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Abstract. Recognizing visual scenes and activities is challenging: often
visual cues alone are ambiguous, and it is expensive to obtain manually
labeled examples from which to learn. To cope with these constraints, we
propose to leverage the text that often accompanies visual data to learn
robust models of scenes and actions from partially labeled collections.
Our approach uses co-training, a semi-supervised learning method that
accommodates multi-modal views of data. To classify images, our method
learns from captioned images of natural scenes; and to recognize human
actions, it learns from videos of athletic events with commentary. We
show that by exploiting both multi-modal representations and unlabeled
data our approach learns more accurate image and video classifiers than
standard baseline algorithms.

1 Introduction

Systems able to automatically annotate and index visual content will be cru-
cial to managing the world’s ever-growing stores of digital images and videos.
However, learning to recognize objects and actions based on visual cues alone
remains quite difficult, due to factors ranging from unpredictable illumination
to the sheer variety in appearance exhibited by instances of the same class. Fur-
thermore, accurate results often depend on access to substantial labeled data,
which in practice can be cumbersome to obtain in adequate quantities.

We propose to facilitate the learning process in this domain by integrating
both visual and linguistic information, as well as unlabeled multi-modal data.
In particular, we consider the tasks of recognizing categories in natural scenes
from images with caption text, and recognizing human actions in sports videos
that are accompanied by an announcer’s commentary. Both are interesting data
sources given their ready availability, but are nonetheless challenging due to the
loose association between the dual cues as well as the frequent ambiguity of
either cue alone. We design an approach using co-training [6] that takes local
appearance and spatio-temporal descriptors together with text-based features to
learn the categories from a partially labeled collection of examples.



The majority of state-of-the-art systems for image and video classification use
unimodal data – either visual or textual features alone [32, 12, 5, 35, 20, 14, 17].
Given the natural occurrence of both feature types together, researchers have
only recently begun to explore ways to learn from multi-modal image and lan-
guage data. Previous work has focused on learning the association between visual
and textual information [2, 13, 11], using supervised methods to improve text-
based video retrieval [15], improving audio-visual human-computer interfaces [8],
and designing unsupervised methods to cluster images [3] or strengthen image
features [30]. In contrast, we consider learning to classify images and videos from
labeled and unlabeled multi-modal examples, demonstrating that our approach
can improve the classification of novel instances by exploiting both cues—or even
the visual data alone. While co-training has previously been applied to learn from
two textual views [6] or two visual views [31, 7], we present comprehensive results
on using visual and linguistic information as separate views, with the idea that
these distinct cues will complement each another well during training.

Our main contribution is a semi-supervised approach to recognizing scenes
and human actions from captioned images or commentated videos. We show that
by exploiting multi-modal data and unlabeled examples, our approach improves
accuracy on classification tasks relative to both unimodal and early/late fusion
baselines. In addition, it yields significantly better models than alternative semi-
supervised methods when only a limited amount of labeled data is available.

The remainder of the paper is organized as follows: in Section 2 we discuss
related work in more detail. In Section 3 we describe our approach for extracting
visual and textual features, and provide background on building a co-training
classifier. In Section 5.1 we present results for learning from captioned images,
while in Section 5.2 we present results for videos with commentary, and in Sec-
tions 6 and 7 we suggest future directions and present our conclusions.

2 Related Work

In previous work using captioned images, Barnard et al. [2] and Duygulu et
al. [10] generat models to annotate image regions with words. Bekkerman and
Jeon [3] exploit multi-modal information to cluster images with captions using
an unsupervised learning technique. Quattoni et al. [30] describe a method for
learning representations from large quantities of unlabeled images that have
associated captions to improve learning in future image classification problems
with no associated captions.

Many researchers have worked on activity recognition in videos using only vi-
sual cues [32, 12, 35, 20, 5]. Everingham et al. [13] incorporate visual information
(facial and clothing matching), closed-captioned text, and movie scripts to auto-
matically annotate faces with names in a video. They utilize textual information
only for finding names of actors who are speaking at a particular time. Nitta
et al. [28] annotate sports video by associating text segments with the image
segments. Their approach is based on previous knowledge of the game and the
key phrases generally used in its commentary. Fleischman and Roy [15] use text



commentary and motion description in baseball video games to retrieve relevant
video clips given a textual query. Duygulu and Hauptmann [11] associate news
videos with words and improve video retrieval performance. These papers focus
on video retrieval rather than classification. Our results provide a novel way to
incorporate text information when learning about visual human activity. Wang
et al. [34] use co-training to combine visual and textual ‘concepts’ to categorize
TV ads. They retrieved text from videos using OCR and used external sources
to expand the textual features. Our paper focuses on using visual and textual
features from explicitly captioned images and videos without exploiting external
sources.

Co-training has previously been shown to be useful for various applications
[21, 8, 31]. Levin et al. [23] use co-training to improve visual detectors by training
two disparate classifiers. Cheng and Wang [7] suggest a new SVM algorithm
called Co-SVM that uses a co-training approach and achieved better results
than a normal SVM on classifying images using color and texture as separate
views, and Nigam et al. [27] compares the effectiveness of co-training with semi-
supervised EM.

However, none of the prior work has explored using low-level visual cues and
text captions as two views for co-training. We present the first results showing
how to learn about human activities based on both visual cues and spoken
commentary, and provide a thorough evaluation of our co-training approach
relative to several other relevant methods. Since image and video classification
is a difficult problem and many videos and images have associated text, we
believe that our co-training approach is a novel contribution to two important
practical applications.

3 Approach

The main idea of our approach is to use image or video content together with its
textual annotation (captions, commentary) to learn scene and action categories.
To design such a system, the main components we must define are the feature
representations for linguistic and static or dynamic visual cues, and the learning
procedure. In this section we describe each of these elements in turn.

3.1 Visual Features

Static Image Features To describe a captioned photograph, we want to cap-
ture the overall texture and color distributions in local regions. Following [3],
we compute region-based features as follows. Each image is broken into a 4-by-6
grid of uniformly sized cells. For each region, we compute texture features using
Gabor filters with three scales and four orientations, and also record the mean,
standard deviation, and skewness of the per-channel RGB and Lab color pixel
values. The resulting 30-dimensional feature vectors for each of the 24 regions of
all images are then clustered using k-Means in order to define the prototypical
region responses. Each region of each image is then assigned one of k discrete



values based on the cluster centroid closest to its 30-dimensional image feature
vector.

The final “bag of visual words” representing an image consists of a vector of k
values, where the i’th element represents the number of regions in the image that
belong to the i’th cluster. While other descriptors are certainly possible (e.g.,
using scale and affine invariant interest point detectors [25]), we chose these
features based on their demonstrated suitability for the image-caption dataset
provided in [3], which we also use in our experiments.

Motion Descriptors from Videos To represent video clips, we use features
that describe both salient spatial changes and interesting movements. In order
to capture non-constant movements that are interesting both spatially and tem-
porally, we use the spatio-temporal motion descriptors developed by Laptev [22].
We chose the spatio-temporal interest point approach over a dense optical flow-
based approach in order to provide a scale-invariant, compact representation of
activity in the scene.

To detect spatio-temporal events, Laptev builds on Harris and Forstner’s
interest point operators [18, 16] and detects local structures where the image
values have significant local variation in both space and time. They estimate the
spatio-temporal extent of the detected events by maximizing a normalized spatio-
temporal Laplacian operator over both spatial and temporal scales. Specifically,
the extended spatio-temporal “cornerness” H at a given point is computed as
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i ) is a 3D Gaussian smoothing kernel
with a spatial scale σ and a temporal scale τ , and Lx, Ly, Lz, and Lt are the
gradient functions along the x, y, z, and t directions, respectively. In (1), µ repre-
sents a second order spatio-temporal matrix. The points that have a large value
of H are selected as interest points.

At each interest point, we extract a HOG (Histograms of Oriented Gradients)
feature [9] computed on the 3D video space-time volume. The patch is partitioned
into a grid with 3x3x2 spatio-temporal blocks, and four-bin HOG descriptors are
then computed for all blocks and concatenated into a 72-element descriptor. The
motion descriptors from all the video clips in the training pool are then clustered
to form a vocabulary. Finally, a video clip is represented as a histogram over this
vocabulary, just as a static image’s features are summarized by a histogram of
prototypical region descriptors.

3.2 Textual Features

The text features for the images or videos consist of a standard “bag of words”
representation of the captions or transcribed video commentary, respectively. We



Table 1. Co-training Algorithm

– Inputs: A set of labeled and unlabeled examples, each represented by two sets of
features, one for each view.

– Algorithm: Train a classifier for each view using the labeled data with just the
features for that view.

– Loop until there are no more unused unlabeled instances:

1. Compute predictions and confidences of both classifiers for all of the unlabeled
instances.

2. For each view, choose the m unlabeled instances for which its classifier has
the highest confidence. For each such instance, if the confidence value is less
than the threshold for this view, then ignore the instance and stop labeling
instances with this view, else label the instance and add it to the supervised
training set.

3. Retrain the classifiers for both views using the augmented labeled data.

– Outputs: Two classifiers whose predictions can be combined to classify new test
instances. A test instance is labeled with the category predicted by the classifier
with the highest confidence.

pre-processed the captions to remove stop words and stemmed the remaining
words using the Porter stemmer [1]. The frequency of the resulting word stems
comprised the final textual features.

3.3 Building the Classifier using Co-training

Blum and Mitchell introduced co-training, a semi-supervised learning algorithm
that requires two distinct “views” of the training data [6]. It assumes that each
example is described using two different feature sets that provide different, com-
plementary information about the instance. Ideally, the two views are condi-
tionally independent (i.e., the two feature sets of each instance are conditionally
independent given the class) and each view is sufficient (i.e., the class of an
instance can be accurately predicted from each view alone). Co-training first
learns a separate classifier for each view using any labeled examples. The most
confident predictions of each classifier on the unlabeled data are then used to
iteratively construct additional labeled training data.

Co-training was initially used to classify web-pages using the text on the
page as one view and the anchor text of hyperlinks on other pages that point to
the page as the other view. In this work, we use the extracted visual and textual
features as the two views for co-training classifiers to detect scenes and actions.

We followed the basic algorithm suggested by [6] with one additional con-
straint: an unlabeled example is only labeled if a pre-specified confidence thresh-
old for that view is exceeded. The algorithm is outlined in Table 1. In each itera-
tion, it finds the m most confidently labeled unlabeled examples for each view. If



such instances pass the threshold test, they are added to the supervised training
set with the predicted label and both classifiers are retrained. The entire process
continues until there are no more unlabeled instances.

4 Experimental Design

4.1 Baselines

In order to evaluate the relative strength of co-training with multi-modal data,
we compare co-training with several other supervised and semi-supervised tech-
niques that are reviewed in this section.

Early and Late Fusion Besides co-training, multi-modal fusion methods are
an alternative way to utilize both sets of features. The visual and linguistic in-
formation can be ‘fused’ in two ways: early and late fusion [33]. In early fusion,
unimodal features are extracted and then combined into a single representation.
In our case, we extract visual and textual features and concatenate them into
a single vector. In contrast, late fusion learns separate unimodal classifiers di-
rectly from unimodal features and then combines their results when labeling test
instances. In particular, we combine the two unimodal classifiers by using the
decision of the classifier with the highest confidence.

Semi-supervised EM and Transductive SVMs Semi-supervised Expecta-
tion Maximization (Semi-Sup EM) and transductive Support Vector Machines
(TSVM) are two other standard approaches to semi-supervised learning. These
methods can be applied to either of the two views individually, or employ both
feature sets using early or late fusion.

Although typically used for unsupervised learning, Expectation Maximiza-
tion (EM) can also be used in a semi-supervised setting [26]. First, Semi-Sup
EM learns an initial probabilistic classifier from the labeled training data. Next,
it performs EM iterations until convergence. In the E step, it uses the cur-
rently trained classifier to probabilistically label the unlabeled training exam-
ples. In the M step, it retrains the classifier on the union of the labeled data and
the probabilistically labeled unsupervised examples. Semi-sup EM has typically
been applied using Naive Bayes as its probabilistic classifier. For text learn-
ing, the multinomial version of Naive Bayes [24] is typically used [26]; however,
for our data we found that a standard multivariate model using Gaussian dis-
tributions for continuous features gave better results. Specifically, we used the
NaiveBayesSimple classifier in Weka [36].

Transductive SVMs [19] find the labeling of the test examples that results
in the maximum-margin hyperplane that separates the positive and negative
examples of both the training and the test data. This is achieved by including
variables in the SVM’s objective function representing the predicted labels of the
unlabeled test examples. Although TSVMs were originally designed to improve
performance on the test data by utilizing its availability during training, they



can also be directly used in a semi-supervised setting [4] where unlabeled data is
available during training that comes from the same distribution as the test data
but is not the actual data on which the classifier is eventually to be tested. In
our experiments we evaluate the strength of our co-training approach relative to
these other semi-supervised methods.

4.2 Methodology

For co-training, we use a Support Vector Machine (SVM) as the base classifier for
both image and text views. We compare co-training with other supervised and
semi-supervised methods, and use the Weka [36] implementation of sequential
minimal optimization (SMO) [29] for SVMs (except for TSVMs as described be-
low). SMO is set to use an RBF kernel (γ=0.01) and a logistic model to produce
proper output probabilities; otherwise, default parameters are used throughout.
We use a batch size of m = 5 for co-training. For co-training on static images,
we use a confidence threshold of 0.65 for the image view and 0.98 for the text
view (determined empirically through cross-validation). For video classification
(where there are more classes) we use a threshold of 0.6 for the video view and
0.9 for the text view.

We evaluate all algorithms using ten iterations of ten-fold cross validation
to get smoother and more reliable results. For co-training and the other semi-
supervised algorithms, the test set is disjoint from both the labeled and unlabeled
training data.

To evaluate accuracy as the amount of labeled data increases, we generate
learning curves where at each point some fraction of the training data is labeled
and the remainder is used as unlabeled training data. Thus, for the last point on
the curve, all of the training data is labeled. With this methodology, we expect
to see an advantage for semi-supervised learning early in the learning curve when
there is little labeled data and significant unlabeled data. Once all of the data
is labeled, we expect the predictive accuracies of semi-supervised learning and
supervised learning to converge.

5 Results

This section presents our experimental results on image and video classification.
Some part of our datasets and full results are available on the web at http:
//www.cs.utexas.edu/users/ml/co-training.

5.1 Learning to Categorize Captioned Images

In this section we provide results on classifying captioned static images.



(a) Caption: Ibex in Judean
Desert

(b) Caption: Bedouin Leads
His Donkey That Carries
Load Of Straw

(c) Caption: Nuns In Seclu-
sion Near Santa Catherina
In Sinai

(d) Caption: Ibex Eating In
The Nature

(e) Caption: Entrance To
Mikveh Israel Agricultural
School

(f) Caption: Olive Trees
At The Bell Garden In
Jerusalem

Fig. 1. Some images and their corresponding captions of the image dataset. Figures
1(a)-1(c) are of class ‘Desert’ and the rest are of class ‘Trees’.

Dataset Our image data is taken from the Israel dataset1 introduced in [3],
which consists of images with short text captions. In order to evaluate the co-
training approach, we used two classes from this data, Desert and Trees. These
two classes were selected since they satisfy the sufficiency assumption of co-
training, which requires that both views be effective at discriminating the classes
(given sufficient labeled data). We refer to this set as the Desert-Trees dataset.
Some examples of each class are shown in Figure 1. The complete dataset con-
tains 362 instances. To create the vocabulary of visual words, we used k-means
with k=25 (see Section 3.1). The total number of textual features for this dataset
is 363.

Results and Discussion Our results comparing co-training with various other
classification methods are shown in Figures 2 to 4. In the figures, “Image View”
and “Text View” refers to using only the named view’s features. The significance
of the results were evaluated using a two-tailed paired t-test with a 95% con-
fidence level. Based on preliminary experiments, an RBF kernel (γ=0.01) was
used for the SVM in all experiments.

Comparison of Co-training to Supervised Learning. Figure 2 compares co-
training using an SVM as the base classifier to supervised classification using an
SVM, which is known to often be one of the best performing methods for high-
1 http://www.israelimages.com
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Fig. 2. Comparison of co-training with supervised classifiers on the Desert-Trees
dataset. Co-training performs the best, converging with late-fusion for larger amounts
of labeled data.
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Fig. 3. Comparison of co-training with other semi-supervised techniques on the Desert-
Trees captioned images dataset. Co-training outperforms all other methods.

dimensional data in practice. The results show that co-training is more accurate
than a supervised SVM using unimodal data and early fusion of multi-modal
data, with statistically significant differences at all points on the learning curve.
With respect to the individual views, except at the start of the learning curve,
the text view performs better than the image view. This is reasonable given that
the image cues are often more indirect than the text features. The much smaller
number of features in the image view allows it to do a bit better than the text
view when training data is extremely limited. Both early and late fusion perform
better than the unimodal classifiers since they exploit both views. Co-training is
more accurate than late fusion, except for later in the learning curve where they
converge. Once all the data is labeled (the last point on the learning curve), co-
training and late-fusion are exactly the same since co-training has no unlabeled
data to exploit.

Comparison of Co-training to other Semi-Supervised Methods. Many evalua-
tions of semi-supervised learning only show that the proposed method performs
better than supervised learning but do not compare to other semi-supervised
methods [6, 19, 30]. Here we present results comparing co-training with two other



well-known semi-supervised techniques: Semi-supervised EM [26] and transduc-
tive SVMs [19]. Results are shown in Figures 3(a) and 3(b).

Figure 3(a) shows that co-training with SVM as the base classifier outper-
forms Semi-Sup EM irrespective of the view it considers, with statistically sig-
nificant differences across the learning curve.

In order to compare with transductive SVM, we have used SVMlight [19], with
an RBF kernel (γ=0.01) and default values for all other parameters. The figure
shows that co-training performs better than transductive SVM irrespective of
the view it considers. The difference in accuracy is statistically significant across
the learning curve, except when compared to TSVM using late fusion. When
compared to TSVM using late fusion, the difference is statistically significant
when 40% or less of the training data is labeled.

Our results are consistent with previous results on text data showing that in
domains with two independent and sufficient views, co-training is more effective
than Semi-Sup EM [27]. By directly exploiting the redundant nature of the
visual and linguistic information, our results indicate that co-training can classify
captioned images more accurately than than other semi-supervised methods.

5.2 Learning to Recognize Actions from Commentated Videos

Next we report results using our co-training approach to learn human action
categories from commentated videos of athletic events.

Dataset For this experiment, we collected video clips of soccer and ice skating.
One set of video clips is from the DVD titled ‘1998 Olympic Winter Games:
Figure Skating Exhibition Highlights’, which contains highlights of the figure
skating competition at the 1998 Nagano Olympics. Another set of video clips is
on soccer playing, acquired either from the DVD titled ’Strictly Soccer Individual
Skills’ or downloaded from YouTube. These videos mostly concentrate on the
player in the middle of the screen and usually the motions are repeated several
times with different viewpoints. The soccer clips are mainly about soccer specific
actions such as kicking and dribbling. There is significant variation in the size
of the person across the clips.

The video clips are resized to 240x360 resolution and then manually divided
into short clips. The clip length varies from 20 to 120 frames, though most are
between 20 and 40 frames. While segmenting activities in video is itself a dif-
ficult problem, in this work we specifically focus on classifying pre-segmented
clips. The clips are labeled according to one of four categories: kicking, drib-
bling, spinning and dancing. The first two are soccer activities and the last two
are skating activities. The number of clips in each category are, dancing: 59,
spinning: 47, dribbling: 55 and kicking: 60. Example frames from each class with
detected motion features and their captions are shown in Figure 4. The illus-
trated features are useful in discriminating between the classes and few features
are detected in the background. We used k=200 in the k-means algorithm to
create the vocabulary of video features (see Section 3.1).



(a) Dancing: Her last spin is going to make her win.

(b) Spinning: A female skating player is revolving in the current position many times, with
her posture changing over time.

(c) Kicking: Jim uses stretches his arms outside to balance him and let goes a ferocious
drive.

(d) Dribbling: The kid keeps the ball in check by juggling it with his legs.

Fig. 4. Randomly selected consecutive frames of video with detected spatio-temporal
interest points. Interest points are displayed as yellow circles around the detected
points. One clip per each class of dancing, spinning, kicking, and dribbling is shown
above. In addition, the text commentary is also shown below each clip.

As the video clips were not originally captioned, we recruited two colleagues
unaware of the goals of the project to supply the commentary for the soccer
videos. The skating commentary was provided by two of the authors. Additional
sample captions are shown in Figure 5. The total number of textual features is
381 for this dataset.

Results and Discussion In Figure 6 (a), we compare co-training with a su-
pervised SVM using unimodal views and early/late fusion of multi-modal views.
Co-training performs better than all other methods early in the learning curve.



Spin:
That was a very nice forward camel
Well I remember her performance last time
After gliding, she just starts to make many revolutions while maintaining her current
position with her head back.
Her angular movement seems so dizzy because he spins round with her head up and down
and also the movement is so fast.
Elizabeth is able to clear this one
Her beautiful performance of revolving herself makes the entire audience impressed due
to her perfect posture.
Dancing:
Wow those were some great steps
He has some delicate hand movement
She gave a small jump while gliding
He does slight spins and tries to express bird’s motion by dancing like it and goes forward
very fast.
The crowd is cheering him a lot
She is drawing a big circle with her arms very fast while moving her body backward and
shows lightweightness.
Kick:
His balance is a bit shaky but he manages to execute the kick in the end.
He runs in to chip the ball with his right foot.
He runs in to take the instep drive and executes it well.
He plants his ankle level with the ball and swings though to get the kick and makes sure
he has his eyes on the ball all the time.
He come from behind and hits the rolling ball with power just as it rolls in front of him.
He runs behind the ball and has to stretch himself to kick the ball with the inside of his
toes.
Dribbling:
Again the striker turns around effortlessly and kicks the ball away from the defender
making it look too easy.
At fast speed as the ball is juggled between the legs it becomes difficult to control it.
The small kid pushes the ball ahead with his tiny kicks.
He does the scissors over the ball quickly to move the ball ahead.
He takes the ball with him by alternately pushing the ball forward and swinging the leg
over it and using the other leg to distract the defender.
Ran uses the combination of right leg scissor and roll to take the ball ahead

Fig. 5. Captions of some video clips in the four classes
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Fig. 6. (a) Comparison of co-training with early fusion, late fusion, motion view and
text view on the commentated video dataset. Co-training performs better when only
a small fraction of labeled data is available. (b) Co-training compared with supervised
learning when text commentary is not available during testing. Co-training performs
better when few labeled examples are available.

This demonstrates that utilizing unlabeled data and multi-modal views improves
accuracy when supervised data is limited, a valuable advantage. Both co-training
and late fusion exploit both views of the dataset, but co-training outperforms
late fusion since it also uses the unlabeled data to improve accuracy. It is inter-
esting that early fusion actually performs worse than supervised learning using
the text view; we attribute this to the higher-dimensional feature vector, which
increases the complexity of learning and impairs generalization.

In many real-life situations, we may not have textual commentary on the
novel test videos that we wish to classify. However, even in cases where com-
mentary is not available at test-time, we would still like to benefit from the
commentary that was available during training. Therefore, we also examine the
case where text is unavailable during testing and an instance must be classified
using only video input. Figure 6(b) compares co-training using only the motion
view during testing with a supervised SVM using the motion view. In this case,
co-training performs better than SVM when only a few labeled examples are
available. We also evaluated an analogous situation with the image dataset, but
in that case results were comparable to a supervised SVM. All the results are
statistically significant until 30% of the data is labeled.

6 Future Work

The image test corpus used in the current experiments is fairly small and re-
quires only binary classification. We would like to test multi-modal co-training



on a larger multi-class corpus of captioned images. We would also like to ex-
tend our approach to images that do not have explicit text captions but are
surrounded by related text. In particular, images on the web rarely come with
explicit captions; however, it is natural to use surrounding text productively to
find relevant images. By automatically extracting the appropriate surrounding
text as a “pseudo-caption,” multi-modal co-training could be used to improve
the classification of web images. The video commentary in our experiments was
added specifically for this project, although we strove to make it natural. In
the future, we hope to expand our results to include video with existing closed-
captioned commentary and automate the segmentation of video into clips.

7 Conclusion

Recognizing scenes in images and actions in videos are important, challenging
problems. We have proposed a solution that uses co-training to exploit both
visual and textual features from labeled and unlabeled data to improve classifi-
cation accuracy. Our results show that such multi-modal co-training can outper-
form several other standard learning algorithms. By exploiting the redundant
information inherent in images or videos and their textual descriptions, we have
shown that the amount of supervision required to accurately classify images and
videos can be significantly reduced.
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