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Abstract

Visual attributes expose human-defined semantics to ob-
ject recognition models, but existing work largely restricts
their influence to mid-level cues during classifier training.
Rather than treat attributes as intermediate features, we
consider how learning visual properties in concert with ob-
ject categories can regularize the models for both. Given
a low-level visual feature space together with attribute-
and object-labeled image data, we learn a shared lower-
dimensional representation by optimizing a joint loss func-
tion that favors common sparsity patterns across both types
of prediction tasks. We adopt a recent kernelized formula-
tion of convex multi-task feature learning, in which one al-
ternates between learning the common features and learn-
ing task-specific classifier parameters on top of those fea-
tures. In this way, our approach discovers any structure
among the image descriptors that is relevant to both tasks,
and allows the top-down semantics to restrict the hypothe-
sis space of the ultimate object classifiers. We validate the
approach on datasets of animals and outdoor scenes, and
show significant improvements over traditional multi-class
object classifiers and direct attribute prediction models.

1. Introduction

Visual attributes are human-understandable properties
shared among object categories (e.g., “glassy”, “has legs”),
and are a compelling way to introduce high-level seman-
tic knowledge into predictive models. Recent work shows
that attributes are valuable in several interesting scenarios,
ranging from description of generic images or unfamiliar
objects [11, 9, 24], to zero-shot transfer learning [13], to
intermediate features that aid in distinguishing people, ob-
jects, and scenes [12, 13, 9, 27].

Existing approaches to attribute-based recognition as-
sume that the attributes’ role is primarily to focus learn-
ing effort on properties that will be reusable for many cate-
gories of interest, and to elegantly integrate human knowl-
edge into discriminative models. As such, attribute classi-
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Figure 1. In our model, object categories and their human-defined
visual attributes share a lower-dimensional representation (dashed
lines indicate zero-valued connections), thereby allowing the
attribute-level supervision to regularize the learned object models.

fiers are learned independently from object classifiers, and
then their predictions are treated as “mid-level” features
that bridge low-level image features and high-level object
classes. However, segregating supervision about attributes
from supervision about objects may restrict their impact. In
particular, in conventional models, even though attributes
influence object predictions, the attribute-labeled training
data does not directly introduce new information when dis-
criminatively learning the objects.

We explore how learning visual attributes in concert with
object categories can strengthen recognition. The assump-
tion is that both types of prediction tasks rely on some
shared structure in the original image descriptor space. In
other words, patterns among those generic visual proper-
ties that humans elect to name may reveal information about
which low-level cues are valuable to object recognition—in
the most general case, whether the objects of interest exhibit
those attributes or not. Thus, rather than treat attributes as
intermediate features, we propose an approach to discover
this structure and learn a shared lower-dimensional repre-
sentation amenable to discriminative models for either one
(see Figure 1). In effect, we show how human-defined se-
mantics (as revealed by attributes) can regularize training
for object classifiers.
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Given a low-level visual feature space together with
attribute- and object-labeled image data, we learn a fea-
ture subspace for all labeling tasks based on a joint loss
function that favors common sparsity. The optimization
process alternates between regularizing towards shared fea-
tures, and retraining task-specific classifiers based on those
features. Our technique directly builds on a multi-task fea-
ture learning algorithm developed in [1], where it was ap-
plied to collaborative filtering of consumer data. To im-
prove its scalability, we provide a more efficient kernel-
ized implementation and linear algebra shortcuts for deal-
ing with large matrices. Additionally, while in [1] all tasks
are assumed to have the same label space, our setting entails
non-overlapping label spaces (attributes, objects), for which
feature-sharing is expected to be more challenging.

It is well-known that the success of multi-task learning or
feature sharing hinges on the assumption that the input tasks
are indeed related. Why should the assumption hold in our
case? What makes attributes “special” as auxiliary tasks for
object learning? Intuitively, their relation is intrinsic, since
attributes are by definition shared among object categories.
Many object-level distinctions can be made using a vocabu-
lary of relevant properties, suggesting that a representation
sufficient to distinguish the properties would also be rele-
vant for the objects (e.g., a child learning to discriminate
cows from other animals might focus on the visual prop-
erties a cow exclusively has but other animals do not). In
fact, in early visual processing, it is known that the human
visual system discovers some sparse coding using a feature
“vocabulary” of low-level filters [17].

More abstractly, we expect that structure among a wide
span of attribute classifiers could reveal information about
which low-level features are valuable to human understand-
ing of the visual world. That is, even attributes that are
not relevant to distinguishing a particular object may still
help to constrain the space of image descriptors suitable for
higher-level recognition problems. Finally, there is a prac-
tical incentive for treating attributes as auxiliary tasks re-
garding supervision cost: for many attributes, knowing the
real world object-attribute relationship is sufficient to trans-
fer object-level image labels to attribute-level labels (i.e., all
buildings are manmade, so if we have a labeled image of a
building, it is also an image of the manmade attribute).1

In short, our contribution is threefold: 1) we design a
method for feature sharing between object and attribute pre-
diction tasks; 2) we verify with experiments on two datasets
that feature sharing can offer noted improvements in accu-
racy for target object categorization tasks; and 3) we explore
to what extent different attributes are useful for a target task,
and provide some initial ideas for automatic selection of rel-
evant attributes to limit training costs.

1This is the case for many binary attributes, but of course not all at-
tributes (e.g., some bicycles are red, some are blue).

2. Related Work
Attributes and their applications: Recent work shows

that attributes are useful in a variety of settings. First, they
are independently useful to describe familiar and unfamiliar
things (e.g., the leopard is spotted and furry, whether or not
we know to call it a leopard [9, 11]), or to search through
large image/video collections in semantic terms [24]. Sec-
ond, they enable new zero-shot learning paradigms, where
one can build an object model on the fly [13]. Third, they
can serve as mid-level features to an object classification
layer; having learned to predict the presence of each at-
tribute, one can build supervised object models on top of
those predictions [12, 13, 9, 27]. Usually attribute-object
associations are manually specified, but some work explores
ways to obtain them automatically [26, 6, 21]. Notably,
nearly all models using attributes for recognition learn them
independently.

Relating objects and attributes: The “indirect at-
tribute prediction” model [13] offers a way to regularize at-
tribute predictions based on object predictions; however, the
attribute-object connections are set by human-given defini-
tions, and so the two are not jointly learned. The novel mul-
tiple instance learning (MIL) approach in [25] jointly trains
attribute and object detectors with weakly labeled data, with
a constraint that both models should agree on localization
(e.g., if an image is tagged “blue cap”, both MIL classifiers
should prefer to select positive training instances from the
same location). In contrast, our data is strongly labeled, and
our method influences the feature space construction, not
training instance selection. The method in [27] integrates
attribute- and object-based cues into a structured latent
SVM model: the attribute labels are left as latent variables
on the training data, and the objective is to minimize object
prediction loss. In contrast, we show the value in discov-
ering a single shared representation such that both attribute
and object tasks can be predicted well. Thus, while [27] im-
plicitly discovers object-attribute relationships, we exploit
the two simultaneously as explicit tasks.

Transfer and multi-task learning: Transfer learning is
a related way to regularize object learning. The focus has
been on inter-class transfer between objects [10, 5, 22, 20],
and jointly training detectors so that features are shared
across objects [23, 3, 29], which lends to better efficiency
during detection. In contrast, the proposed feature sharing
spans multiple target label spaces, and our emphasis is gen-
eralization ability rather than efficiency. Multi-task learn-
ing [7] is often accomplished through feature sharing, and
some vision work explores text [19, 14] or pattern match-
ing [2] data as auxiliary tasks. We are the first to explore
multi-task learning with attributes, which (relative to other
sources of auxiliary tasks) has potential advantages of in-
trinsic task relevance and supervision “reuse”, as discussed
above.
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3. Approach

We describe in detail the approach we take to learn
shared features between objects and their attributes. Our
work directly builds on a previous approach [1]. Being
mindful of desired large-scale learning settings, however,
we extend the method by providing faster and more scalable
numerical techniques. Additionally, we adapt the models to
handle classification tasks where the label sets are disparate.

We start by describing the basic setup for learning fea-
tures from multiple tasks. Then we explain how the problem
can be cast as convex optimization for both linear and ker-
nel classifiers. Finally, we discuss extensions and improve-
ments we have developed in order to apply the approach.

3.1. Basic Setup and Notation

There are two groups of classification tasks. We aim to
improve object classification accuracy; thus, we refer to the
objects as the main task, and the attribute classifiers as aux-
iliary tasks. Note that the two groups have different sets of
labels.

We use multi-class support vector machines (SVMs) for
the main task [8]. Let M denote the number of object
classes, xn ∈ R

D denote the n-th feature vector in the train-
ing data and yn its class label. The multi-class SVM has M
parameter vectors {w∗

m}Mm=1, one for each class. In the
most basic setting, we consider linear discriminants which
are parameterized by wm ∈ R

D. Let W denote the matrix
whose columns are wm. To identify W , we minimize a loss
function that maximizes the discriminant wT

yn
xn,

W ∗ = arg min
∑

n

�({wT
mxn}Mm=1, yn) + γ

∑
m

‖wm‖22

where γ ≥ 0 is a tradefoff parameter that regularizes the
model complexity, using the parameter’s 2-norm.

For learning A auxiliary tasks, we use yna to denote the
label for the a-th auxiliary task and wa for the correspond-
ing model parameter. Our auxiliary tasks are binary classifi-
cation of attributes. We use the squared hinge loss for these
tasks. For simplicity, the notation assumes that both the
main task and auxiliary tasks are trained on the same feature
vectors. However, this is not mandatory, as we demonstrate
in our results.

We use t ranging from 1 to T = (M + A) to index all
parameter vectors for the main and auxiliary tasks. To
avoid unnecessary notation clutter, with a slight abuse,
we use

∑M
t=1 �(wT

t xn, ynt) in lieu of �({wT
mxn}Mm=1, yn),

namely, the true object function for the main task.

3.2. Learning Shared Features via Regularization

Conventionally, all T parameters {wm}Tt=1 are learned
by independently training (1+A) classifiers. For linear dis-
criminants such as wT

mxn, the resulting parameter often re-
veals how effective features are. For instance, a zero-valued

element wmi indicates that the i-th feature of xn does not
play a role in classifying objects. Thus, intuitively, for
related tasks, we expect their parameters to reveal similar
sparsity patterns. Furthermore, we hypothesize that shared
patterns will enable more effective parameter training—for
example, reducing feature space dimensionality, thus im-
proving classification performance. How can we identify
such common patterns across tasks?

This desideratum is achieved in two steps. The first is
to transform the original features to a shared feature space
UTxn ∈ U for all tasks [1, 4]. The second step is to learn
models in the space of U and promote a common sparsity
pattern in the new parameters. Concretely, we express the
discriminant in {θt} such that wt = Uθt. Analogously to
W , we collect all θt in Θ ∈ R

D×T. We jointly optimize all
loss functions, but regularized with Θ’s (2, 1)-norm,

Θ∗, U∗ = arg min
∑

t

∑
n

�(θT
t UTxn, ynt) + γ‖Θ‖22,1

(1)
The norm is given by ‖Θ‖2,1 =

∑D
d=1

√∑
t θ2

td. An im-
portant property of this norm is that it computes the 2-norm
of parameter values in each dimension across tasks. Conse-
quently, for any dimension d, the regularization attains the
minimum if and only if the corresponding parameters are all
zero: θtd = 0 for all t. Therefore, the regularization would
choose the Θ with the smallest number of non-zero rows.

The discriminant θT
t UTxn depends only on nonzero el-

ements of θt. Thus eq. (1) yields solutions that use a subset
of features that are commonly effective for all tasks. Similar
ideas have also been explored in other settings [28, 15].

The optimization of eq. (1) is challenging due to the non-
smoothness of the regularization term. We next describe the
alternating minimization algorithm proposed in [1].

3.3. Convex Optimization

The optimization algorithm of [1] starts by identifying
eq.( 1) with its equivalent form

W ∗, Ω∗ = arg min
∑

t

∑
n

�(wT
t xn, ynt)

+ γ
∑

t

wT
t Ω

−1wt + γεTrace(Ω−1),
(2)

where Ω ∈ R
D×D is constrained to be a positive definite

matrix with bounded trace Trace (Ω) = 1. ε � 1 is
a smoothing parameter for numerical stability and benign
convergence properties (cf. Theorem 3 in [1]). Ω’s role can
be understood more clearly by relating the solutions to the
two problems eq. (1) and eq. (2):

W ∗ = U∗ Θ∗, Ω∗ = U∗ Diag

({ ‖Θd‖2
‖Θ‖2,1

}D

d=1

)
U∗T

(3)
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Input: training data (xn, {ynt}), ε, γ
Output: W ∗, Ω∗

1: Initialize Ω with a scaled identity matrix 1
D

I
2: while W still changes between two iterations do
3: Compute transformed variables according to eq. (6)
4: Solve ŵt according to eq. (5)
5: Compute wt as wt = Ω1/2ŵt

6: Update Ω according to eq. (7)
7: end while

Algorithm 1: Learning Shared Features for Linear Classifier [1]

where the operator Diag(· · · ) converts its D-element argu-
ments as elements of a diagonal matrix. ‖Θd‖2 is the 2-
norm of Θ’s d-th row:

√∑
t θ2

td. Intuitively, the diagonal
measures relatively how much each row of Θ is “non-zero”.
Therefore, the matrix Ω measures relative effectiveness of
each feature dimension.

We gain further insight by drawing an analogy to
the maximum a posteriori (MAP) estimator when the
prior distribution for the parameter wt is a Gaussian
N (wt |0;Σ−1). The regularization term of the MAP es-
timator is in the form wT

t Σ
−1wt. Therefore, intuitively, Ω

functions as an estimator of the covariance structure, com-
puted from all parameters wt (or equivalently, θt), over all
tasks.

Eq. (2) is computationally advantageous for it is a convex
optimization. To solve it, we alternatively minimize over
{wt} and Ω while holding the other fixed. When Ω is fixed,
each wt can be identified as

w∗
t = arg min

∑
n

�(wT
t xn, ynt) + γwT

t Ω
−1wt . (4)

With two simple variable substitutions, the optimization
takes the standard form of �2-norm regularization:

ŵ∗
t = arg min

∑
n

�(ŵT
t zn, ynt) + γ‖ŵt‖22, (5)

zn ← Ω1/2xn, ŵt ← Ω−1/2wt. (6)

When the parameters {w} are fixed, the optimal Ω that
minimizes eq. (2) has a closed-form solution:

Ω =
(WW T + εI)1/2

Trace
[
(WW T + εI)1/2

] . (7)

The alternating minimization procedure monotonically
decreases the objective function until the optimum solution
is reached. Algorithm 1 lists the key steps. We set the hy-
perparameters γ and ε using a validation data set.

3.4. Extension to Kernel Classifiers

The feature learning framework can be extended to
kernel-based nonlinear classifiers. We apply the kernel con-
struction of [1]. Let K(xn,xn′) denote the kernel function

between two original feature vectors xn and xn′ . The ker-
nel induces a nonlinear feature mapping φ(xn) ∈ H ⊂ R

H.
We perform feature learning in this new spaceH.

To “kernelize”, note that the optimal parameter W ∈
R

H×T for the models is a linear combination of (training)
feature vectors. This can be understood intuitively by ob-
serving that eq. (5) is the standard formulation of an SVM;
therefore the solution {ŵ∗

t } is a linear combination of fea-
ture vectors. The same statement is also true for W , as the
two are linearly related as in eq. (6).

It is computationally convenient to express W using the
basis V of the feature space H: W = V α (we have
adopted a slightly different notation from [1] by adhering
to the standard nomenclature in SVMs). We assume the
number of basis vectors in V is B < N where N is the total
number of feature vectors. The matrix α is the linear com-
bination matrix, each column for a task. The basis V can
be computed from the kernel matrix formed from training
feature vectors, for instance, through eigendecomposition
or Gram-Schmidt (G-S) orthogonalization. We use the lat-
ter technique for its slightly lower computational overhead.
Concretely, we randomly choose B training feature vectors
S and express the basis in the linear combination of those
features, V = ΦSB, where the matrix ΦS ’s columns are
the nonlinear features computed from the chosen training
instances. The matrix B ∈ R

B×B stores the linear combi-
nation coefficients, computed by the G-S process.

The parameter W is also linearly represented, as W =
ΦSBα. Analogous to eq. (2), the optimal α is then:

α, Ω∗ = arg min
∑

t

∑
n

�(αT
t zn, ynt)

+ γ
∑

t

αT
t Ω

−1αt + γεTrace(Ω−1).
(8)

where αt is the t-th column of α. zn = BTkS(xn) is the
transformed data, resulting from the linear discriminant in
the feature spaceH,

wT
t φ(xn) = (Bαt)TΦT

Sφ(xn) = αT
t BTkS(xn), (9)

where the vector kS(xn) ∈ R
B consists of the elements of

the kernel function k(xn,xb) = φ(xb)Tφ(xn).
The optimization problem eq. (8) is now readily solvable

using techniques described previously. Key steps are given
in Algorithm 2.

3.5. Other Extensions

We propose several additional extensions, addressing is-
sues that naturally arise in our setting.

Modeling disparate sets of labels As opposed to [1], our
main task and auxiliary tasks have different sets of labels
and different types of loss functions. Thus, we use two reg-
ularizers, one for each group. In the linear classifier case,
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Input: training data (xn, {ynt}), ε, γ, and B
Output: α∗, Ω∗, B
1: Formulate kernel matrix K
2: Compute the basis B,S ← GRAM-SCHMIDT(K , B)
3: Transform data according to eq. (9) and S
4: α∗,Ω∗ ← ALGORITHM 1((zn, {ynt}), ε, γ)

Algorithm 2: Learning Features for a Kernel Classifier

our optimization takes the form,

W ∗, Ω∗ = arg min
∑

t

∑
n

�(wT
t xn, ynt) + εTrace(Ω−1)

+
M∑

t=1

γMwT
t Ω

−1wt +
T∑

t=M+1

γAwT
t Ω

−1wt

(10)

where γM is used for the main task and γA for auxiliary
tasks. When γA is set to zero, the optimization learns shared
features from parameters for all object classes, without at-
tributes. We term this setup as “Sharing-Obj”. When γM is
constrained to be the same as γA, we recover eq (2).

Handling high-dimensional features The alternating
minimization algorithm described in Section 3.3 depends
on re-estimating Ω and computing its square root Ω1/2 with
eq. (3) and eq. (6). For the high-dimensional features used
in our setting, directly computing these quantities is costly.
We exploit the low-rank property of Ω to circumvent this
challenge. Note that the matrix W has T columns and
D� T rows. Thus, W can be factorized with “thin” singu-
lar value decomposition: W = LSRT, where L ∈ R

D×T

and R ∈ R
T×T are W ’s (partial) left and right eigenvec-

tors. The diagonal matrix S ∈ R
T×T is composed of W ’s

singular values {σi(W )}Ti=1. With some algebraic manip-
ulation, we identify the eigenvalues of Ω:

λi(W ) =
(√

σ2
i (W ) + ε

)
/ρ, λ(ε) =

√
ε/ρ (11)

ρ =
T∑

i=1

√
σ2(W ) + ε +

√
ε [D− T] . (12)

The eigenvectors in L and the subspace orthogonal to them
span precisely Ω’s column space. This yields,

Ω = LDiag
({λi(W )}Ti=1

)
LT + λ(ε)(I −LLT). (13)

The matrix Ω1/2 can be formulated similarly, replacing
λi(W ) and λ(ε) with their square roots.

Choosing the kernel basis For the kernelized version,
one needs to choose B basis vectors to expand the kernel
feature space, as described in Section 3.4. We use two sim-
ple heuristics. We choose B large enough such that the per-
formance of using the B basis vectors for individual task

learning is close to the performance of our baseline sys-
tem’s. The individual task learning is set up as a linear clas-
sifier using the transformed feature vectors eq. (9), while
the baseline system’s are kernel-based nonlinear classifiers
using the original features.

For the Gram-Schmidt process, we choose B/M feature
vectors randomly from each of M classes. This gives bal-
anced coverage of different features, and in practice works
better than purely randomly selecting without taking object
class into consideration.

4. Results

We validate our approach against relevant baselines, and
report results on object categorization, the main target task.

Datasets We consider two datasets: the Animals with At-
tributes dataset (AWA) [13], and the Outdoor Scene Recog-
nition dataset (OSR) [16]. AWA contains 30,475 images,
50 animal classes, and 85 attributes.2 Each image is la-
beled by the animal and attributes present. OSR has 2,688
images, 8 scene classes, and 6 attributes as given in [16]:
natural, open, perspective, size, diagonal plane, and depth.
We asked another vision researcher to make the assignment
from attributes to scenes. We apply random train-test splits,
ensuring balance among object classes. Throughout, we use
“object” to refer to an animal or scene.

Baselines We consider two baselines: 1) a traditional
multi-class object recognition approach using an SVM with
a χ2 kernel computed on image features, which we refer
to as No sharing-Object, or NSO, and 2) an approach that
treats attributes as intermediate features, which we call No
sharing-Attribute, or NSA. For NSA, we train SVMs on
image features to predict attribute labels, and then treat their
outputs as features to a multi-class logistic regression clas-
sifier. This baseline follows the basic direct attribute predic-
tion (DAP) approach defined in [13]. We use LIBSVM.

Image features All methods use the same original image
features. For AWA, we use the six (SIFT, rgSIFT, PHOG,
SURF, LSS, RGB) provided with the dataset, each up to
2688-D. For OSR we generate 512-D Gist and 45-D LAB
color histograms. We average the kernels computed over
multiple feature types. Note that both datasets permit global
descriptors, since there is one primary object of interest per
image. To test with multi-object images, one would apply a
window-based detector.

4.1. Impact of Sharing Features

First we evaluate the object recognition accuracy of our
approach and the baselines. Our approach gets the same
training images for both the attribute and object tasks. We
form four training splits of increasing size (10% to 60%),

2For all methods, we use the 59 attributes exceeding 70% accuracy as
reported in [13], since some are unpredictable from the given features.
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Method / % train data

No sharing-Obj. (NSO)
No sharing-Attr. (NSA)

Sharing-Obj. (Ours)
Sharing+Attr. (Ours)

% gain over NSO
% gain over NSA

50-class Animals Dataset
10% 20% 40% 60%

31.96 38.12 44.08 48.03
31.03 35.61 41.12 43.59
37.08 41.01 46.46 49.15
36.73 42.60 47.70 50.94

14.92% 11.75% 8.21% 6.06%
18.37% 19.63% 16.00% 16.86%

8-class Scenes Dataset
10% 20% 40% 60%

76.76 79.75 83.03 83.74
57.77 58.98 60.50 60.78
78.76 81.49 85.05 86.06
78.09 81.62 85.89 87.01
1.73% 2.34% 3.44% 3.90%
35.17% 38.39% 41.97% 43.16%

Table 1. Accuracy on both datasets, as a function of training set size. Learning shared representations with our approach significantly
improves generalization on the novel test set, and can be most pronounced when labeled training data is limited.

and reserve the rest for validation and testing (20% each).
We demonstrate two variants of our approach: Sharing-
Obj, where we learn a common representation for all ob-
ject classes simultaneously, corresponding to γA = 0 in
eq. (10), and Sharing+Attributes, where we learn the space
for all objects and attributes, corresponding to γA = γM .

Table 1 shows the results. Our feature sharing ap-
proach offers significant improvements over both ‘No shar-
ing’ baselines, and we obtain the best results when jointly
learning with both the objects and attributes. The last two
rows summarize gains of Sharing+Attributes over the base-
lines. Our improvements over the NSO baseline are per-
haps most informative, since the general approach taken
by NSO (multiple image features, kernel combination, non-
linear SVM) is typical in state-of-the-art image recognition
techniques.

While the margin between our Sharing-Object and Shar-
ing+Attributes variants is smaller than the margin between
not sharing at all versus sharing, the impact of attributes is
clear and consistent. A one-tailed paired t-test on the 60%
training split confirms that the accuracy gain with attribute
tasks is statistically significant (for α = 5% on AWA and
α = 1% on OSR). By separately tuning the γM and γA reg-
ularization weights, we expect even better performance; we
simply let them be equal to save computation time.

Interestingly, on the larger AWA set, our gains are largest
for smaller labeled data pools, supporting our claim that
attribute feature sharing can have a beneficial regulariza-
tion effect for object learning. This is an encouraging re-
sult, particularly since obtaining attribute labels on object-
labeled data has minimal additional overhead for many at-
tribute types, as discussed previously. Figure 2 visualizes
the shared features over iterations, showing how we con-
verge to a common sparse set.

Figure 3 breaks out the prediction accuracy per object
category on both datasets. We improve accuracy for 33
of the 50 AWA classes, and yield correct predictions for
some classes the baselines miss completely (e.g., beaver,
rat). On OSR, the absolute accuracy is higher overall, due
to the smaller multi-way decision. However, NSA suffers
due to the insufficiency of the attribute vocabulary; it hap-
pens that the scenes tallbuilding and insidecity
have exactly the same attribute definitions. In contrast, our

ta
sk
s

features features

ta
sk
s

Figure 2. Hinton diagram of the matrix Θ in the initial and last
iterations of Alg. 2. Each square is a matrix entry, and area reflects
the entry’s magnitude. For clarity only a partial matrix is shown,
for the first 30 features (horizontally) and the first 10 object classes
(vertically). The matrix at the last iteration is much sparser.

approach accounts for attributes while still learning features
sufficient to make the distinction.

One might ask whether some arbitrary grouping of ob-
ject classes into tasks might also have similar benefits. That
is, are our gains due to the attributes’ meaning, or could
it be a sort of “error-correcting code” effect? To analyze
this, we test a baseline where each object’s attribute labels
are randomly reassigned to other attributes, and then ap-
ply our method (for five such random assignments on the
60% training split). On OSR, we find this baseline offers no
improvement over Sharing-Object (decreasing accuracy by
0.06). On AWA, the baseline improves over Sharing-Object
(by 0.97 on average), but by less than sharing with real at-
tributes (which increases accuracy by 1.79). This indicates
the attribute semantics are indeed a factor in our method’s
success.3

In the remaining text, we report our results using Shar-
ing+Attributes, and we focus on the AWA data, since it is
11x larger and has a richer set of attributes.

4.2. Impact of Disjoint Training Images

Our model is flexible to the source of object- and
attribute-labeled data, and we can train the tasks on disjoint
sets of images. This is relevant when one has a large set of
existing attribute-labeled data, and wants to use it to regu-
larize the training process for a new set of object models.

Thus, we next examine the impact of which images are
used as the auxiliary attribute tasks to train the object clas-

3Looking closely at the AWA data, we see that the baseline’s small gain
made with randomly assigned attribute labels may be misleading. Because
the classes are fine-grained, any random assignment of labels can overlap
with meaningful attributes; the 85 attribute labels in AWA are certainly not
exhaustive for the 50 animals.

1766



0

0.2

0.4

0.6

0.8

1
da

lm
tn

ra
cc

oo
n

sk
un

k
co

lli
e

le
op

ar
d

go
ril

la
gi

ra
ffe

pl
rb

ea
r

ra
bb

it
ze

br
a ox

pa
nd

a
fo

x
rh

in
o

gr
iz

be
ar

h.
w

ha
le

hi
pp

o
el

ep
ha

nt
bu

ffa
lo

bo
bc

at
lio

n
be

av
er

w
ea

se
l

sh
ee

p
tig

er
w

al
ru

s
m

ou
se

pe
r.

ca
t

ra
t

m
nk

ey
si

am
.c

at
ki

.w
ha

le
ch

im
p

m
ol

e
ch

ih
ua

de
er

ha
m

st
er

ot
te

r
m

oo
se

do
lp

hi
n

pi
g

ho
rs

e
g.

sh
pr

d
w

ol
f

sq
ui

rr
el

ba
t

an
te

lo
pe

bl
.w

ha
le

co
w

se
al

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

 

 
No sharing−Object
No sharing−Attributes
Sharing+Attributes

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

str
ee

t

ta
llb

uil
din

g

m
ou

nt
ain

ins
ide

cit
y

fo
re

st

co
as

t

op
en

co
un

try

hig
hw

ay

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

 

 

No sharing−Object
No sharing−Attributes
Sharing+Attributes

Figure 3. Accuracy on AWA (left) and OSR (right) classes. Our approach outperforms methods that learn objects (No sharing-Object) or
attributes (No sharing-Attributes) independently.

Image source for attributes
Method Same Disjoint All

No sharing-Object (NSO) 72.99 72.99 72.99
Sharing+Attribute 76.40 76.32 77.05

% gain 4.67% 4.56% 5.56%
Table 2. Object prediction accuracy as a function of which image
pool is used for the attribute tasks, on the 10-class AWA subset.

sifiers. We select 10 classes (the same as [13]) to train the
object classifiers, and test three variations for learning the
attributes: 1) the same images used for the objects, 2) a dis-
joint set of images containing object classes outside of the
10, and 3) all images, the union of the previous two.

Table 2 shows the results. Interestingly, we see that our
method performs similarly whether the attribute data over-
laps or not (see first two columns). This suggests that the
value of the attributes is not simply having deeper/stronger
labels on the very same training examples; rather, it is the
fact that we identify a common space where both types of
labels are well predicted. The table also indicates that more
attribute-labeled images is helpful (cf. last column).

4.3. Selecting Relevant Attributes

Having tested the impact of which images have attribute
labels, next we consider the impact of which attribute
classes are leveraged as auxiliary tasks. Presumably, not
all attributes will benefit feature sharing, and—as usual in
multi-task learning—some may be detrimental. Even if all
attributes were relevant to some degree, we may want to be
selective to save training costs.

Thus, we explore a simple form of automatic attribute se-
lection in which we rank all attributes by their mutual infor-
mation (MI) with the 10 animals4. Figure 4 (left) displays
the computed MI, from the most informative attributes (e.g.,
“spots”, which chimps and pigs lack, but leopards and pan-
das have) to the least (e.g., none of the 10 animals “fly”).

Figure 4 (right) shows the impact of using the MI scores
to select attributes for sharing. Both dotted curves denote
our method, but one uses the k most informative attributes,
and the other uses the k least informative attributes.5 The

4chimp, panda, leopard, persian cat, hippo, whale, raccoon, rat, seal
5Note, we simply fix the γ and ε parameters for all cases, in order to
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Figure 4. Left: Mutual information scores. Right: Object classi-
fication accuracy and training time as a function of the number of
attribute tasks included.

most interesting cases are for lower values of k. (For higher
values of k, the “most” and “least” sets overlap more, and
they’re identical at k = 85.)

The results show that using the 20 attributes with the
highest MI yields the best accuracy, while using the low-
est 20 is slightly worse than using none whatsoever. Fur-
ther, we see that more attribute classes do not necessarily
always help. These findings plus the fact that training time
increases linearly with k (see solid green line, right axis),
suggest it is practical to choose intelligently. This result
also shows the potential for performing task selection out-
side of the feature sharing learning procedure.

4.4. Semantically Meaningful Predictions

Finally, we analyze to what extent the semantics we in-
troduce by jointly training objects and attributes are man-
ifest in our method’s predictions. Figure 5 compares the
confusion matrices for our method (c) and NSO (b). To
judge the “reasonableness” of their errors, in (a) we depict
the true relationships between all pairs of the 10 objects. To
obtain this matrix, we use human subjects’ ratings collected
in [18] about the relative strength of association between the
85 attributes and 50 objects in AWA. For each object, we
create a vector of its 85 property “strengths”, and then com-
pute the pairwise χ2 kernel values between all such vectors.
Brighter boxes indicate greater true association in (a), and
higher confusion in (b,c). Thus, if a method captures se-
mantics well, its confusion matrix will look more like (a).

see the effect of the attribute selection in isolation.
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Figure 5. Confusions made by the baseline (b) and our method (c)
relative to human-given object relationships (a).

First, we notice that our method boosts accuracy for most
classes, raising the mean diagonal from 66.9% to 68.9%.
Second, we see that the pairs for which our method most
reduces confusions (e.g., pig vs rat) are more distinctive
semantically. On the flip side, some closely related pairs
become confused by our method (e.g., raccoon vs cat).
Figure 6 shows example animal category and attribute pre-
dictions, compared alongside NSO and NSA.

5. Conclusions

This work shows that by learning a common feature
space suitable to either attribute or object tasks, we can
obtain noticeably stronger object recognition results. We
demonstrated the proposed method’s improved generaliza-
tion accuracy and its potential to make more predictable er-
rors in terms of human-defined semantics. In future work,
we plan to continue our exploration of automatic task selec-
tion, and consider how to optimally combine the regulariza-
tion per object and attribute.
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