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Abstract

We present a method to segment a collection of unlabeled

images while exploiting automatically discovered appear-

ance patterns shared between them. Given an unlabeled

pool of multi-object images, we first detect any visual clus-

ters present among their sub-regions, where inter-region

similarity is measured according to both appearance and

contextual layout. Then, using each initial segment as a

seed, we solve a graph cuts problem to refine its boundary—

enforcing preferences to include nearby regions that agree

with an ensemble of representative regions discovered for

that cluster, and exclude those regions that resemble famil-

iar objects. Through extensive experiments, we show that

the segmentations computed jointly on the collection agree

more closely with true object boundaries, when compared

to either a bottom-up baseline or a graph cuts foreground

segmentation that can only access cues from a single image.

1. Introduction

Unsupervised learning from images (also referred to as

“discovery”) entails detecting the visual patterns that occur

with some regularity within an unlabeled collection of ex-

amples. Reliable discovery methods would be useful for a

number of practical applications—such as generating com-

pact summaries of large photo collections, organizing im-

age or video data for content-based similarity search, iden-

tifying the rarer instances, or even to supplement traditional

supervised object recognition systems. Recent progress on

the discovery problem has yielded methods able to cluster

images according to their primary object category [8, 12], to

rank the “topics” present somewhere in each image [25, 5],

to mine for object descriptors [19], and summarize iconic

landmarks in tourist photos [18].

However, discovering generic object categories from

natural images remains a considerable challenge, for two

primary reasons. First, generic categories lack the strict ge-

ometric consistency and distinctive features inherent to spe-

cific objects, forcing a discovery method to simultaneously
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Figure 1. Our method discovers and exploits the shared structure in a col-

lection of unlabeled images in order to segment the objects more accurately

than is possible with bottom-up methods.

identify natural groups while estimating their variability.1

Second, with multiple objects present within a single image,

a method must identify those segments among all possi-

ble image decompositions that will reveal common objects,

as well as the common object types themselves—yet both

tasks influence the other.

Most approaches have avoided the second problem by

imposing the (usually unrealistic) restriction that each im-

age contain only a single object of interest, or else by for-

going localization of what is discovered. An exception is

the method of [22], which deals with multi-object images

by first decomposing each into multiple segmentations, and

then looking for common patterns among the pool of seg-

ments (sub-images), rather than the pool of images. The

assumption is that each semantic object will have a corre-

sponding sub-image somewhere in the pool.

Unfortunately, this strategy loses the context offered by

the image content surrounding each region. Furthermore,

while using multiple segmentations helps safeguard against

missing “good” regions, there is still a risk of omitting

meaningful segments from the pool, and thus never having

the chance to detect their regularity. Bottom-up segmenta-

tion by definition has no concept of object categories, and

so cannot reliably produce coherent regions that agree with

1We use generic in the usual sense, to refer to basic categories of objects

(e.g., cows, cars), in contrast to specific objects (e.g., the Eiffel tower, my

car). By multi-object we mean an image with multiple objects of interest.
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true object boundaries. In fact, recent studies [16] suggest

that in practice close to 10,000 segments per image need

to be generated to ensure a “good” segment exists for each

object—an enormous number considering that on average a

natural image contains only 10 objects.

In the unsupervised realm, this implies a notable compu-

tational burden for existing methods, especially those that

require pairwise distance computations between all regions

in the unlabeled pool (e.g., spectral or agglomerative clus-

tering); at 10K segments per image, a meager collection

of only 100 images would already require one trillion com-

parisons! Computation aside, simply increasing the pool of

candidate segmentations is bound to add many distracting

“noise” regions, with a negative impact on discovery. A

polluted pool with a low signal-to-noise ratio will make it

harder for the algorithm to find the matches among the good

segments in order to group them.

Our idea is to discover shared top-down cues from a col-

lection of unlabeled multi-object images, and use them to

refine both the segments and discovered objects. Rather

than commit to a pool of candidate segments, our method

allows any initially discovered shared appearances to influ-

ence segmentation boundaries, and then in turn, lets the re-

fined regions influence the category-level grouping. Given

an initial set of bottom-up segmentations, we first detect any

clusters (or visual “themes”) that agree in terms of appear-

ance and contextual layout. Then, for each discovered pat-

tern we form an ensemble model consisting of its represen-

tative regions. We design an energy function amenable to

graph cuts [10] to revise the spatial extent of each initial seg-

ment. This step essentially favors keeping pixels that agree

with the appearance of any part of the cluster’s ensemble

model; meanwhile, it favors losing pixels that either agree

with the remaining background in its original image, or are

likely attributable to a familiar previously learned class.

Unlike existing applications of graph cuts for segmenta-

tion (e.g., [20, 21]), our method generates the “foreground”

model in a data-driven way, from the patterns shared across

the unlabeled images. Further, it permits the inclusion of

somewhat heterogeneous instances within a generic cate-

gory, due both to our use of an ensemble foreground model,

as well as our integration of a context-aware discovery al-

gorithm [13] to find the initial groups. Finally, by favoring

cuts that separate familiar and unfamiliar regions, our dis-

covery approach can be exploited in semi-supervised situa-

tions where direct class-specific knowledge is available, but

only for a partial set of categories appearing in the image

collection.

We demonstrate our method with two datasets, and show

that segmentation results are significantly closer to ground

truth object boundaries when we leverage the shared discov-

ered structure, as compared to either bottom-up segmenta-

tion or a graph cuts baseline that lacks access to the full col-

lection. Further, we illustrate the positive impact the refined

segmentation has on unsupervised category discovery.

2. Related Work

In this section, we review relevant work in unsupervised

visual discovery and image segmentation.

The goal in unsupervised discovery is to detect recurring

visual patterns within a collection of unlabeled images [28].

Several methods use topic models e.g., [25, 22, 5], while

others use graph-based clustering [8, 12, 18, 13]. Some

work considers scalable techniques for mining common fea-

ture patterns in large image collections [19, 18, 4]. Re-

lated to these methods, our end goal is to decompose

large un-annotated image collections into their common

visual patterns, though we focus on generic object cate-

gories [25, 22, 12, 8, 13]. In contrast to previous work,

our approach actively refines the segmentation of the dis-

covered objects as it detects their similarities, resulting in

improved localized category discovery.

Weakly-supervised methods can segment out the fore-

ground region in cluttered images, with the assumption that

each image has the same single prominent object [29, 11,

27, 1] or scene type [26]. Such methods leverage the statis-

tics across the weakly-labeled collection to better identify

the true object boundaries, though they assume more su-

pervision than discovery methods. A recent method per-

forms unsupervised image segmentation with data-driven

scene matching [23]. Top-down segmentation methods ex-

ploit class-specific knowledge, often combining supervised

object detectors with low-level grouping cues [2, 9, 7]. In

the proposed setting, the learner must discover (pseudo)-

top-down cues from recurring visual patterns in unlabeled

images.

Recent work shows how to use link-analysis tech-

niques [8] or consistent feature matches [12] to select fore-

ground SIFT features during discovery. Related to these

methods, we let the discovery process influence which im-

age parts are emphasized. However, in contrast, our ap-

proach removes the assumption of having single-object im-

ages, and it provides region segmentation rather than feature

selection among interest points.

Graph-cuts methods [3, 10] have been developed for

human-guided foreground-background segmentation [20]

and for co-segmentation of objects in a pair of images [21,

17]. The latter requires that the same specific object appear

in both images, and that the two backgrounds be distinct in

appearance. An extension of these methods initializes the

foreground automatically using pLSA [14]. An approach

to co-segment clothing regions is developed in [6]: it con-

structs a foreground model from the average appearance

within clothing segments identified under faces, and then

applies graph cuts to refine the boundaries.

Our method can also be viewed as a form of co-



segmentation—although it segments unlabeled images into

multiple unfamiliar objects. A key part of our contribu-

tion is to design graph-cut energy terms that are well-suited

for joint segmentation where (a) the allowable foreground

appearance is heterogeneous (i.e., at the generic category-

level), (b) the background regions may not be distinct across

images, and (c) some familiar objects may be present.

3. Approach: Collect-Cut

The goal is to discover top-down cues from recurring vi-

sual patterns within an unlabeled image collection, and to

use them to refine the segmentations such that they better

agree with object boundaries. We call the method “Collect-

Cut” since it uses the image collection to estimate the graph

cut-based segmentation.

Given a pool of unlabeled images, we decompose each

into multiple segmentations. After clustering the segments

from all images (Sec. 3.1), for each group the method

chooses representative instances to act as an ensemble of

possible appearance models (Sec. 3.2). The ensemble

serves as (pseudo) top-down cues for that cluster’s seg-

ments. For every initial “seed” segment, we refine its spa-

tial extent at the granularity of superpixels, promoting the

inclusion of regions that (a) resemble any instance of that

segment’s cluster ensemble, and (b) are unlikely to corre-

spond to an instance of a familiar class. We formulate these

preferences in an energy function amenable to graph cuts

algorithms (Sec. 3.3). Finally, having refined each region,

we recompute a clustering on all regions (Sec. 3.4). The

final output is a set of segmented discovered objects.

3.1. ContextAware Region Clustering

The first step consists of mapping an unlabeled collec-

tion of images to a set of clusters or visual topics; we em-

ploy our algorithm for “context-aware” visual category dis-

covery [13]. The main idea of that method is to leverage the

object-level context provided by previously learned cate-

gories when trying to discover novel (un-trained) categories

in a pool of unlabeled images. When new instances of those

familiar objects occur with some spatial regularity relative

to the novel objects, their presence can help the clustering

algorithm perform more reliable discovery. (For example,

if we had previously learned models for grass, driveway,

and house categories, we can better discover a novel cluster

of mailboxes by representing their spatial inter-relationships

when clustering.) The algorithm is summarized in the box

above, and details are in [13]. In the proposed approach, we

treat it as a black box to produce clusters of regions.

We chose this method because it significantly outper-

forms appearance-only approaches when a set of previously

learned categories (distinct from those to be discovered) is

available to build the object-context. Please note, however,

that in the following the discovery of top-down segmenta-

Train a set of region-based classifiers for N categories, denoted as

the “known” objects.

Input: Unlabeled image collection, number of groups k.

• Obtain multiple segmentations for each image with NCuts;

describe each region with a bag-of-features.

• Classify each region as either “known” or “unknown”.

• For each unknown region, compute an object-graph descriptor

that encodes the context of surrounding familiar objects.

• Compute affinities between all pairs of unknowns (using object-

graphs and appearance features), and apply spectral clustering.

Output: Set of k clusters of regions.

Algorithm 1: Context-aware region clustering [13].

tion cues will only be performed and evaluated on those re-

gions that the method deems to be unknown. Thus, while

we expect to be able to capture more variable intra-class in-

stances with our context-aware method, this clustering step

is interchangeable with an existing appearance-based tech-

nique (e.g., [25, 22]), as we illustrate in our experiments.

3.2. Assembling Ensemble Models

Given the initial clustering results from above, we can

now proceed to build the ensemble models that will be used

to refine the spatial extent of each individual region. An en-

semble is a set of regions that represents a cluster. We use

an ensemble because each cluster may itself contain some

variety, for two reasons: First, the clusters are comprised of

segments produced from bottom-up segmentation methods

(e.g., [24]), and so may contain partial segments from the

full object (for example, a single cluster may consist of both

cow heads and cow bodies). Second, since we allow the

regions’ context to influence their grouping, a given clus-

ter may contain somewhat heterogeneous-looking instances

of objects occurring in similar contexts; for instance, the

context-aware grouping might produce a cluster with both

red and blue buildings, or side views and rear views of cars.

Thus, for each of the k discovered groups, we extract

r representative region exemplars to serve as its top-down

model of appearance. Specifically, we take those regions

with the highest total affinity relative to the rest of the clus-

ter instances. Let sCi
denote the i-th segment belonging to

cluster C, and let K(·, ·) denote the similarity function used

for clustering. For each segment in cluster C, we compute

its intra-cluster degree: L(sCi
) =

∑

j K(sCi
, sCj

), sort the

values, and take the top r (from unique images). This yields

the ensemble model of object appearance {sC1
, . . . , sCr

}
for cluster C, where for convenience of notation we are

re-using the indices 1, . . . , r to denote the selected top r.

Though individually the ensemble’s regions may be short of

an entire object, as a group they represent the variable ap-

pearances that arise within generic intra-category instances

(see Fig. 2(c) for an example). When refining a region’s

boundaries, the idea is to treat resemblance to any one of
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Figure 2. Overview of the proposed method. We use graph cuts to minimize an energy function that encodes top-down object cues, entropy-based background

cues, and neighborhood smoothness constraints. In this example, suppose the familiar object categories are building and road. (a) A set of k clusters of

regions. (b) An initial region from the pool generated from multiple-segmentations. (c) Ensemble cluster exemplars which we use to encode top-down cues.

(d) Background exemplars and entropy map to encode background preference for familiar objects. Darker regions are more “known”, i.e., more likely to be

background. (e) Soft boundary map produced by the gPb [15] detector. (f) Our final refined segmentation for the region under consideration. Note that a

single-image graph-cuts segmentation using the initial seed region as foreground and the remaining regions as background would likely have oversegmented

the car, due to the top half of the car having different appearance from the seed region.

the representative ensemble regions as support for the ob-

ject of interest, as described in the following section.

3.3. Collective GraphCut Segment Refinement

Given the discovered ensemble models, we take each ini-

tial “seed” region and refine its segmentation using graph

cuts. We use a mix of large and small segments for the

original multiple-segmentation pool, with the intent of cap-

turing reasonable portions of objects; however, when com-

puting the refinement we break each image into finer-scale

superpixels so that the resulting label assignment may more

closely follow true object boundaries. We generate ∼120

superpixels per image. In the following, we refer to the seg-

ments from the initial multiple segmentations as “regions”,

the smaller superpixel segments as “superpixels”, and re-

serve “segment” as a generic term for either one.

We describe all segments with color and texton his-

tograms. To compare two segments s1 and s2, we average

the χ2 distances of both their feature types:

χ2(s1, s2) =
1

2
(χ2

color(s1, s2) + χ2
texton(s1, s2)). (1)

A seed region has both an image and cluster member-

ship. Below we use subscripts to refer to either a region’s

image or its cluster; sCi
refers to the i-th region in cluster

C, and sIj
refers to the j-th region in image I .

The idea is to compute a refined labeling over the super-

pixels in the image to separate the object that overlaps with

the current “seed” region from the background.2 Both the

initial region itself and the cluster’s ensemble model guide

the assignment of “object” superpixel labels, while the orig-

inating image alone guides the assignment of “background”

superpixel labels. The output labeling will serve as the re-

2We use the terms “foreground object” and “background” to be con-

sistent with familiar uses of graph-cuts segmentation, though in this case

their meanings are relative. That is, since we work with multi-object im-

ages, each region from the initial segmentation will be considered sepa-

rately as a possible “foreground object” in turn. The “object” label is the

given cluster C, and “background” is the remaining objects in the image.

finement for that initial region.

We define a graph over an image’s superpixels: a node

corresponds to a superpixel, and an edge between two nodes

corresponds to the cost of a cut between two superpixels.

The energy function we minimize is:

E(f, sseed) =
∑

i∈S

Di(fi) +
∑

i,j∈N

Vi,j(fi, fj), (2)

where f is a labeling of the superpixel nodes, S =
{p1, . . . , pn} is the set of n superpixels in the image, N
consists of neighboring (adjacent) superpixels, and i and

j index the superpixels. Each superpixel pi is assigned to

fi ∈ {0, 1}, where 0 corresponds to background and 1 cor-

responds to object.2 The data cost term is Di(fi), and the

smoothness cost term is Vi,j(fi, fj). Note that the energy is

parameterized by sseed, since we will optimize this function

once for each seed region.

We define the data term as:

Di(fi) =

{

exp (−d(pi, Mobj(C))) , if fi = 0;

exp (−d(pi, Mbg(I))) , if fi = 1.
(3)

where Mobj(C) and Mbg(I) denote the foreground ensem-

ble model and background model, respectively. Note that

the foreground model is a function of the cluster C, and

the background model is a function of the image I . We let

Mobj(C) consist of the r exemplars in the ensemble plus

the initial seed region: Mobj(C) = {sC1
, . . . , sCr

, sseed}.

We let Mbg(I) consist of the regions from image I minus

the seed region: Mbg(I) = {sI1 , . . . , sIv
}\{sseed}, where

v is the number of regions in image I’s segmentation. Our

data term assigns a high cost when a superpixel is labeled as

background (object) but has a low distance to the ensemble

model (image’s background).

When computing the distances d(pi, M) above, we take

the minimum distance between pi and any instance in the

set M . We want to exploit the diversity of object parts

in the ensemble, and to let each model instance contribute

only when needed. For example, if there are red and blue



cars among the exemplars, a refinement of a red car region

would benefit from the red exemplars rather than a single

combined (e.g., average of red and blue) model. Specifi-

cally, we compute:

d(pi, Mobj(C)) = min
j

χ2(pi, sCj
), for sCj

∈ Mobj(C),

d(pi, Mbg(I)) = χ2(pi, sI∗

k
), where

k∗ = argmin
k

wk χ2(pi, sIk
), (4)

where the argmin serves to keep d(pi, Mobj(C)) and

d(pi, Mbg(I)) on the same scale.

The last equation above imposes the weight wk on region

sIk
from the image’s background set. The purpose of the

weighting is to modulate the distances between a superpixel

and the Mbg(I) regions, so as to prefer that familiar objects

be treated as background. It is defined as follows:

wk = (− log H(sIk
))

−1
, where (5)

H(sIk
) = −

1

log2 N

N
∑

n=1

P (on|sIk
) log2 P (on|sIk

),

and o1, . . . , oN are the N familiar object models used by

the context-aware discovery in Alg. 1. Note that H(sIk
) is

the (normalized) entropy for segment sIk
. The lower the

entropy under the “known” models, the more familiar we

consider the region (see Fig. 2 (d)). The weight wk has a

sharp peak for a normalized entropy value of 1, and then

a gradual fall-off as the entropy decreases. Thus, if wk is

small (more “known”), it downweights the χ2 distance, and

makes the region k more likely to be selected as the super-

pixel’s most similar background region. In this way, we ac-

count for the relative certainty of detected familiar objects

to hone the segmentation for novel unfamiliar objects.

Finally, we define the smoothness term in Eqn. 2 as:

Vi,j(fi, fj) = |fi − fj | · exp(−β · z(pi, pj)), (6)

where z(pi, pj) = 1

2
(χ2(pi, pj)+Pb(pi, pj)), and Pb (Prob-

ability of boundary) is determined by the probability out-

puts given by the gPb [15] detector (see Fig. 2 (e)). For each

pair of neighboring superpixels, we look at their boundary

pixels and the associated gPb confidences. We compute a

single value, Pb(pi, pj), by averaging over those boundary

confidences. Our smoothness term is standard and favors

assigning the same label to neighboring superpixels that

have similar color and texture and have low probability of

an intervening contour.

We minimize Eqn. 2 with graph cuts [3], and use the

resulting label assignment as the refined segmentation for

region sseed (see Fig. 2 (f)).

Fully Unsupervised Variant: We briefly explain how

to apply our framework in the fully unsupervised setting

where no previously learned category models are available.

Input: Unlabeled image collection, parameter k.

• Obtain a set of k clustered regions via context-aware region

clustering (Sec. 3.1).

• Establish discovered top-down segmentation cues by selecting

ensemble of exemplars from each cluster (Sec. 3.2).

• Refine each region with graph cuts by encoding discovered

top-down cues, background preference via entropy, and

smoothness constraints (Sec. 3.3).

• Repeat the discovery process using the refined segmentations

as input (Sec. 3.4).

Output: Segmented images and k discovered objects.

Algorithm 2: Summary of the Collect-Cut method.

We replace the context-aware clustering from Sec. 3.1 with

an appearance-based algorithm, and swap out the entropy-

based background weighting with a distance-based back-

ground weighting. We use the method of [22], which uses

Latent Dirichlet Allocation to discover visual topics among

the regions. To compose our ensemble model, we take the

r instances (from unique images) with the smallest KL-

divergence to the given topic.

When comparing a superpixel to Mbg(I), we replace

entropy H(sIk
) with a weighting J(sIk

) that depends on

the spatial distance between the centroids of region k and

the initial seed region. The idea is that, in absence of any

knowledge of familiar categories, we should prefer regions

that are far away from the seed region to be background.

Specifically, we place a Gaussian centered at the seed region

center xc, with σ equal to the mean of the region’s width

and height: g(x) = exp(−‖x− xc‖
2/(2σ2)). Then, we

compute a single weight J(sIk
) by averaging g(x) within

that region.

Discussion: We choose a binary-label formulation to re-

fine each image region, instead of a multiple-label formula-

tion to compute a single image segmentation. Aside from

computational cost, the advantage of the binary formulation

is its robustness to the initial discovery procedure; if the

number of clusters found is greater than the true number of

categories, the labeling would risk oversegmenting an ob-

ject, since two or more ensembles could represent the same

category. Similarly, if the clusters found are fewer than the

true categories, some categories would not be represented,

leading to incorrect segmentations. With a binary formula-

tion, we only enforce that each instance resembles its en-

semble model instances and differs from its own image’s

background regions.

3.4. Iterating the Discovery Process

Once we refine all the segmentations, we remove the

cluster associations, and compute new appearance features

for the refined regions. Then we provide the resulting

descriptors as input to the discovery algorithm. Having

improved the segmentation boundaries with the collective
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Figure 3. Segmentation overlap scores for both datasets, when tested (a)

with the context of familiar objects or (b) without. Higher values are

better—a score of 1 would mean 100% pixel-for-pixel agreement with

ground truth object segmentation. By collectively segmenting the images,

our method’s results (right box-plots) are substantially better aligned with

the true object boundaries, as compared to both the initial bottom-up mul-

tiple segmentations (left box-plots), as well as a graph cuts baseline that

can use only cues from a single image at once (middle box-plots).

graph-cut, the discovery procedure can (potentially) form

better groups than were possible at the previous iteration.

Alg. 2 summarizes the steps of our method.

4. Results

In this section, we evaluate our method’s segmentation

performance and analyze how it affects discovery accuracy.

Datasets: We use the MSRC v0 and v2 datasets.3

Both consist of natural scenes containing instances from 21

generic object categories. The MSRC-v0 contains 4,325

images; we used Mechanical Turk to obtain pixel-level

ground-truth on all images with multiple objects (3,457 to-

tal). The MSRC-v2 contains 591 images, and high-quality

pixel-level ground-truth4. These datasets seem most appro-

priate given that the images contain multiple repeating ob-

jects from generic categories, and allow segmentations to

be scored at the pixel-level.

When evaluating the semi-supervised form of our

method, N previously learned categories are used as context

during the region clustering. To demonstrate the stability of

the results with respect to which categories are familiar, we

consider two known/unknown splits for each dataset (see

Table 1 for each split’s unknown classes). When evaluating

the method without using familiar objects as context, all 21

classes are considered as unknown.

Implementation Details: We use Normalized Cuts [24]

to generate multiple segmentations for each image; we vary

the number of segments from 3 to 12. We obtain contour

estimates with the gPb detector [15]. To represent each

3http://research.microsoft.com/en-us/projects/objectclassrecognition/
4http://www.cs.cmu.edu/∼tmalisie/projects/bmvc07/ (see [16])

building tree cow airplane bicycle

v2-s1 .31 (116%) .28 (89%) .37 (114%) .23 (86%) .35 (123%)

cow sheep airplane car bicycle

v0-s1 .30 (65%) .28 (60%) .13 (36%) .23 (65%) .27 (95%)

tree sheep car bicycle sign

v2-s2 .33 (109%) .38 (127%) .30 (105%) .28 (100%) .26 (90%)

tree sheep chimney door window

v0-s2 .41 (145%) .29 (62%) .19 (43%) .21 (44%) .29 (81%)

Table 1. Mean overlap score improvement per category, for each split (s1

and s2) of the two datasets (MSRC v0 and v2). Gains are measured be-

tween each initial bottom-up segment and our refinement; both the absolute

and percentage increases are shown. Our collectively segmented regions

are more accurate for all categories, including those with heterogeneous

appearance (cars, bicycles), which are most challenging.

segment’s appearance, we compute texton and color his-

tograms. We generate the texton codebook with k-means

on filter responses from 18 bar and 18 edge filters (6 ori-

entations and 3 scales each), 1 Gaussian, and 1 LoG, with

k = 400 texton codewords. We use Lab color space, and 23

bins per channel.

We fixed β = 10 for the smoothness term after examin-

ing a few image examples (we did not optimize the value).

When including previously learned categories for context-

aware region clustering, we train SVM classifiers on texton,

color, and pHOG histograms (see [13]). We set r = 5, 10
for the MSRC-v2 and v0, respectively. These are chosen

arbitrarily based on the relative dataset sizes. In discovery

experiments, we weight the appearance features four-times

as much as the context features for the context-aware clus-

tering, since we expect the refined segments to improve ap-

pearance support more than spatial context. We average all

clustering results over five runs.

As usual in segmentation or discovery, the model se-

lection task (choosing k, the number of objects to be dis-

covered) is difficult without prior knowledge. In our ini-

tial rounds of experiments, we tested the segmentation as a

function of k. We found that our method’s gains relative to

the baselines were very stable as the value of k varies; thus,

due to space restrictions, we present here results for a single

value, k = 30. (Fig. 1 in the supplementary file illustrates

the consistency of our results when varying k from 1 to 35.)

4.1. Object Segmentation Accuracy

We first evaluate our method’s segmentation results.

To quantify accuracy, we use the pixel-level segmentation

overlap score, OS. The quality of segmented region R with

respect to the ground-truth object segmentation GT is mea-

sured as: OS = |GT∩R|
|GT∪R| , where we take as GT the full ob-

ject region associated with region R’s majority pixel label.

We only score segments that initially belong to an unknown

category, to focus our evaluation on the contribution of our

full model (i.e., using familiarity estimates). This amounts

to a total of 1,921, 1,202, 1,018, and 572 regions for the v0

s1, v0 s2, v2 s1, and v2 s2, respectively.

We compare our Collect-Cut method against two base-
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Figure 4. Two illustrative results comparing our Collect-Cut to the single-

image graph-cuts baseline. If the initial seed region captures only a single

part of a multi-part object (i.e., heterogeneous appearance), a method re-

stricted to using only the single image for segmentation may fail. In con-

trast, by integrating the ensemble of discovered shared cues found in the

collection, our approach can more fully recover the object’s segmentation.

lines: (1) the original bottom-up segmentation provided by

the NCut multiple segmentations (denoted Initial Bottom-

up), and (2) a graph-cuts segmentation that uses only infor-

mation in the single originating image to assign costs for

labeling superpixels (denoted Single-Image Graph-Cut).

Specifically, for the foreground model the single-image

method uses only the initial seed region, and for the back-

ground model it uses the outermost regions along the image

boundaries from the same image. We modeled this baseline

after a model devised in [30], and it represents the best we

could do if trying to refine the segmentation independently

for each image.

Fig. 3 shows the results. We evaluate our method both

when (a) using the familiar categories during context-aware

region clustering, and (b) using no familiar categories. In

either case, note that no supervision is used for the re-

gions/categories that are scored.5 The low initial scores

for the bottom-up regions confirms the well-known diffi-

culty in generating object-level segments while relying only

on low-level feature similarity (color, texture). The single-

image baseline improves over this, exploiting the contrasts

between the seed and its surrounding superpixels, as well

as the prior to prefer outer regions as background. How-

ever, by leveraging the shared structure in the collection of

images, our method produces significantly better segmenta-

tions than either baseline.

We noticed that the single-image baseline has particular

difficulty in refining segmentations for objects with hetero-

geneous appearance (see Fig. 4).

Table 1 shows our method’s average improvements for

each of the unknown categories. Overall, there is consistent

and significant gains for all categories when compared to

the original bottom-up regions. The smaller improvements

(e.g., airplane: 36%) seem to occur when the initial clusters

are less homogeneous, leading to weaker ensembles.

Fig. 6 shows representative (good and bad) qualitative

segmentation examples, where we compare against the best

segment from the initial pool of multiple-segmentations.

5Results for the other two splits are similar; see supp. file.
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Figure 5. Impact of collective segmentation on discovery accuracy, as eval-

uated by the F-measure (higher values are better). For discovery, we

plug in both (a) our context-aware clustering algorithm [13], and (b) an

appearance-only discovery method [22]. In both cases, using our Collect-

Cut algorithm to refine the original bottom-up segments yields more accu-

rate grouping.

Fig. 7 shows good multi-object segmentation examples,

where we aggregate our method’s refined object regions into

a single image-level segmentation.

4.2. Category Discovery Accuracy

We next analyze the extent to which segmentation refine-

ment improves category discovery. We use the F-measure

to quantify clustering accuracy: F = 2·P ·R
P+R

, where P de-

notes precision and R denotes recall. This scoring reflects

the coherency (precision) of the clusters, while taking into

account the recall of the same-category instances. To score

an arbitrary segment, we consider its ground truth label to

be that which the majority of its pixels belong to.

Fig. 5 shows the results. We compare three variants: (1)

running discovery with the initial bottom-up multiple seg-

mentations pool as input, (2) running discovery with our

method’s results as input, and (3) running discovery with

the ground truth object segments, which provides an upper

bound on accuracy. Our method yields a significant gain

in clustering accuracy over the initial segmentations. This

can be attributed to the fact that the spatial extent of the re-

fined regions more closely matches that of the true objects,

thereby allowing more complete appearance features to be

extracted per region, and then clustered. The upper bound

on accuracy in this experiment is imperfect—showing the

limits of clustering multiple generic object categories.

Note that segment refinement can cause changes to an

instance’s majority label, though approximately 80% of the

instances retain their initial labels. These changes mean

that the absolute differences between the F-measures are not

one-to-one. However, the absolute values and distributions

are themselves meaningful.
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Figure 6. Qualitative comparison: our results vs. the best corresponding segment available in the pool of multiple-segmentations. Numbers above denote

overlap scores. The first 8 columns are examples where our method performs well, extracting the true object boundaries much more closely than the

bottom-up segmentation can. We stress that the “best multi-segs” shown are picked using the ground truth, meaning there is no better region for the object

available in the pool of segments; thus, it should be viewed as a generous upper bound on the quality of the regions we can get for the baseline. The last 2

columns show failure cases for our method. It does not perform as well for images where the multiple objects have very similar color/texture, or when the

ensembles are too noisy. (Best viewed on pdf.)

Figure 7. Examples of high quality multi-object segmentation results. We aggregate our refined segmentations into a single segmentation of the image.

5. Conclusions

Overall our results illustrate the proposed method’s ad-

vantage of discovering shared structure in the unlabeled set

of images when computing segmentations. We have also

demonstrated the value of (optionally) introducing knowl-

edge about previously learned categories. The results in-

dicate that when some recurring objects are present in the

image collection, exploiting their repetition leads to high

quality segmentations that better capture full objects.
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