pal axes are determined. We used the Netlab [17] imple-
mentation of [22] to estimate the PPCA mixture model.

The mixture of probabilistic linear subspaces constitutes
the prior density for the object shape. All of the images

in the training set are projected into each of the subspaces
associated with the mixture components, and the resulting
means μt

i and covariances Σt
i of those projected coefficients

are retained. The prior density is thus defined as a mixture
of Gaussians, P (P) =

∑C
i=1 πiN(μt

i,Σ
t
i).

The projection y of observation on is defined as a
weighted sum of the projections into each mixture compo-
nent’s subspace,

y =
C∑

i=1

p(i|on)(Wi
T (on − μi)), (5)

where p(i|on) is the posterior probability of component i
given the observation. To account for camera noise or jitter,
we model the observation likelihood as a Gaussian distribu-
tion on the manifold with mean μo = y and covariance Σo:
P (o|P) = N(μo,Σo), where P is the shape.

Applying Bayes rule, we see that

P (P = y | o) ∝ P (o | P = y) P (P = y).

Thus the posterior density is the mixture of Gaussians that
results from multiplying the Gaussian likelihood and the
mixture of Gaussians prior:

P (P = y | o) ∝
C∑

i=1

πiN(μp
i ,Σ

p
i ). (6)

By distributing the single Gaussian across the mixture
components of the prior, we see that the components of the
posterior have means and covariances

Σp
i = (Σt

i
−1 + Σ−1

o )−1,

μp
i = Σp

i Σ
t
i
−1

μt
i + Σp

i Σ
−1
o y.

(7)

The modes of this function are then found using a fixed-
point iteration algorithm as described in [3]. The maximum
of these modes, x∗, corresponds to the MAP estimate, i.e.,
the most likely lower-dimensional coordinates in the sub-
space for our observation given the prior 2. It is backpro-
jected into the multi-view image domain to generate the re-
constructed silhouettes S. The backprojection is a weighted
sum of the MAP estimate multiplied by the PCA bases from
each mixture component of the prior:

S =
C∑

i=1

p(i|x∗)(Wi(Wi
T Wi)−1x∗ + μi). (8)

2Note that for a single Gaussian PPCA model with prior N(µt,Σt),
the MAP estimate is simply

x∗ =
(
Σ−1

t + Σ−1
o

)−1 (
Σ−1

t µt + Σ−1
o y

)
.
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By characterizing which projections into the subspace
are most likely, we restrict the range of reconstructions to be
more like that present in the training set. Our regularization
parameter is Σo, the covariance of the density representing
the observation’s PCA coefficients. It controls the extent to
which the training set’s coefficients guide our estimate.

4. Reconstruction of pedestrian im-
ages

We have applied our method to the dataset of pedestrian
sequences used in [20]. The images consist of four monoc-
ular views from cameras located at approximately the same
height about 45 degrees apart. The working space of the
system is defined as the intersection of their fields of view,
and a simple color background model allows the extraction
of a silhouette from each viewpoint. The use of a basic
background subtraction method results in rough segmen-
tation; body parts are frequently truncated in the silhou-
ettes where the background is not highly textured, or else
parts are inaccurately distended due to common segmenta-
tion problems from shadows or other effects. (See Figure 2
for example images from the experimental setup.)

The goal is to improve segmentation in the multi-view
frames by reconstructing problematic test silhouettes based
on MAP estimates of their projections into the mixture of
lower dimensionsional subspaces (see Section 3.1 and 3.2).
The subspaces are derived from a separate, cleaner subset
of the silhouettes in the dataset. When segmentation im-
provements are made jointly across views, we can expect to
see an improvement in the 3-D approximation constructed
by the visual hull.

We represent each view’s silhouette as sampled points
along the closed contour extracted from the original binary
images. All contour points are normalized to a common
translation and scale invariant input coordinate system as
follows. First, each image coordinate of the contour points
(x, y) is transformed to the coordinates (xr, yr), in order to
make points relative to an origin placed at that silhouette’s
centroid (xc, yc).

(xr, yr) = (x − xc, y − yc).

Next, points are normalized by d, the median distance be-
tween the centroid and all the points on the contour:

(xn, yn) = (xr/d, yr/d).

Finally, each view’s vector of contour points is resam-
pled to a common vector length using nearest neighbor in-
terpolation. Empirically, resample sizes around 200 points
were found to be sufficient to represent contours originat-
ing from (240 x 320) images and containing on average 850
points. The concatenation of the K views’ vectors forms
the final input.

With the above alignments made to the data, inputs will
still vary in two key ways: the absolute angle the pedes-
trian is walking across the system workspace, and the phase
of their walk cycle at that frame. Unsurprisingly, we have
found experimentally that reconstructions are poor when
a single PPCA model is used and training is done with
multi-view data from all possible walking directions and
moments in gait cycle. Thus we group the inputs accord-
ing to walking direction, and then associate a mixture of
Gaussians PPCA model with each direction. Our visual hull
system provides an estimate of the walking direction; how-
ever, without it we could still do image-based clustering. A
novel input is then reconstructed using MAP estimation, as
described in Section 3.2. In Figure 3 we show the first two
multi-view principal components recovered for one of the
mixture components’ linear subspaces.

According to the visual hull definition, missing pixels in
a silhouette from one view are interpreted as absolute evi-
dence that all the 3-D points on the ray corresponding to that
pixel are empty, irrespective of information in other views.
Thus, segmentation errors may have a dramatic impact on
the quality of the 3-D reconstruction. In order to examine
how well the reconstruction scheme we devised would han-
dle this issue and improve 3-D visual hull approximations,
we tested sets of views with segmentation errors due to erro-
neous foreground/background estimates. We also syntheti-
cally imposed gross errors to test how well our method can
handle dramatic undersegmentations. Visual hulls are con-
structed from the input views using the algorithm in [14].

The visual hull models resulting from the reconstructed
views are qualitatively better than those resulting from the
raw silhouettes (see Figures 4, 5). Parts of the body which
are missing in one input view do appear in the complete 3-D
approximation. Such examples illustrate the utility of mod-
eling the uncertainty of an observed contour. In order to
quantitatively evaluate how well our algorithm eliminates
segmentation errors, we obtained ground truth segmenta-
tions for a set of the multi-view pedestrian silhouettes by
manually segmenting the foreground body in each view. We
randomly selected 15 frames from our test set to examine
in this capacity. The mean squared error per contour point
for the raw silhouettes in our ground truthed test set was
found to be approximately 30 pixels, versus 11 pixels for
the reconstructed silhouettes. This analysis is preliminary
but promising.

5. Conclusions

We have developed a Bayesian approach to visual hull re-
construction using an image-based representation of object
shape. We show how the use of a class-specific prior in
visual hull reconstruction reduces the effect of segmenta-
tion errors in the silhouette extraction process. In our repre-
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(a) The first principal component

−0.5 0 0.5
−1

−0.5

0

0.5

1

−0.5 0 0.5
−1

−0.5

0

0.5

1

−0.5 0 0.5
−2

−1

0

1

−0.5 0 0.5
−1

−0.5

0

0.5

1

−0.5 0 0.5
−1

−0.5

0

0.5

1

−0.5 0 0.5
−1

−0.5

0

0.5

1

−0.5 0 0.5
−1

−0.5

0

0.5

1

−0.5 0 0.5
−1

−0.5

0

0.5

1

−0.5 0 0.5
−1

−0.5

0

0.5

1

−0.5 0 0.5
−2

−1

0

1

−0.5 0 0.5
−2

−1

0

1

−0.5 0 0.5
−2

−1

0

1

(b) The second principal component

Figure 3: Primary modes of variation for the multi-view contours. The columns correspond to the four views. The middle
row shows the mean contour for each view. The top and the bottom show the result of negative and positive variation along
(a) the first and (b) the second principal component for one component of the mixture of PPCA model. The positive and
negative variations are proportional to the largest and smallest PCA coefficients present in the training set, respectively.

sentation, 3-D information is implicit in the joint observa-
tion of multiple contours from known viewpoints. We use
a mixture of probabilistic principal components analyzers
to model the multi-view contour prior density. Our method
was applied to a dataset of pedestrian sequences, and im-
provements in the approximate 3-D models under various
noise conditions were shown. We plan to further test our
method to see if our model improves accuracy in applica-
tions that use a visual hull for view synthesis in recogni-
tion tasks. We will also consider extensions to the proposed
shape model that would allow the inference of 3-D struc-
ture.

References

[1] A. Baumberg and D. Hogg. Learning flexible models from
image sequences. In Proceedings of European Conference
on Computer Vision, 1994.

[2] A. Baumberg and D. Hogg. An adaptive eigenshape model.
In British Machine Vision Conference, pages 87–96, Birm-
ingham, September 1995.

[3] M. Carreira-Perpinan. Mode-finding for mixtures of Gaus-
sian distributions. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 22(11):1318–1323, November
2000.

[4] T. Cootes and C. Taylor. A mixture model for representing
shape variation. In British Machine Vision Conference, 1997.

[5] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham.
Active shape models - their training and application. Com-
puter Vision and Image Understanding, 61(1):38–59, Jan-
uary 1995.

[6] J. Haslam, C. Taylor, and T. Cootes. A probabilistic fitness
measure for deformable template models. In British Machine

Vision Conference, pages 33–42, York, England, September
1994.

[7] M. Isard and A. Blake. Condensation – conditional den-
sity propagation for visual tracking. International Journal
of Computer Vision, 29(1):5–28, 1998.

[8] M. Jones and T. Poggio. Multidimensional morphable mod-
els. In Proceedings IEEE Conf. on Computer Vision and Pat-
tern Recognition, pages 683–688, New Delhi, January 1998.

[9] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active
shape models. International Journal of Computer Vision,
1(4):321–331, 1988.

[10] K. Kutulakos and S. Seitz. A theory of shape by space carv-
ing. In Proceedings of the 7th IEEE International Confer-
ence on Computer Vision, pages 307–314, Los Alamitos,
CA, September 1999.

[11] A. Laurentini. The visual hull concept for silhouette-based
image understanding. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 16(2):150–162, February
1994.

[12] M. Leventon, W. E. L. G. Grimson, and O. Faugeras. Statisti-
cal shape influence in geodesic active contours. In Proceed-
ings IEEE Conf. on Computer Vision and Pattern Recogni-
tion, pages 316–323, Hilton Head Island, SC, June 2000.

[13] W. Matusik, C. Buehler, and L. McMillan. Polyhedral visual
hulls for real-time rendering. In Proceedings of EGWR-2001,
pages 115–125, London, England, June 2001.

[14] W. Matusik, C. Buehler, R. Raskar, S. Gortler, and L. McMil-
lan. Image-based visual hulls. In Kurt Akeley, editor, Sig-
graph 2000, Computer Graphics Proceedings, Annual Con-
ference Series, pages 369–374. ACM Press / ACM SIG-
GRAPH / Addison Wesley Longman, 2000.

[15] W. Matusik, H. Pfister, A. Ngan, P. Beardsley, R. Ziegler, and
L. McMillan. Image-based 3D photography using opacity
hulls. In Proceedings of the 29th Conference on Computer

6



Figure 4: An example of segmentation improvement with PPCA-based Bayesian reconstruction. The four top-left images
show the multi-view input, corrupted by segmentation noise. The four images directly to their right show the corresponding
Bayesian reconstructions. The visual hull (VH) model is shown under the silhouettes from which it was constructed, for both
the raw input (left) and the reconstructed silhouettes (right). Finally, virtual frontal and profile views projected from the VHs
are shown at the bottom. Note how the right arm is missing in the virtual frontal view produced by the raw VH (bottom,
leftmost image), whereas the arm is present in the Bayesian reconstructed version (bottom, image second from right).

Graphics and Interactive Techniques, ACM Transactions on
Graphics, pages 427–437, New York, July 2002.

[16] B. Moghaddam. Principal manifolds and probabilistic sub-
spaces for visual recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 24(6):780–788, June
2002.

[17] Netlab. http://www.ncrg.aston.ac.uk/netlab/index.html.

[18] E. Boyer S. Lazebnik and J. Ponce. On computing exact
visual hulls of solids bounded by smooth surfaces. In Pro-
ceedings IEEE Conf. on Computer Vision and Pattern Recog-
nition, pages 156–161, Lihue, HI, December 2001.

[19] S. Seitz and C. Dyer. Photorealistic scene reconstruction by
voxel coloring. In Proceedings IEEE Conf. on Computer Vi-
sion and Pattern Recognition, pages 1067– 1073, San Juan,

7



Figure 5: Another example of segmentation improvement with PPCA-based reconstruction. Please refer to the caption of
Figure 4 for explanation.

Puerto Rico, June 1997.

[20] G. Shakhnarovich, L. Lee, and T. Darrell. Integrated Face
and Gait Recognition From Multiple Views. In Proceedings
IEEE Conf. on Computer Vision and Pattern Recognition, Li-
hue, HI, December 2001.

[21] D. Snow, P. Viola, and R. Zabih. Exact voxel occupancy
with graph cuts. In Proceedings IEEE Conf. on Computer
Vision and Pattern Recognition, pages 345–353, Hilton Head
Island, SC, June 2000.

[22] M. Tipping and C. Bishop. Mixtures of probabilistic princi-
pal component analyzers. Neural Computation, 11(2):443–

482, 1999.

[23] M. A. Turk and A. P. Pentland. Face recognition using eigen-
faces. In Proceedings IEEE Conf. on Computer Vision and
Pattern Recognition, pages 586–590, Hawai, June 1992.

[24] Y. Wang and L. H. Staib. Boundary finding with prior shape
and smoothness models. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 22(7):738–743, 2000.

[25] K. Wong and R. Cipolla. Structure and motion from silhou-
ettes. In Proceedings of the International Conference on
Computer Vision, pages 217–222, Los Alamitos, CA, July
2001.

8


	Text1: In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Madison, WI, June 2003.


