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Abstract

We present an image-based approach to infer 3D structure
parameters using a probabilistic “shape+structure” model.
The 3D shape of an object class is represented by sets
of contours from silhouette views simultaneously observed
from multiple calibrated cameras, while structural features
of interest on the object are denoted by a number of 3D lo-
cations. A prior density over the multi-view shape and cor-
responding structure is constructed with a mixture of prob-
abilistic principal components analyzers. Given a novel
set of contours, we infer the unknown structure parame-
ters from the new shape’s Bayesian reconstruction. Model
matching and parameter inference are done entirely in the
image domain and require no explicit 3D construction. Our
shape model enables accurate estimation of structure de-
spite segmentation errors or missing views in the input sil-
houettes, and it works even with only a single input view.
Using a training set of thousands of pedestrian images gen-
erated from a synthetic model, we can accurately infer the
3D locations of 19 joints on the body based on observed
silhouette contours from real images.

1. Introduction
Estimating model shape or structure parameters from one or
more input views is an important computer vision problem.
Classic techniques attempt to detect and align 3D model in-
stances within the image views, but high-dimensional mod-
els or models without well-defined features may make this
type of search computationally prohibitive. Rather than fit
explicit 3D models to input images, we explore reconstruc-
tion and parameter inference using image-based shape mod-
els which can be matched directly to observed features. We
learn an implicit, image-based representation of a known
3D shape, match it to input images using a statistical model,
and infer 3D parameters from the matched model.

Implicit representations of 3D shape can be formed us-
ing models of observed feature locations in multiple views.
With sufficient training data of objects of a known class,
a statistical multi-view appearance model can represent the
most likely shapes in that class, as shown in [8]. Such a

model can be used to reduce noise in observed images, or
to fill in missing data.

In this paper we present an image-based method to in-
fer 3D structure parameters using this sort of multi-view
shape model. A probabilistic “shape+structure” model is
formed using a probability density of multi-view silhouette
contours augmented with 3D structure parameters (the 3D
locations of key points on an object). We combine this with
a model of the observation uncertainty of the silhouettes
seen in each camera to compute a Bayesian estimate of an
object’s shape and structure. This estimate consists of the
reconstructed multi-view contours (shape), and the inferred
3D parameters (structure). To our knowledge, this is the
first work to formulate a multi-view statistical image-based
shape model for the inference of 3D structure.

We also show how the image-based model can be learned
from synthetic data, when available. Using a computer
graphics model of articulated human bodies, we render a
database of views augmented with the known 3D feature
locations (and optionally joint angles, etc.) From this we
learn a joint shape and structure model prior, which can be
used to find the instance of the model class that is closest to
a new input image. One advantage of a synthetic training set
is that labeled real data is not required; the synthetic model
includes 3D structure parameter labels for each example.

The strength of our approach lies in our use of a prob-
abilistic multi-view shape model which restricts the object
shape and its possible structural configurations to those that
are most probable given the object class and the current ob-
servation. Even when given poorly segmented binary im-
ages of the object, the statistical model can infer appropri-
ate structure parameters. Moreover, all computation is done
within the image domain, and no model matching or search
in 3D space is required.

In our experiments, we demonstrate how our
shape+structure model enables accurate estimation of
structure parameters despite large segmentation errors
or even missing views in the input silhouettes. Since
parameter inference with our model succeeds even with
missing views, it is possible to match the model with fewer
views than it has been trained on. In fact, in some cases
we are able to get good parameter estimates with only



one input view. We also show how configurations that are
typically ambiguous in single views are handled well by
our multi-view model.

Our method has applications in many areas, including
the fast approximation of 3D models for virtual reality ap-
plications, gesture recognition, pose estimation, and image
feature correspondence matching across images.

2. Previous Work

In this paper we consider image-based statistical shape
models that can be directly matched to observed image fea-
tures. Models which capture the 2D distribution of feature
point locations have been used to describe a wide range of
flexible shapes, and they can be directly matched to input
images [4]. The authors of [1] developed a single-view
model of pedestrian contours, and showed how a linear sub-
space model formed from principal components analysis
(PCA) could represent and track a wide range of motion
[2]. A model appropriate for feature point locations sam-
pled from a contour is also given in [2]. This single-view
approach can be extended to 3D by considering multiple si-
multaneous views of features [8]. Shape models in several
views can be separately estimated to match object appear-
ance [5]; this approach was able to learn a mapping between
the low-dimensional shape parameters in each view.

With multi-view contours from cameras at known loca-
tions, a visual hull can be recovered to model the shape of
the observed object [11]. By forming a statistical model of
these multi-view contours, an implicit shape representation
that can be used for efficient reconstruction of visual hulls
is created [8].

Our model is based on a mixture model whose compo-
nents are estimated using PCA. The use of linear subspaces
estimated by PCA to represent an object class, and more
generally an appearance model, has been developed by sev-
eral authors [3, 10, 16]. A probabilistic interpretation of
PCA-based manifolds has been introduced by [9, 17] as
well as in [13], where it was applied directly to face images.
As described below, we rely on the mixture of probabilis-
tic principal components analyzers (PPCA) formulation of
[15] to model prior densities.

The idea of augmenting a PCA-based appearance model
with structure parameters and using projection-based recon-
struction to fill in the missing values of those parameters
in new images was first proposed in [6]. A method that
used a mixture of PCA approach to learn a model of sin-
gle contour shape augmented with 3D structure parameters
was presented in [14]; they were able to estimate 3D hand
and arm locations just from a single silhouette. This system
was also able to model contours observed in two simultane-
ous views, but separate models were formed for each so no
implicit model of 3D shape was formed.

3. Bayesian Multi-View Shape Recon-
struction

While regularization or Bayesian maximum a posteriori
(MAP) estimation of single-view contours has received con-
siderable attention as described above, less attention has
been given to multi-view data from several cameras simul-
taneously observing an object. With multi-view data, a
probabilistic model and MAP estimate can be computed on
implicit 3D structures. We apply a PCA-based probability
model to form Bayesian estimates of multi-view contours,
and show how such a representation can be augmented and
used for inferring structure parameters. Our work builds on
the shape model introduced in [8], where a multi-view con-
tour density model is derived for the purpose of 3D visual
hull reconstruction.

Silhouette shapes are represented as sampled points on
closed contours, with the shape vectors for each view con-
catenated to form a single vector. That is, with a set of n
contour points ck in each of the K views,

ck = (xk
1 ,xk

2 , ...,xk
n), 1 ≤ k ≤ K, (1)

the 2Kn-dimensional multi-view observation o is defined
as

o = (c1, c2, ..., cK)T . (2)

As described in [8], if the vector of observed contour
points of a 3D object resides on a linear manifold, then the
affine projections of that shape also belong to a linear man-
ifold, at least for the case of affine cameras. Therefore, the
shape vectors may be expressed as a linear combination of
the 3D bases.

A technique suitable only for highly constrained shape
spaces is to approximate the space with a single linear man-
ifold. For more deformable structures, it is difficult to rep-
resent the shape space in this way. For example, with the
pedestrian data we will use in the experiments reported
below, inputs are expected to vary in two key (nonlinear)
ways: the absolute direction in which the pedestrian is
walking across the system workspace, and the phase of his
walk cycle in that frame.

Thus, following [3, 15], we construct a density model
using a mixture of PPCA models that locally models clus-
ters of data in the input space with probabilistic linear man-
ifolds. A single PPCA model is a probability distribution
over the observation space for a given latent variable, which
for this shape model is the true underlying contours in the
multi-view image. Parameters for the M Gaussian mixture
model components are determined for the set of observed
data vectors on, 1 ≤ n ≤ N , using an EM algorithm to
maximize a single log-likelihood function

L =
N∑

n=1

log
M∑

i=1

πip(on|i), (3)
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Figure 1: Illustration of prior and likelihood densities. Plot
shows two projection coefficients in the shape subspace.
The distribution of well-segmented silhouettes (dots) rep-
resents the prior shape density. The stars are novel obser-
vations. Due to large segmentation errors, some are un-
likely samples according to the prior. MAP estimation re-
constructs such contours as shapes closer to the prior.

where p(on|i) is a single PPCA model, and πi is the ith

component’s mixing proportion. A separate mean vector,
principal axes, and noise variance is associated with each of
the M components. As this likelihood is maximized, both
the appropriate partitioning of the data and the respective
principal axes are determined. The mixture of probabilistic
linear subspaces constitutes the prior density of the object
shape.

We assume there is a normal distribution of camera noise
or jitter that affects the observed contour point locations in
the input images, and we model this as a multivariate Gaus-
sian.

A MAP estimate of the silhouettes is formed based on the
PPCA prior shape model and the Gaussian observation like-
lihood. The estimate is then backprojected into the multi-
view image domain to generate the recovered silhouettes.
By characterizing which projections onto the subspace are
more likely, the range of possible reconstructions is effec-
tively moderated to be more like those expressed in the
training set (see Figure 1). See [8] for details on this multi-
view shape reconstruction process.

4. Inferring 3D Structure
The main contribution of this paper is the extension of
the shape model described above to incorporate additional
structural features. A model built to represent the shape of a
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Figure 2: Diagram of data flow in our system.

certain class of objects using multiple contours can be aug-
mented to include information about the object’s orientation
in the image, as well as the 3D locations of key points on the
object. The mixture model now represents a density over
the observation space for the true underlying contours to-
gether with their associated 3D structure parameters. Novel
examples are matched to the contour-based shape model,
using the same multi-view reconstruction method described
in Section 3, in order to infer their unknown or missing pa-
rameters. See Figure 2 for a diagram of data flow.

The shape model is trained on a set of vectors composed
of points from multiple contours from simultaneous views,
plus a number of 3D structure parameters, sj = (s1

j , s
2
j , s

3
j ).

The 2Kn+3z-dimensional observation vector o is then de-
fined as

o = (c1, c2, ..., cK , s1, s2, ..., sz)T , (4)

where there are z 3D points. When presented with a new
multi-view contour, we essentially treat the unknown 3D
structure parameters as missing variables, and find the MAP
estimate of the shape and structure parameters based on
only the observable contour data. The training set for this
inference task may be comprised of real or synthetic data,
provided it has been labelled with the appropriate 3D struc-
ture parameters.

One strength of the proposed approach for the estimation
of 3D feature locations is that the silhouettes in the novel in-
puts need not be cleanly segmented. Since the contours and
unknown parameters are reconstructed concurrently, the pa-
rameters are essentially inferred from a restricted set of fea-
sible shape reconstructions; they need not be determined by
an explicit match to the raw observed silhouettes. There-
fore, the probabilistic shape model does not require a per-
fect segmentation module. A fast, simple background sub-
traction scheme is sufficient.

As should be expected, our parameter inference method
also benefits from the use of multi-view imagery. Multiple
views will in many cases overcome the ambiguities that are
geometrically inherent in single-view methods.
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Figure 3: An example of synthetically generated training
data. Textured images (top) show rendering of a human
model from four viewpoints; silhouettes and stick figure
(below) show multi-view contours and structure parameters,
respectively.

5. Learning a Multi-View Shape
Model for Pedestrians

A possible weakness of any shape model learned from ex-
amples is that the ability to accurately represent the space
of realizable shapes will generally depend heavily on the
amount of available training data. Moreover, we note that
the training set on which the probabilistic shape+structure
model is learned must be “clean”; otherwise the model
could fit the bias of a particular segmentation algorithm. It
must also be labeled with the true values for the 3D features.
Collecting a large data set with these properties would be
costly in resources and effort given the current state of the
art in motion capture and segmentation, and at the end the
“ground truth” could still be imprecise. We chose there-
fore to use realistic synthetic data for training a multi-view
pedestrian shape model. We obtained a large training set by
using POSER [7] – a commercially available animation soft-
ware package – which allows us to manipulate realistic hu-
manoid models, position them in the simulated scene, and
render textured images or silhouettes from a desired point
of view. Our goal is to train the model using this synthetic
data, but then use the model for reconstruction and infer-
ence tasks with real images.

We generated 20,000 synthetic instances of multi-view
input for our system. For each instance, a humanoid model
was created with randomly adjusted anatomical shape pa-
rameters, and put into a walk-simulating pose, at a random
phase of the walking cycle. The orientation of the model
was drawn at random as well in order to simulate different
walk directions of human subjects in the scene. Then for
each camera in the real setup we rendered a snapshot of the
model’s silhouette from a point in the virtual scene approx-
imately corresponding to that camera. In addition to the set
of silhouettes, we record the 3D locations of 19 landmarks
of the model’s skeleton, corresponding to selected anatom-

ical joints (see Figure 3).
For this model, each silhouette is represented as sampled

points along the closed contour. All contour points are nor-
malized to a translation and scale invariant input coordinate
system, and each vector of normalized points is resampled
to a common vector length using nearest neighbor interpo-
lation. The complete representation is then the vector of
concatenated multi-view contour points plus a fixed num-
ber of 3D body part locations (see Equation 4).

6. Experiments

We have applied our method to data sets of multi-view im-
ages of people walking. The goal is to infer the 3D positions
of joints on the body given silhouette views from different
viewpoints. In this section we first describe the experimen-
tal setup, the test data, and our error measures; we then sum-
marize results from a variety of experiments and give some
typical example outputs.

For the following experiments, we used an imaging
model consisting of four monocular views per frame from
cameras located at approximately the same height at known
locations about 45 degrees apart. The working space of the
system is defined as the intersection of their fields of view
(approximately 3x3 meters). Images of subjects walking
through the space at various directions are captured, and the
silhouette foreground is extracted from each viewpoint.

The simple background subtraction algorithm used in
our experiments is based on the notion of a static back-
ground that is occluded by a moving object; the implemen-
tation follows that in [12]. As a preprocessing step, a sta-
tistical model of the appearance of the background is built
by collecting 400 images and calculating the mean and stan-
dard deviation of the graylevel for each pixel. The first stage
marks as a candidate every pixel with a graylevel value
which is more than three standard deviations away from
the mean of that pixel (as learned from the background im-
ages). Next, normalized correlation with other candidate
pixels in a small neighborhood around a candidate pixel
is evaluated; this aims at removing some of the shadows,
which cause large, but highly correlated changes with re-
spect to the background. Finally, after applying a median
filter in the neighborhood of a candidate pixel, the morpho-
logical “open” and “close” operations are applied to the can-
didate set. These operations, performed with small neigh-
borhood size, are intended to remove small disconnected
components and smooth the contours.

In these experiments, each view is a 320 by 240 image,
and 200 points are sampled uniformly from each contour.
In the input observation vector for each test example, the
3D pose parameters are set to zero. The number of mixture
components M used is five.

Since we do not have ground truth pose parameters for



Figure 4: Two left images show clean synthetic silhouettes.
Two right images show same silhouettes with noise added
to the contour points. First has uniform noise; second has
nonuniform noise in patches normal to contour.

the raw test data, we have generated a separate, large, syn-
thetic test set with known pose parameters so that we can
obtain error measurements for a variety of experiments on
a large volume of data. In order to evaluate our system’s
robustness to mild changes in the appearance of the object,
we generated test sequences in the same manner as the syn-
thetic training set was generated, but with different virtual
characters, i.e., different clothing, hair and body propor-
tions. To make the synthetic test set more representative
of the real, raw silhouette data, we added noise to the con-
tour point locations. Noise is added uniformly in random
directions, or in contiguous regions along the contour in the
direction of the 2D surface normal. Such alterations to the
contours simulate the real tendency for a simple background
subtraction mechanism to produce holes or false extensions
along the true contour of the object. (See Figure 4.)

The “true” underlying contours from the clean silhou-
ettes (i.e., the novel silhouettes before their contour points
were corrupted) are saved for comparison with the recon-
structed silhouettes. The contour error for each frame is
defined as the Chamfer distance between the true underly-
ing contours and their reconstructions. For all pixels with
a given feature (usually edges, contours, etc.) in the test
image I, the Chamfer distance D measures the average dis-
tance to the nearest feature in the template image T.

D(T, I) =
1
N

∑

f∈T

dT (f) (5)

where N is the number of pixels in the template where the
feature is present, and dT (f) is the distance between feature
f in T and the closest feature in I.

The pose error for each test frame is defined as the aver-
age distance in centimeters between the estimated and true
positions of the 19 joints.

Intuitively, a multi-view framework can discern 3D
poses that are inherently ambiguous in single-view images.
Our results validate this assumption. We performed paral-
lel tests for the same examples, in one case using our ex-
isting multi-view framework, and in the other, using the
framework outlined above, only with the model altered to
be trained and tested with single views alone. Figure 5 com-
pares the error distributions of the single and multi-view
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0

2

4

6

8

10

12

14

16

18

Single− vs. multi−view training

M
ea

n 
di

st
an

ce
 fr

om
 tr

ue
 p

os
e 

pe
r 

jo
in

t (
cm

)

Training method
single multi

0.5

1

1.5

2

2.5

3

3.5

4

4.5

C
ha

m
fe

r 
di

st
an

ce
 b

et
w

ee
n 

tr
ue

 c
on

to
ur

s
an

d 
re

co
ns

tr
uc

te
d 

co
nt

ou
rs

Training method

Figure 5: Training on single view vs. training on multi-
ple views. Chart shows error distributions for pose (left)
and contours (right). Lines in center of boxes denote me-
dian value; top and bottom of boxes denote upper and lower
quartile values, respectively. Dashed lines extending from
each end of box show extent of rest of the data. Outliers are
marked with pluses beyond these lines.

frameworks for a test set of 3,000 examples. Errors in both
pose and contours are measured for both types of training.
Multi-view estimates are consistently more accurate than
single-view estimates. Training the model on multi-view
images yields on average 24% better pose inference perfor-
mance and 16% better contour reconstruction performance
than training the model on single-view images.

We have also tested the performance of our multi-view
method applied to body pose estimation when only a subset
of views is available. A missing view in the shape vector is
represented by zeros in the elements corresponding to that
view’s resampled contour. Just as unknown 3D locations
are inferred for the test images, our method reconstructs the
missing contours by inferring the shape seen in that view
based on examples where all views are known. (See Figures
6, 7, 8, and 9.)

We are interested in knowing how pose estimation per-
formance degrades with each additional missing view, since
this will determine how many cameras are necessary for
suitable pose estimation should we desire to use fewer cam-
eras than were used in the training set. Once the multi-view
model has been learned, it may be used with fewer cameras,
assuming that the angle of inclination of the cameras with
the ground plane matches that of the cameras with which
the model was trained.

Figure 8 shows results for 3,000 examples that have been
tested using all possible numbers of views (1,2,3,4), alter-
nately. For a single missing view, each view is omitted sys-
tematically one at a time, making 12,000 total tests. For two
or three missing views, omitted views are chosen at random



(a) Actual silhouettes (withheld)

(b) Noisy input
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Figure 6: Pose inference from only a single view. Top row
shows ground truth silhouettes that are not in the training
set. Noise is added to the contour points of second view
(middle), and this single view alone is matched to the multi-
view shape model in order to infer the 3D joint locations
(bottom, solid lines) and compare to ground truth (dotted
lines). Abbreviated body part names appear by each joint.
This is an example with average pose error of 5 cm.

in order to approximately represent all possible combina-
tions of missing views equally. As the number of missing
views increases, performance degrades more gracefully for
pose inference than for contour reconstruction.

To interpret the contour error results in Figures 5 and 8,
consider that the average contour length is 850 pixels, and
the silhouettes have an average area of 30,000 pixels. If
we estimate the normalized error to be the ratio of average
pixel distance errors (number of contour pixels multiplied
by Chamfer distance) to the area of the figure, then a mean
Chamfer distance of 1 represents an approximate overall er-
ror of 2.8%, distances of 4 correspond to 11%, etc. Given
the large degree of segmentation errors imposed on the test
sets, these are acceptable contour errors in the reconstruc-
tions, especially since the 3D pose estimates (our end goal)
do not suffer proportionally.

The pose error results are given in real world distances
(cm) and are thus fairly straightforward to interpret. Chance
performance for pose estimation (i.e., a random draw of
pose parameters from the training set) would yield a mean

(a) Noisy input

(b) Reconstructed contours
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Figure 7: Pose inference and contour reconstruction with
one missing view. Top row shows noisy input silhouettes,
middle row shows reconstructed contours (including the in-
ferred shape of the third view), and bottom row shows in-
ferred 3D joint locations (solid lines) and ground truth (dot-
ted lines). This is an example with average pose error of 2.5
cm and a Chamfer distance from the true clean silhouettes
of 2.3.

pose error of 29 cm; using four views our method achieves
a mean pose error of only 3 cm.

Finally, we evaluated our algorithm on a large data set of
real images of pedestrians taken from a database of 4,000
real multi-view frames. The real camera array is mounted
on the ceiling of an indoor lab environment. The external
parameters of this real four-camera system are roughly the
same as those of the virtual cameras in the graphics software
that were used for training. The data contains 27 different
pedestrian subjects.

Sample results for the real test data set are shown in Fig-
ure 9. The original textured images, the extracted silhou-
ettes, and the inferred 3D pose are shown. Without having
point-wise ground truth for the 3D locations of the body
parts, we can best assess the accuracy of the inferred pose
by comparing the 3D stick figures to the original textured
images. To aid in inspection, the 3D stick figures are ren-
dered from manually selected viewpoints so that they are
approximately aligned with the textured images.

In summary, our experiments show that a probabilistic
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Figure 8: Missing view results. Chart shows error distri-
butions for pose (left) and contours (right) when model is
trained on four views, but only a subset of views is used as
input to our algorithm. Plotted as in Figure 5.

shape+structure model is able to directly infer 3D structure
from observed multi-view image features. Our tests with a
large set of noisy, ground-truthed synthetic images offer ev-
idence of our method’s ability to infer 3D parameters from
contours, even when inputs have segmentation errors. As
shown in Figure 8, structure inference for body pose esti-
mation is accurate within 3 cm on average. Performance is
good even when there are fewer views available than were
used during training; with only one input view, pose is still
accurate within 15 cm on average, and can be as accurate
as within 4 cm. Finally, we have successfully applied our
synthetically-trained model to real data and a number of dif-
ferent subjects.

7. Conclusions and Future Work

We have developed an image-based approach to infer 3D
structure parameters using a probabilistic multi-view shape
model. Novel examples with contour information but un-
known 3D point locations are matched to the model in order
to infer the unknown parameters. All computation is done
entirely in the image domain and requires no explicit 3D
construction. A class-specific prior on multi-view imagery
enables accurate estimation of structure parameters in spite
of large segmentation errors or even missing input views.

In future work we will explore non-parametric density
models, and we will run experiments using motion capture
data so that we may compare real image results to ground-
truth joint angles. We also intend to include dynamics to
strengthen our model for the pedestrian walking sequences.
Finally, we are interested in applying our technique in a
higher-level gesture or gait recognition system.

References
[1] A. Baumberg and D. Hogg. Learning Flexible Models from

Image Sequences. In Proceedings of European Conference
on Computer Vision, Stockholm, Sweden, May 1994.

[2] A. Baumberg and D. Hogg. An Adaptive Eigenshape Model.
In British Machine Vision Conference, pages 87–96, Birm-
ingham, England, Sept 1995.

[3] T. Cootes and C. Taylor. A Mixture Model for Represent-
ing Shape Variation. In British Machine Vision Conference,
pages 110–119, Essex, England, 1997.

[4] T. Cootes, C. Taylor, D. Cooper, and J. Graham. Active
Shape Models - Their Training and Application. Computer
Vision and Image Understanding, 61(1):38–59, Jan 1995.

[5] T. Cootes, G. Wheeler, K. Walker, and C. Taylor. View-
Based Active Appearance Models. Image and Vision Com-
puting, 20:657–664, 2002.

[6] M. Covell. Eigen-Points: Control-Point Location Using
Principal Component Analysis. In Proceedings of the IEEE
International Conference on Automatic Face and Gesture
Recognition, pages 122–127, Killington, VT, Oct 1996.

[7] Egisys Co. Curious Labs. Poser 5 : The Ultimate 3D Char-
acter Solution. 2002.

[8] K. Grauman, G. Shakhnarovich, and T. Darrell. A Bayesian
Approach to Image-Based Visual Hull Reconstruction. In
Proceedings IEEE Conference on Computer Vision and Pat-
tern Recognition, Madison, WI, June 2003.

[9] J. Haslam, C. Taylor, and T. Cootes. A Probabilistic Fitness
Measure for Deformable Template Models. In British Ma-
chine Vision Conference, pages 33–42, York, England, Sept
1994.

[10] M. Jones and T. Poggio. Multidimensional Morphable Mod-
els. In Proceedings of the International Conference on Com-
puter Vision, pages 683–688, Bombay, India, January 1998.

[11] A. Laurentini. The Visual Hull Concept for Silhouette-Based
Image Understanding. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 16(2):150–162, Feb 1994.

[12] W. Matusik, C. Buehler, R. Raskar, S. Gortler, and L. McMil-
lan. Image-Based Visual Hulls. In Proceedings ACM Con-
ference on Computer Graphics and Interactive Techniques,
pages 369–374, 2000.

[13] B. Moghaddam. Principal Manifolds and Probabilistic Sub-
spaces for Visual Recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 24(6):780–788, June
2002.

[14] E-J. Ong and S. Gong. The Dynamics of Linear Combina-
tions. Image and Vision Computing, 20(5–6):397–414, 2002.

[15] M. Tipping and C. Bishop. Mixtures of Probabilistic Princi-
pal Component Analyzers. Neural Computation, 11(2):443–
482, 1999.

[16] M. Turk and A. Pentland. Face Recognition Using Eigen-
faces. In Proceedings IEEE Conference on Computer Vision
and Pattern Recognition, pages 586–590, Maui, HI, June
1991.

[17] Y. Wang and L. H. Staib. Boundary Finding with Prior Shape
and Smoothness Models. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(7):738–743, 2000.



 rw
 re

 ltoe

 rs

 la

 rt

 rk

 lk

 bh n

 th

 rtoe

 lt

 ra

 ls

 lw
 le  re

 rw

 rs

 rk

 ra

 rt

 rtoe

 th

 n bh

 lt

 ls

 lk

 la

 le

 lw

 ltoe  ra
 rtoe

 rk

 le

 lw rt

 rs ls

 re

 n

 th

 lt

 bh

 rw

 lk

 la ltoe
 ra

 lw

 le

 rtoe

 ls

 lt

 rk
 lk

 la

 rt

 n bh

 ltoe

 th

 rs

 re

 rw
 re

 la

 rs

 rw

 ltoe

 rt

 rk

 ra

 n

 th

 bh

 rtoe

 lt

 lk

 ls

 le

 lw

 la
 ltoe ra

 rs

 rt

 re le

 lt

 lk

 lw

 ls n

 rk

 th

 bh

 rw

 rtoe

 la

 le

 lw

 ltoe

 ls

 lk

 lt

 ra

 n bh

 th

 rt

 rtoe

 rk

 rs

 re

 rw  lw

 le

 ls

 lk

 rtoe

 lt

 ra ltoe

 bh n

 th

 rk

 la

 rt rw

 rs

 re

 la

 le

 lk

 ls

 lw lt

 ltoe ra

 n

 rt

 bh
 th

 rtoe

 rk

 rw
 re
 rs

 rtoe

 lw
 le

 ra

 ls

 rk

 lt

 lk

 th
 bh n

 rt

 ltoe

 rw

 rs

 re

 la  rtoe

 rk

 ra

 rs

 th
 bh

 rt lw

 n

 re
 rw

 le
 ls

 lt

 lk

 ltoe
 la

 re

 rs

 rw

 rk
 rt

 ltoe

 rtoe
 ra

 la

 bh n
 th

 lk

 lt

 ls

 lw
 le

 rtoe ra

 rk

 rw rt

 rs

 re

 bh n

 th

 lw
 lt

 ls

 le

 lk

 ltoe
 la

 re

 rw

 rs

 la
 ltoe

 rt

 rk

 ra

 n bh

 th

 rtoe

 lk

 lt

 ls

 le

 lw

 la
 ltoe

 re

 lk

 rw

 rs

 th

 ls
 n

 lt

 bh

 rt

 le

 lw

 rk

 ra rtoe
 la la

 ltoe ltoe

 lk lk

 le le

 ls ls

 lt lt lw lw

 n n

 th th

 bh bh

 re re

 rw rw rt rt

 rs rs

 rk rk

 ra ra rtoe rtoe

 lw
 le

 ls

 lk

 lt

 ltoe la

 n bh
 th

 rtoe
 ra

 rt

 rk

 rs

 re

 rw

 rk

 lw

 rs

 th
 bh

 rtoe

 rt

 n

 ltoe

 re le

 lt

 ls

 rw

 lk

 ra la

 rs

 rk

 re

 rw

 th

 bh

 rt

 n

 rtoe

 lw

 ra
 ltoe

 lt

 ls

 lk

 le

 la

 rw

 re

 rs

 ra

 rt

 rk

 rtoe la

 n

 th

 bh

 ltoe

 lt

 lk

 ls

 le
 lw  rw

 re

 rs

 rk

 rt

 rtoe

 ltoe

 ra

 bh
 th

 n

 lk

 la

 lt

 ls

 lw
 le

 ra

 re

 rs

 rtoe

 rk

 rt

 th

 rw

 n bh
 ls

 lt

 le

 lw

 la

 lk

 ltoe  ra

 le

 ls

 rtoe

 rs

 th

 n bh

 rt

 re

 rk

 lt lw

 la

 rw

 lk

 ltoe

 le

 lw

 ls

 ra la

 lt

 rtoe

 lk

 ltoe

 n bh
 th

 rt

 rk

 rs

 re

 rw

Figure 9: Inferring structure on real data. For each example, top row shows original textured multi-view image, middle row shows
extracted input silhouettes where the views that are not used to infer pose parameters are omitted, and bottom row shows inferred joint
locations. To aid in inspection, the 3D stick figures are rendered from manually selected viewpoints chosen so that they are approximately
aligned with the textured images. In general, estimation is accurate and agrees with the perceived body configuration.
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