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Abstract

Current uses of tagged images typically exploit only

the most explicit information: the link between the nouns

named and the objects present somewhere in the image. We

propose to leverage “unspoken” cues that rest within an

ordered list of image tags so as to improve object localiza-

tion. We define three novel implicit features from an im-

age’s tags—the relative prominence of each object as sig-

nified by its order of mention, the scale constraints implied

by unnamed objects, and the loose spatial links hinted by

the proximity of names on the list. By learning a con-

ditional density over the localization parameters (position

and scale) given these cues, we show how to improve both

accuracy and efficiency when detecting the tagged objects.

We validate our approach with 25 object categories from

the PASCAL VOC and LabelMe datasets, and demonstrate

its effectiveness relative to both traditional sliding windows

as well as a visual context baseline.

1. Introduction
Photo sharing web services, captioned news photo

archives, and social networking websites all offer an abun-

dance of images that have been manually annotated with

keywords (“tags”). Often tags mark physical things shown

in the photo (such as names of objects, locations, land-

marks, or people present), which allows users to retrieve

relevant photos within massive collections using a simple

text-based search. Today millions of people provide such

tags, and many more benefit from them when organizing

their photos or searching for images. Computer vision re-

searchers in particular regularly exploit tagged images, har-

vesting datasets that can then be pruned or further annotated

to train and test object recognition systems [11, 6].

Those image tags that are nouns serve naturally as “weak

supervision” for learning object categories: they flag the

presence of an object within the image, although which pix-

els actually correspond to the object remains ambiguous. A

Figure 1. Main idea: the list of tags on an image may give useful

information beyond just which objects are present. The tag lists on

these two images indicate that each contains a mug. However, they

also suggest likely differences between the mug occurrences—

even before we see the pixels. For example, the relative order of

the words may indicate prominence in location and scale (mug is

named first on the left tag list, and is central in that image; mug

is named later on the right tag list, and is less central in that im-

age), while the absence of other words may hint at the total scene

composition and scale (no significantly larger objects are named

in the left image, and the mug is relatively large; larger furniture

is named on the right, and the mug is relatively small).

number of techniques have been developed to learn from

such loosely labeled data, typically by designing learners

that can cope with high label noise [13, 21, 25, 30], or can

discover the correspondence between multiple words and

the image’s regions [2, 3, 18].

In this work we introduce the idea of “reading between

the lines” of image tags. We propose to look beyond im-

age tags as merely offering names for objects, and consider

what implicit cues a human tagger additionally gives (per-

haps unknowingly) based on the way he or she provides

the tags. The intuition is that a number of factors besides

object presence influence how a person looks at an image

and generates a list of tags—for example, the semantic im-

portance of the objects or their centrality in the image can

affect which is mentioned first; the spatial proximity of ob-

jects can affect their sequence in the tag list; low-level at-

tentional cues can steer gaze patterns. While the existence

of such behavior effects has been studied to some extent in

the user interface and psychology communities [1, 10, 9],
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object detection methods have yet to capitalize on them.

Our main idea is to learn a model to predict how likely

a given object location and scale are given an image’s or-

dered tag list. To do this, we define three new implicit fea-

tures computed directly from the image’s tags—the relative

prominence of each object as signified by its order of men-

tion, the scale cues implied by unnamed objects, and the

loose spatial links hinted by the proximity of names on the

list (see Figure 1). Having learned how these unspoken cues

map to object localization, we can prime the object detec-

tors to search the most likely places first in a novel tagged

image, or prefer detections that are plausible according to

both the subregion’s appearance as well as its agreement

with the tag-based predictor. In this way, we intend to im-

prove both the accuracy and efficiency of object localization

within weakly human-labeled images.

We demonstrate the effectiveness of our approach on a

wide variety of categories in real images tagged by anony-

mous annotators. Our results show good gains relative to

both a traditional sliding window method as well as an al-

ternative location priming baseline that uses visual cues.

2. Related Work

Sliding window object detectors test subregions at mul-

tiple scales and locations to find a target object, classifying

each image window as to whether it contains the category

of interest. Due to the expense of classifying each possi-

ble window, some techniques aim to reduce the number of

windows scanned, either by priming the detector based on

global context [29, 22], or directing the search with cas-

cades [31] or branch-and-bound techniques [20]. We also

intend to prioritize scanning of those regions that are most

likely to contain the object of interest, however we do so

based on priming effects learned from implicit image tag

features.

Visual features can provide a form of scene-level context

that improves the detection of foreground objects [29, 17,

22, 16, 8], and recent work shows how to improve object

detection using learned inter-object co-occurrence or spa-

tial relationships [14, 15, 7]. Our approach also seeks cues

about total scene composition and layout; however unlike

previous work, our information is based solely on implicit

associations learned from seeing many tagged images with

ground truth bounding boxes, not from visual cues. Aside

from the potential advantage of bypassing image feature

computation, our tag-based features can also capture cor-

relations with localization parameters not always evident in

the visual scene context, as we will discuss below.

Researchers frequently use keyword-based search as a

first step to collect candidate images for datasets [11, 6].

Given the expense of hand-annotating images, a number

of techniques have been designed to learn visual category

models directly from Web images with no human interven-

tion [13, 21, 25, 30]. To exploit images associated with mul-

tiple words or captions, methods have been developed to

automatically recover correspondences between the words

and image regions [2, 3, 18].

Also relevant to this project is work studying how people

look at images, what affects their attention, and what fac-

tors determine the words they will generate if asked to tag a

photo [33, 28, 1, 27, 9, 10]. Saliency operators use bottom-

up visual cues to find interesting image points, e.g. [19].

Such low-level cues have been shown to coincide often

with those objects that people find interesting and therefore

choose to label [10], though the top-down saliency of rec-

ognized objects also plays a role [9]. The authors of [27]

explore the notion of “importance” in images, as reflected

by what objects people tend to name first. They design a

statistical model for the naming process, and demonstrate

a regressor that takes hand-segmented images and predicts

a list of the most important keywords based on the visual

cues. We are essentially tackling the inverse problem—

given the human-generated keywords, we want to localize

(segment) the objects. For our proposed method to work, it

must be the case that people often agree on what objects to

name in an image, and in what order; the success of the ESP

Game [32] is encouraging evidence for this premise.

No previous work considers exploiting the information

implied by how a person assigns words to an image for

the sake of actually strengthening object detection, as we

propose here. Perhaps most related to our theme in spirit

is the Bayesian expert system for medical diagnosis de-

signed in [23] that captures biases in how patients report

symptoms. The authors note that faster diagnoses can be

made if inference relies on both what is and is not re-

ported to a doctor, and in what order. They therefore ad-

just the model to reflect the human knowledge that peo-

ple prefer to report present symptoms over absent ones,

and more severe problems before less severe ones. We see

some neat (rough) analogies between this doctor-patient in-

terchange and our tagger-image interchange, since both can

benefit from relative importance and noticeability of symp-

toms/objects. However, in our approach these patterns are

learned from data, and of course the image annotation prob-

lem has unique challenges.

3. Approach

We aim to exploit implicit tag-based features to

strengthen object detectors. First, we collect tagged images

online, and encode features for each image’s tag list. Then

we model the conditional probability distribution for each

object category’s image position and scale given the cues

implied by the tags. Separately, we train appearance-based

object detectors using state-of-the-art techniques [5, 12].

Given a novel image tagged by an unknown user, our

method can perform in one of two modes: either we (1)



prioritize search windows within the image based on the

learned distribution, thereby speeding up the search relative

to the usual sliding-window detector, or else we (2) com-

bine the models to perform more accurate object localiza-

tion based on both the tags and the pixels.

Below we first define our implicit tag features (Sec-

tion 3.1), and then describe how we represent the condi-

tional densities (Section 3.2); finally, we describe how we

integrate them into the detection process (Section 3.3).

3.1. Implicit Tag Feature Definitions

We propose three implicit features that can be extracted

from an image’s tags. We specify each descriptor and what

it is intended to capture in turn below.

Word Presence and Absence. This feature is a tradi-

tional bag-of-words representation, extracted from a single

image’s list of tags. An image is mapped to a histogram

W = [w1, . . . , wN ], where wi denotes the number of times

that tag-word i occurs in that image’s associated list of key-

words, for a vocabulary of N total possible words. We as-

sume that synonyms and misspellings are resolved to map to

the same token (e.g., car and auto map to a single word).

For most tag lists, this vector will consist of only binary

entries saying whether each tag has been named or not.

While this feature certainly specifies what was said about

the image—which words were named—it also indirectly

implies attributes for the named objects based on what was

not said. The known presence of multiple objects serves as

a sketch of the total scene composition, which constrains

the type of layout or scales those objects may have. Fur-

ther, those objects that are not named suggest what the to-

tal scale/scope of the scene may be, given the tendency

to name prominent or large objects in favor of smaller

ones [27]. For example, it is more likely that when one

tags “flower, spider”, the flower is prominent in the

field of view; whereas if one tags “flower, garden,

wheelbarrow”, it is likely the flower region is smaller.

Thus we get information from what is not reported by the

human labeler that may aid in localization.

Note that the tag list need not completely cover all ob-

jects present for such correlations to be discovered. Addi-

tionally, the vocabulary need not contain only nouns. The

presence or absence of certain adjectives and verbs could

also convey composition and relative scale; however, we

have not yet tested this, primarily since our data happens to

consist of nouns.

In a sense, the word-count feature explicitly states that

which global image descriptors designed to prime object de-

tectors hope to capture indirectly [29, 22]. Both say some-

thing about total scene content. However, tag-based fea-

tures can actually reveal correlations with object placement

or scale not captured by a visual scene feature: people may

provide similar keywords for images where the localization

parameters are common, yet the surrounding visual context

varies (for example, consider an image like the left image in

Figure 1, and a second image where the mug is at a similar

scale, but set amidst other randomly placed desk clutter). At

the same time, the scene structure revealed by global visual

cues can offer better location cues in cases where the tags

are less reliable. Thus the two channels can be complemen-

tary; we demonstrate this in experiments.

Tag Rank. Our second feature captures the prominence

of the named object as implied by its order of mention in the

list. The idea is that people do not suggest tags in an arbi-

trary order; rather, multiple factors bias us towards naming

certain things before others, including relative scales and

centrality within the image, object significance, and atten-

tional cues [9, 28, 10, 33].

To encode the named objects’ order and relative rank-

ing simultaneously, we map the tag list to the vector R =
[r1, . . . , rN ], where ri denotes the percentile of the rank

for tag i in the current image, relative to all previous ranks

observed in the training data for that word (note that i in-

dexes the vocabulary, not the tag list). The higher the value,

the more this word tops the list relative to where it typi-

cally occurs in any other tag list; if the tag is not present,

the percentile is 0. Some objects have context-independent

“noticeability”—such as baby or fire truck—and are

often named first regardless of their scale or position in that

particular image. Thus, by using the tag-specific percentile

rather than raw rank on the list, we attempt to account for

semantic biases that occur in tagging.

For this cue, we expect to benefit most from the central

fixation bias [28] and the fact that something named sooner

than usual may be atypically prominent in this view. Put

simply, we expect bigger or more centrally located objects

to often be named first, which should help the windowed

detector home in on proper scales and positions.

Mutual Tag Proximity. When scanning an image, peo-

ple generally do not systematically move their eyes from

one corner of the image to another. In fact, their sequence

of attention to multiple objects is influenced in part by the

objects’ spatial proximity [10]. Thus, an image tagger may

name a prominent object first, and then, as her eyes travel,

note some other objects nearby.

Our third implicit cue therefore attempts to capture the

rough layout and proximity between objects based on the

sequence in which tags are given. We map the tag list

to a vector encoding the mutual nearness of each pair of

words: P = [ 1
p1,2

, 1
p1,3

, . . . , 1
p1,N

, . . . , 1
p2,3

, . . . , 1
pN−1,N

],

where pi,j denotes the (signed) rank difference between tag-

words i and j for the given image. The entry is 0 when the

pair is not present. (Dimensionality: P ∈ Z
N2

2 .) Whereas

the tag rank feature R defined above captures the individ-

ual (word-normalized) orders of mention, this one records

nearness in the list and relative order between words.



Figure 2. The top 30 most likely places for a car in several tagged

images, as computed by our method. These bounding boxes are

sampled according to Po(X|T ); the actual image appearance is

not yet being used. Note how our predictions change depending

on what the tag list implies. The bottom right example shows a

failure case, where the absence of larger objects leads our method

to overestimate the scale.

3.2. Modeling the Localization Distributions

Having defined the features, next we describe how to

relate them to the object detection task. Localization en-

tails three parameters—the scale of the window, and its

center position in image coordinates. Denote this as X =
(s, x, y). We want to model the conditional probability den-

sity Po(X |T ), where O denotes the target object category,

and T denotes one of the tag-based features defined above:

T = W, R, or P (or some combination thereof). That is,

we want to estimate the probability a given window contains

the object of interest, conditioned only the image’s tags.

We model this as a mixture of Gaussians, Po(X |T ) =
∑m

i=1 αi N (X ; µi, Σi), since we expect most categories to

exhibit multiple modes of location and scale combinations.

We compute the mixture model parameters αi, µi, and Σi

using a Mixture Density Network (MDN) [4] trained from

a collection of tagged images with bounding box ground

truth for the target object. The MDN is a neural network

trained with instances of tag-list features {T1, . . . , TM} and

their associated target parameters {X1, . . . , XM} to output

the mixture density model parameters that define Po(X |T ).
Given a novel tagged image that lacks bounding boxes,

the MDN provides a mixture model representing the most

likely locations for the target object. This allows us to

prime a detector based only on what the tags suggest. Other

models are of course possible; our choice is motivated by

MDNs’ efficiency, as well as their past successful use for

primed detection in [22].

3.3. Modulating or Priming the Detector

Once we have the function Po(X |T ), we can either com-

bine its predictions with an object detector that computes

Po(X |A) based on appearance cues A, or else use it to

rank sub-windows and run the appearance-based detector

on only the most probable locations (“priming”). The for-

mer has potential to improve accuracy, while the latter will

improve speed.

We can integrate any existing window-based detector

into our method; we experiment with two state-of-the-art

methods: the HOG detector of [5], which works well for

rigid textured objects, and the part-based detector of [12],

which can also accommodate deformable or articulated ob-

jects. Both detectors perform multi-scale windowed detec-

tion and return an SVM decision value d(x, y, s) for the

input window. We use a sigmoid function to map the score

to a probability: Po(X = (x, y, s)|A) = 1
1+exp (−d(x,y,s)) ,

where the score d is computed at the window centered at

(x, y) and with diagonal length s.

Modulating the detector: To balance the appearance-

and tag-based predictions so as to improve detection accu-

racy, we treat the component conditional density estimates

as scalar features and train a logistic regression classifier:

Po(X |A, T ) = σ
(

wT [1 Po(X |A) Po(X |T )]
)

. (1)

Here Po(X |T ) is as defined in the previous section; to

use all our tag cues in combination, this breaks out into

Po(X |T ) = [Po(X |W) Po(X |R) Po(X |P)], and a weight

is learned for each component feature. Similarly, to option-

ally incorporate an external context cue, we expand the vec-

tor; in some experiments below we insert Po(X |G) for the

Gist descriptor G to compare against the global scene vi-

sual context [29]. To learn the weights w, we use the detec-

tion scores for the true detections in the training set together

with an equal number of randomly sampled windows pulled

from the background.

Generally we expect this combination to eliminate false

positives that may occur when using an appearance-based

detector alone, particularly for objects whose texture is less

distinctive. Similarly, we hope to correct false negatives,

particularly when the target object occurs at low resolution

or is partially occluded. With a strong enough model for

the tag-based cues, we will prefer only those detections that

seem plausible according to both what is seen as well as

what the human tagger has (implicitly) reported.

Priming the detector: To improve the detector’s effi-

ciency, we let the implied tag cues prime the search for the

target object. Unlike typical detection tasks, we have tags

on the test images, so we presume that the object is indeed

present; what’s left to estimate is the best set of localization

parameters (x, y, s). Thus, instead of scanning the whole

image, our method prioritizes the search windows accord-

ing to Po(X |T ), and stops searching with the appearance-

based detector once a confident detection is found. (See

Figure 2 for real examples of locations we’d search first.)

The idea of learning to constrain search for objects based

on visual features has been explored previously [29, 22, 17],

and while we exploit novel tag-based features, the technical



# train im # test im # classes # keywords taggers avg. #tags/image x var y var s var

LabelMe 3799 2553 5 209 56 23 0-98.8% (23.8%) 0.5-90.6% (12.9%) 0.9-77.1% (11.7%)

PASCAL VOC 07 5011 4952 20 399 758 5.5 1.3-99.6% (23.5%) 1.5-98.3% (17.9%) 1.6-99.8% (25.2%)

Figure 3. Dataset statistics. Last three columns show the ranges of positions/scales present in the images, averaged per class, as a percentage of image size.

machinery in our method draws inspiration from that work.

The important distinction, however, is that while the visual

context challenge considers how much information can be

taken from the image itself before running an object detec-

tor, our approach considers what can be predicted before

looking at the image at all.

We envision two scenarios where our method can be ap-

plied. The first is the “weak supervision” scenario, where

an image has been tagged intentionally to list objects that

are present (perhaps by hire, e.g. [6, 26]). The second is

the “unaware tagger” scenario: the method processes pub-

licly available images from sites such as Flickr, where users

have tagged images for their own purposes, but rarely draw

a box around the specific instances. Training requires ob-

taining manual bounding boxes in either case. At test time,

however, images are tagged but foreground pixels are not

demarcated; from that minimal human input, our method

helps to rapidly and accurately localize named objects.

4. Results

We evaluate our method on two datasets: LabelMe [24]

and the PASCAL VOC 2007 [11]. Both collections provide

realistic snapshots taken by a variety of people and contain-

ing various scenes and combinations of objects; we use tags

provided by (in total) hundreds of anonymous annotators

who are entirely unaware of the experiments we are doing.

We report results for both tasks described in Section 3.3,

and also include comparisons with a visual scene-based

context model for reference.

Implementation details. We extract our proposed tag

features as defined above for each image. Figure 3 gives

the dataset statistics, including a summary of the ranges of

the localization parameters (to show that they do vary sig-

nificantly per target object). We use the LabelMe tools to

resolve synonyms and purify labels. We fix the number of

components in the mixture models to m = 12 and 8, on La-

belMe and PASCAL, respectively, and use 10 hidden units

for the MDNs (we leave all parameters the same for all cat-

egories, and did not attempt to tune them for better perfor-

mance). We use Netlab code for the MDNs.

On LabelMe we use the HOG detector for the base

appearance-based detector [5], since the objects are gen-

erally amenable to the HOG descriptor; on PASCAL we

use the part-based detector [12], since it has been shown

to provide state-of-the-art results on that dataset. In both

cases we use the authors’ code1, only modifying it to op-

tionally search windows in an arbitrary order as specified

by Po(X |T ). We use the standard definition to evaluate de-

tections: there is a “hit” if its area of overlap with the ground
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Figure 4. LabelMe results. Left: Percentage of windows searched

as a function of detection rate, for all five categories. The numbers

in the legend indicate the portion of the windows searched aver-

aged over all detection rates. Right: Localization accuracy when

the HOG detector is modulated with the proposed features. The

numbers in the legend indicate the AUROC. Adding our implicit

tag features (bold dotted lines) improves detection accuracy rela-

tive to the appearance-only HOG detector (dark solid line). Ac-

curacy can be further boosted in some categories when the visual

Gist context is also included (light dotted lines). Plot focuses on

top left quadrant of ROC.

truth box normalized by their union exceeds 50%.

4.1. LabelMe Dataset

In LabelMe, annotators label images online with both

keywords and object outlines, and the system maintains

the order in which tags are added to each image. We

downloaded images for the person, car, screen,

keyboard, and mug categories—all of which show the

object at a variety of scales and positions. We report the av-

erage results across five runs with random train/test splits.

Priming Object Search: Increasing Speed. First, we

compare our detector’s speed to the standard sliding win-

dow baseline, priming as described in Section 3.3. We mea-

sure performance by the portion of the windows that must

be scanned to obtain any detection rate while allowing a

reasonable number of false positives. Figure 4 (left) shows

the results. Our method significantly reduces the number of

windows that must be searched; e.g., for a detection rate of

0.6, our method considers only 1
3 of those scanned by the

sliding window. In fact, our method primes as well as the

Gist visual scene context, which is known to be strong for

this dataset [22]; with tags and Gist combined, results are

even a bit faster.

Modulating the Detector: Increasing Accuracy. Next,

we evaluate how our learned features can improve local-

ization accuracy on LabelMe. In this case, we search all

windows, but modulate the scores of the HOG detector ac-

cording to Po(X |T ) (see Eqn. 1).



class HOG [5] +Gist +W +R +P +Tags +Tags+Gist

screen 0.866 0.897 0.906 0.903 0.898 0.913 0.916

keyboard 0.890 0.912 0.922 0.916 0.916 0.929 0.932

person 0.855 0.886 0.877 0.870 0.871 0.881 0.884

mug 0.863 0.874 0.892 0.881 0.882 0.898 0.897

carside 0.879 0.913 0.906 0.901 0.903 0.912 0.919

Figure 5. LabelMe localization accuracy (as measured by the AU-

ROC) of the detectors modulated with each of the proposed feature

types, compared with the raw detector and Gist.

Figure 4 (right) compares the accuracy of the detector

when run alone (HOG), the detector when augmented with

our tag features (HOG+tags), and when further augmented

with the Gist context (HOG+tags+gist). Overall, our fea-

tures make noticeable improvements in accuracy over the

raw detector. This is exciting given the nature of the cues,

which do not require even seeing the test image itself to

compute. On three of the five categories our features are

stronger than Gist, while for person and car (which oc-

cur in outdoor scenes) Gist is slightly better, again indicat-

ing that our tag-based features are actually quite competitive

with a state-of-the-art representation for visual context for

this data. We find our method’s strength is often due to its

accurate object scale prediction, which especially helps in

indoor scenes in the LabelMe images.

Figure 5 summarizes the results when using each of the

proposed features separately, showing that each one is in-

deed informative. For some objects we see further accuracy

improvements (though small) when combining our features

with Gist, suggesting the potential for using complementary

visual and tag cues in concert. Figure 6 shows images with

example detections.

4.2. Pascal VOC Dataset

The PASCAL VOC 2007 dataset is a benchmark for ob-

ject detection systems. It is a challenging and quite realistic

testbed for our method, as it consists of real user photos

downloaded from Flickr, with a wide variety in composi-

tion. From previous work, we expect that the “context” in

the VOC images is relatively weaker than LabelMe, mean-

ing that there tends to be less viewpoint consistency or com-

mon inter-object statistics across examples [8].

Though the dataset creators gathered the images from

Flickr, the original user tags were not kept. Thus, we col-

lected tags using Mechanical Turk: we posted each image

online with a nearby textbox, and the anonymous workers

were instructed to name the objects or items in the image

using nouns. In an attempt at minor quality control, we dis-

abled the textbox until the image had been viewed by the

tagger for 7 seconds, and required him/her to submit after

30 seconds had passed. We refined the resulting tags as

above, using a spell checker and resolving synonyms. We

use the trainval set to train the MDN and logistic regres-

sion parameters, and test on the standard test partition.

Priming Object Search: Increasing Speed. The pro-

(a) HOG (b) HOG+Gist (c) HOG+Tags (d) Tags

Figure 6. Example detections on LabelMe on five different target objects.

Each image shows the best detection found; scores denote overlap ratio

with ground truth. The raw appearance-only detector is confused by sim-

ilar textures anywhere in the image (rows 1 and 2), whereas the detectors

modulated according to the visual or tag-based context are more accurate.

The Gist baseline usually gives good y estimates, while our method of-

ten provides a better scale estimate, particularly for indoor objects. When

scene complexity (texture) is high throughout the image, Gist tends to

be misled into predicting a too-small scale for the target object (row 4).

Our approach can be misled on the scale prediction when the tags mention

larger objects that are only partly visible (row 5).

cedure and evaluation measure is the same here as the

previous section, except that we adopt the Latent SVM

(LSVM) part-based windowed detector of [12] for this

dataset, since it consistently has top results on the VOC.

Figure 7 (left) shows the substantial speed improvements

our method yields, over all 20 categories. The LSVM slid-

ing window is faster here than the HOG’s was on LabelMe,

mainly because PASCAL contains larger object instances,

allowing the search to begin at a larger scale.

Modulating the Detector: Increasing Accuracy. Fi-

nally, we evaluate the accuracy boosts our features can pro-

vide for the state-of-the-art detector. As before, we pose

a localization task, where the target object is known to be

somewhere in the image, and the system must say where.

Please note that this differs from the VOC standard evalua-

tion, which requires methods to also make a decision about

object presence. Since our method has access to image tags

naming objects, it is trivial for it to reject false detections;

thus, for a fair comparison, we score only the images that

do have the object.

We found that because the LSVM detector performs so
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Figure 7. PASCAL VOC results. Left: Percentage of windows

searched as a function of detection rate, for all 20 categories.

Right: Precision-recall curve drawn by pooling scored bounding

boxes from all categories. Augmenting the LSVM detector [12]

with our tag features noticeably improves accuracy—increasing

the average precision by 9.2% overall.

well for this dataset, we can make the most useful accu-

racy improvements if we allow our features to re-rank the

detector’s most confidently scored windows, following [8].

Specifically, we rescore the top 500 detections (after non-

maxima suppression) in a test image. We measure perfor-

mance with the average precision (AP), the standard metric

used in the VOC challenge [11].

Figure 7 (right) shows the precision-recall curve for the

test images from all 20 categories, for which we obtain an

overall 9.2% gain in AP. Figure 8 breaks down the per-class

results. Our method improves the LSVM detector on 13 of

the 20 categories. For a number of objects (bird, boat,

bus, cat, dog, pottedplant, and sofa) we see quite

good improvements. For others, gains are smaller (or nega-

tive). Using previous visual context-based detection results

on VOC data as a reference point [7, 8], we believe the mag-

nitudes of the improvements achieved are significant.

Figure 9 shows some qualitative examples (good and

bad), comparing the top detection window according to

LSVM (dotted red) vs. the top detection window accord-

ing to LSVM+tags (solid green). Often the improvements

our method makes are due to its accurate scale prediction.

We also observed some common properties of the cate-

gories for which our method works best: they tend to have

examples with various other objects present/absent in dif-

ferent scales per instance, which gives context cues to our

method about the target. For example, the dog image in the

first row has the tag hairclip but mentions no other ma-

jor objects, suggesting (through our features) that it may be

a closeup shot. In contrast, the dog in the second row has

tags for person and other objects, restricting the likely

position and scale of the target. On the other hand, for

an object like diningtable, our method is not useful—

perhaps because the tag list tends not to differ, and the table

is generally in the foreground if tagged at all.

We found that Gist does not perform as well on the VOC

dataset as it did on the LabelMe dataset, perhaps because

class LSVM [12] LSVM+tags LSVM+Gist Our gain

aeroplane 38.86 39.12 38.03 0.67%

bicycle 64.47 64.31 64.51 -0.11%

bird 11.79 12.74 12.06 8.06%

boat 18.79 19.65 18.57 4.58%

bottle 35.67 35.59 35.38 -0.22%

bus 55.62 56.96 55.26 2.41%

car 55.10 55.14 54.96 0.07%

cat 27.01 29.04 27.24 7.52%

chair 22.31 22.23 22.10 -0.36%

cow 32.27 32.88 32.70 1.89%

diningtable 44.24 42.50 43.31 -0.47%

dog 14.04 16.23 14.85 15.60%

horse 60.98 60.07 60.36 -1.49%

motorbike 52.90 53.30 52.46 0.76%

person 38.95 39.00 39.17 0.13%

pottedplant 18.81 21.37 19.13 13.61%

sheep 31.64 31.23 31.64 -1.30%

sofa 36.73 37.72 37.44 2.70%

train 48.77 49.03 49.03 0.53%

tvmonitor 51.58 51.34 51.41 -0.47%

Figure 8. AP scores on the PASCAL VOC 2007. Our method

improves the localization accuracy of the state-of-the-art detec-

tor [12] for 13 out of 20 categories. Note the task is localization

only, since the tags specify whether the object is present or not.

most of the images in the VOC are not “scenes”, but instead

object-centric. Further, the sparser coverage of scales, scene

types, and viewpoints may make it more difficult for the

single global Gist descriptor to exploit what context is there.

5. Conclusions

Our main contribution is to derive implicit features from

human-provided image tags, and to demonstrate their power

for improving detection speed and accuracy. Overall, our

results indicate that there is significant value in reading into

the implicit cues found in human-tagged images. Not only

can we find objects faster by noting the context hints from

how they were named, but we can also improve the final

accuracy of the detector itself.

Results on two realistic datasets with 25 diverse cate-

gories demonstrate that we can learn the tendencies of real

taggers, even when (and perhaps because of the fact that)

they are unaware of what the ultimate purpose of their tags

will be. When designing our approach, we did not neces-

sarily expect our tag-driven results to be competitive with a

context model using visual cues; the fact that our method

complements and at times even exceeds the well-known

Gist cue is very encouraging.

Our feature design is inspired in part by studies on atten-

tional behavior; the differences between how people scan

images and what they decide to tag is not fully teased apart,

though work is being done in this direction [10, 9, 1]. Fur-

thermore, while our data contains nouns and objects that

did appear, generic tags can extend to any words or parts

of speech, present or not. Interesting future work would be

to predict which objects in the tags are most likely to be

present, or considering multiple detectors’ confidence.



(a) Aeroplane (b) Boat (c) Bottle (d) Dog (e) Person

Figure 9. Example detections on the PASCAL VOC. Red dotted boxes denote most confident detections according to the raw detector (LSVM); green solid

boxes denote most confident detections when modulated by our method (LSVM+tags). For each category, the first two rows show good results, and third

row shows failure cases. Most improvements come from our accurate scale prediction for the target object (e.g., see the bottle example in top row, or the

two dog examples). Failure cases occur when the scene has an unusual layout according to those previously tagged in a similar way (e.g., see bottom-left

aeroplane: we predict a large scale given the building tag, which usually implies the plane is close-by on the ground, but is not the case here).
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