To appear, Proceedings of the British Machine Vision Conference (BMVC), September 2008.

Foreground Focus: Finding Meaningful
Features in Unlabeled Images

Yong Jae Lee and Kristen Grauman
University of Texas at Austin

yjlee0222@mail .utexas.edu, grauman@cs.utexas.edu

Abstract

We present a method to automatically discover meaningéiufes in unla-

beled image collections. Each image is decomposed into-leeali features

that describe neighborhood appearance and geometry. Hhésgo deter-

mine for each image which of these parts are most relevargndhe image
content in the remainder of the collection. Our method fimhputes an
initial image-level grouping based on feature correspands, and then iter-
atively refines cluster assignments based on the evolviraratuster pattern
of local matches. As a result, the significance attributeeeaoh feature in-
fluences an image’s cluster membership, while related isvaga cluster

affect the estimated significance of their features. We sthawthis mutual

reinforcement of object-level and feature-level simtlaimproves unsuper-
vised image clustering, and apply the technique to aut@altidiscover

categories and foreground regions in images from benchdedsets.

1 Introduction

Learning to describe and recognize visual objects is a foneddial problem in computer
vision that serves as a building block to many potential i@pibns. Recent years have
shown encouraging progress, particularly in terms of genéual category learning [25,
12, 26, 2, 13] and robust local feature representationsi[[180]. A widespread strategy
is to determine the commonalities in appearance and shapegsta group of labeled
images, and then search for similar instances in new imagesdbon those patterns.
Typically a supervised setting is assumed, where the réttogmethod is trained with
manually prepared exemplars of each class of interest.

However, carefully labeled exemplars are expensive toiolitathe large numbers
needed to fully represent a category’s variability, andhuods trained in this manner can
suffer from unintentional biases imparted by dataset oreaRecognition methods stand
to gain from stores of unstructured, unlabeled images atebs, if they can infer which
basic visual patterns are meaningful. While recent workideggin to address the need for
looser supervision requirements [25, 26, 6, 8], learniognfltompletely unlabeled im-
ages remains difficult. Unsupervised learners face the &ssues that plague supervised
methods—clutter, viewpoint, intra-class appearancetian, occlusions—but must han-
dle them without any explicit annotation guidance.

We are interested in automatically identifying the foragrd object(s) of interest
among an unlabeled pool of images. To qualify as foregrowsdsay that the visual
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(a) Image clusters are updated based on (b) Feature weights are updated
weighted semi-local feature matches. based on current clusters.

Figure 1:lllustration of the proposed method. The images are grolyaséd on weighted semi-
local feature matchings (a), and then image-specific feaneights are adjusted based on their
contribution in the match relative to all other intra-clisimages (b). These two processes are iter-
ated (as denoted by the block arrows in the center) to simettasly determine foreground features
while improving cluster quality. Dotted arrows denote iraagvith updated cluster memberships.

pattern must have observable support within the colleetitiat is, it must re-occur re-

peatedly, albeit with some variation in appearance actasgstances. Isolating “impor-

tant” features that are responsible for generating natomagie clusters would be useful
to detect discovered objects in novel images, or to geneoaigact summaries of visual
content. Thus the task is essentially unsupervised featiyset selection: to determine
which portion of the features present can be used to form figdlity clusters under a

chosen clustering objective.

We propose a solution that seeks the mutual support betwiseovered objects and
their defining features. An initial image-level groupingcemputed based on the corre-
spondences between any two images’ semi-local featurekin/ach initial group, the
pattern of the matches is analyzed to determine how redperesich part was for placing
its parent image into its current cluster. From this, we cota significance weight on
each feature. The groups and feature weights are theniitdyatefined by alternately
computing 1) the cluster membership given the re-weightatiufes and 2) the feature
weights given the newly refined memberships (see Figure g tD the reciprocal rein-
forcement, the iterative process yields both a partitiothefunlabeled inputs as well as
their detected foreground. We also define a new semi-logadmedescriptor to provide a
flexible encoding of local appearance and geometry.

Our results show that unsupervised foreground featuretieteaids in grouping sim-
ilar objects, while important features are better found bjects of interest when given
partitions of partially re-occurring patterns. We compaue approach with existing un-
supervised learning algorithms and show improvements anhmark datasets.

2 Related Work

In this section we review relevant work in supervised imaggidre selection, weakly
supervised and unsupervised category learning, and sealidescriptors.
Various recognition methods can learn categories fronéalimmages with segmented



foreground and then detect them within cluttered image§l 2y 17], the authors show
how to weight features matched to a novel test image basetenagreement with
known object geometry, thereby downplaying backgroune: Fdradigm of “weak super-
vision” suggested in [25] has since been pursued by a nunfibeethods (e.g. [26, 2]). In
this model, categories are learned from cluttered, unsetgddabeled images; one seeks
the parts that best fit all examples sharing the same labskriDiinative feature selec-
tion strategies have also been explored to detect featumestcur frequently in in-class
examples but rarely on the background [18, 3]. The idea afégmentation” was intro-
duced in [20], where the common parts of an image pair arelEmepusly segmented.
Our approach shares the goal of identifying consistentifeatin cluttered images, but
unlike the above methods it does not employ any labeled ekstipdo so.

Recent work has considered ways to discover latent viseshéls in images using
topic models developed for text, such as probabilistic heEemantic Analysis (pLSA)
or Latent Dirichlet Allocation [19, 22, 6, 15]. The modelseufeature co-occurrence
patterns to recover the underlying distributions (topitst best account for the data.
The notion of text documents containing unordered wordsheatransferred to images
composed of “visual words”. Recent extensions incorpapégial constraints [6, 15], or
use segmentation to reduce the spatial extent of each “detif22].

Other approaches treat unsupervised category learning msage clustering prob-
lem. In [8], local feature matches are used with spectrateling, and in [4] a message-
passing algorithm propagates non-metric affinities andtifies good exemplars. Our
method also begins by computing pairwise affinities betwe®mges. In contrast to these
techniques, however, the proposed approach allows comeaburé matches to reinforce
and refine the discovered groups; as a result it providesthetgroupings as well as the
predicted foreground-background separation.

The problem of unsupervised feature selection has recdiivited attention in the
machine learning community (see [5] and references thgnein existing methods pre-
sume a vector input space, many assume the data to be gengyatertain parametric
distributions, and/or are specifically tailored to a pante clustering method—any of
which can be ill-suited for the visual learning scenario.

Researchers have proposed “semi-local” feature destsifitat capture information
about local neighborhoods surrounding an interest podt1118, 24]. The general idea
is to build more specific features that reflect some geometdyaggregate nearby fea-
tures into a single descriptor. In order to compute morabé correspondences between
images, we design a new descriptor that counts the co-arwerof each visual word
type relative to an interest point, accumulating the coaniscreasingly distant spatial
regions and in distinct relative configurations.

Our main contribution is a new approach to perform unsuged/foreground fea-
ture selection from collections of unlabeled images. Wagngrevious feature selection
methods could detect foreground or discriminative featurdabeled images, our method
discovers them in unlabeled images. In practice, we shotthisallows more accurate
unsupervised category learning with benchmark recogndatasets.

3 Approach

The goal is to predict which regions in unlabeled imagesespond to foreground, and
in doing so to improve accuracy in unsupervised visual pattéscovery. Given a set



of unlabeled images, our method groups similar examplesdas the correspondence
between their semi-local features. After an initial groupiwe weight each feature ac-
cording to its contribution to the match between the imagédbntains it and every other
intra-cluster image. Then, the groupings and weights fenthole image collection are
iteratively re-computed, in the end producing both a gartibf the image collection as
well as weights that reflect the degree to which a featurelisuzal to be foreground. We
first describe the grouping process in detail, and then eaergur semi-local descriptor.

3.1 Simultaneous Image Grouping and Foreground Detection

GivenN unlabeled images) = {ly, ...,In}, we represent each imagas a set of weighted
features X = {(f1,w1),(f2,w2),..., (fix|,Wx|)}, Where eachfj € 09 is a local image
descriptor weighted with somej > 0. The weight on a feature vector determines its im-
portance within the image, and will affect any matching categ for the set in which it

is contained. Initially, all feature weights are set to afomm value (one). Subsequently,
every time we cluster the images, the support (or lack of sttppomputed for a feature
within a group will result in an increase (or decrease) ofviésght. Those weight updates
in turn influence the image groups found at the next iteration

Clustering Weighted Feature SetsA good clustering should group together images
that have a consistent repeated appearance pattern. Howes that the images will
likely be cluttered and may contain multiple objects, th#égra need not encompass the
entire image. Therefore, we want to compute clusters basgtieappearance agree-
ment of some portion of each example—that is, based on a rbatereen subsets of the
semi-local features. Further, the weight on a feature shdigtate how much attention
an image-to-image comparison pays to it, so that featurds igh weight have more
influence on the measured cost of a match, and features wittvédght have little effect.

To accomplish such a grouping, we perform spectral clusgexith an affinity matrix
that reflects the least-cost partial matching between vieipoint sets. Also known as
the Earth Mover's Distance (EMD) [21], this optimal matchstM (X,Y) reflects how
much effort is required to transform weighted pointXehto weighted point séeY:

M(X,Y) = 22k D(X(fi)aY(fj)), 1)
YiviFi

whereX(f) andY(f) denote features from seXsandY, respectively, an®(X(fi),Y (fj))
denotes the distance between poXitd;) andY (f;). The valuess j are scalars giving the
flow, or amount of weight that is mapped from poXitfi) to pointY(f;). Note that this
takes into account the distance between matched pointslbasstbe amount of weight
(mass or “dirt”) attached to each one. The EMD has previobsBn used in supervised
tasks to compare textures’ local feature distributions [9]

In our case, we use the weights to encode priority in the nragctassuming an im-
age’s foreground features are relatively highly weightesecond image cannot produce
a low matching cost against it unless it has similar poirti§ghe foreground with sim-
ilar total weight(s). Likewise, a feature with low weightroeot contribute much cost to
any match, so its influence is negligible. At each clusteitetion, we compute affini-
ties using theN x N matrix C of matching scores between all pairs of unlabeled images:
Cmn = M(Xm, Xn), formn=1,...,N. These affinities are input to a spectral clustering
algorithm that partitions th&l examples intdk groups. In our implementation we use
the normalized cuts criterion [23], due both to its efficigiand the fact that it prefers
farther-reaching clusters; however alternate spectréhoas are plausible.




Refining Foreground Feature Weights from the Current Clusteas. Given ak-way
partition of the images, we update the weights attached ¢h &mature by leveraging
any current regions of agreement among the images in a giagigion. Even when all
pairs of examples within a cluster have high matching sintylabecause each matching
can draw from different combinations of features, hetenoges clusters are possible. To
overcome this, we look to the pattern of the flow fields comguttg Eqn. 1. The idea
is to use information among the “good” matches (images amstongich all pairs have
similar matching points) to re-interpret the “bad” matcfiesages amongst which similar
matching points exist, but are not consistent across a#d-icluster pairs).

The flow field specifies which features in two images best muaicich, and using
what amount of weight. Given a cluster 6fimages{X,...,Xc}, for each example
X, i=1,...,C, we define(C — 1) |X|-dimensional weight vectors denoteg;, with
i={{1,...,C}\i}. Thatis, we compute a vector of feature weights forittkeexample
against every other image within the cluster. Each of theyltegntries irwij specifies
how much its feature fronX; contributed to the match with s&. We define thed-th

element asvij (d) = o0 Fg p/D(X(fa). Xj(fp)), ford = 1,..., X|. Each weight s the
sum of all the flow amounts from that particular featurejrio any other feature in the
other setXj, normalized by the inter-feature distance between the meat¢we usd.).
We compute the final updated weights,, ..., W, } as the element-wise median of these
(C—1) vectors, normalized to maintain the original total weighie final weights give

a robust estimate of how much each feature consistentlyhedtwith other features in

intra-cluster images. We normalize to maintain constaat teeight per image, such that

z‘gﬂlwp = |X|. This prevents weights attached to an irrelevant exampi® fivasting
away to nothing and getting stuck in their initial cluster.

Essentially, our method updates the feature weights of maabe to produce tighter
clusters in subsequent iterations. This is possible bectugsweight updates guarantee
that the matching cost between two images decreases whepacetto that obtained
prior to the weight updates. Our method then chooses thehige({gy the median) for
each image such that the overall matching cost betweenchiséer images decreases.

In general, if a clump of images in a cluster contains ingtaraf the same category,
high weights will be attributed to their consistently recatring parts—the foreground.
Note that depending on the current cluster membership,gHated feature weights can
be quite different from the weights that were used to compheeclusters. To begin the
next iteration, we re-compute the flows and affinities betwalepairs of allN examples
using the new weights, and re-cluster. As the weight distidims shift, subsequent least-
cost matches are biased towards matching those featureslikely to be foreground.
We iterate between the matching, clustering, and re-wigightintil there is no change in
the cluster assignments or until the average percent chamggght is below a threshold.
In practice, we observe the most impact from the first sevienations (see Section 4).

Due to the complexity of computing the optimal matching orighieed point sets,
in practice we compute the matr& with a variant of the pyramid match kernel (PMK)
algorithm [7]. The PMK approximates the least cost matctufoweighted sets in linear
time in the number of points in a set by intersecting mulsiedation histograms com-
puted in the feature space (see [7]). Though defined for wgivied point sets, we can
apply weights by scaling histogram counts by a point’s weigion insertion. Given two
multi-resolution histograms, for every intersecting birg, compute the optimal matching
between the features from both sets that share the bin. Wedrére flow and cost that
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each point at the current resolution level contributes #orttatch; any remaining weight
is propagated to the next coarser pyramid level and can labinggture matchings. Zero-

weighted features at any level do not contribute to the mathen all bins have been
intersected, we have accumulated the approximate flow atehroast. Each per-bin flow

computation is super-linear in the intersection value feature space partitions given by
the pyramid result in small and gradually increasing irgetion counts.

While the method in [8] uses weights to affect PMK matchingtca does not com-
pute flow fields that are influenced by the weights. More imgoaiy, that clustering
method is a one-shot process that does not benefit from theahupdating between
clusters and feature weights.

3.2 Semi-Local Proximity Distribution Descriptors

Our algorithm description thus far implies an orderlesso$deatures representation. Lo-
cal features are a favored representation due to theirenesdl under occlusion and clutter.
Yet, too much locality can be problematic: features with imia spatial extent may be
too generic and easily matched to anything, and compariongiened sets fails to enforce
geometry. Thus, we propose a nosemi-localregion descriptor that encodes the appear-
ance and relative locations of other features in a spatighterhood. Our descriptor is
inspired by the proximity distribution kernel [13], whiclompares images described by
cumulative histograms of nearby visual word pairs. Howewile their approach sum-
marizes an entire image with one histogram, we design a imitxdistribution feature
for each interest point, which makes it possible to use nchllconfiguration cues within
an explicit, weighted matching (and thus calculate the flswl@scribed above).

We extract local patch features at all interest points. Tlerconstruct a standard
n-word visual vocabulary from a random pool of descriptore (wse SIFT [16]), and
record each feature’s word type. For each patch, for eachwfdirections (quadrants)
relative to its center, we compute a cumulative distributimat counts the number of each
type of visual word that occurs within that feature’spatially nearest neighbor features,
incremented over increasing values dgee Figure 2).

More precisely, consider an image with patcHes,...,pm} and their associated
word types{vs,...,vm}. For eachp;, we construcR total 4n-dimensional histogram
vectorsH, (pi), forr =1,... R In each, the firsh bins represent quadrant 1, the next
n bins represent quadrant 2, and so on. Eadbngth chunk is a histogram counting
the number of occurrences of each word tygewithin pi’s r spatially nearest feature
points, divided into quadrants relativepp Note that higher values ofproduce a vector
H:(pi) covering a spatially larger region. Finally, our semi-lbdascriptor forp; is the
concatenation of thegehistograms:f (p;) = [Hi(pi),-- ., Hr(pi)]-



Every patch’'sR x 4n-length vector is a scale- and translation-invariant eirgpof
neighborhood appearance and coarse geometry. (We cantatidirinvariance by setting
guadrants based on a feature’s dominant gradient; we hayehexplored this variant.)
Due to the high-dimensionality and correlation among disi@ms, we compute compact
descriptors using PCA. Matching sets of our descriptors do¢explicitly require spatial
contiguity. Still, individual matches are dependent duthtar spatial extent and overlap.

Discussion. What are the assumptions of our approach? For a pattern tasbe d
covered, it must have support among multiple examples ircdiiection. Further, only
visual patterns that share some configuration of similari4ecal regions can ever be
found (e.g., our method will not discover a single clustengisting of both soccer balls
and volleyballs, but it can discover a group comprised dédént people’s faces). Finally,
somesupport for a pattern must be detected in the initial iterafor progress towards
refining that pattern to be made in the remaining iterations.

Note that features that are strictly speaking “backgrouwaali’ also earn high weights,
if they happen to consistently re-occur with the same faregd class. So, what is learned
depends on what the collectidh contains: for example, if bikes are typically against a
bike rack, then we can expect the pattern to be found as aesmgjity. The same holds for
images with multiple objects that repeatedly co-occur—ef@mple, if computer monitors
always exist on desks. This is a natural outcome for unsigeghtearning from static
images (e.g., nothing can indicate that the bike and rackarene composite object
unless they often occur separately), and satisfies thequrothéfinition.

4 Results

We performed experiments both to analyze the mutual retefoent of foreground and
clusters, and to compare against existing unsupervisedaudet We work with images
from the Caltech-101, because the dataset provides olgigetentations that we need as
ground truth to evaluate our foreground detection. Unlélssravise specified below, we
sample SIFT features at regular image intervals and disoara@ontrast-free regions.

To determine when to stop iterating, we measure the per¢emtge in the average
feature weight change in all images from one iteration torinet, and stop once it slows
to 15% or less (a threshold we set arbitrarily). When clilstemwe sek as the number of
classes present in the dataset in order to evaluate howhedle objects are discovered.
We fix the neighborhood parameterat 64, following [13]. We set the vocabulary size
n depending on the number of input images<(200 for the smaller sets, amd= 400 for
the large ones) in an attempt to get good coverage.

Analyzing the Effects of Mutual Foreground/Clustering Reinforcement. While
some classes in the Caltech-101 are fairly clutter-freepurposely select classes with
the highest clutter in order to demonstrate our method’saarhplo do this, we first built
supervisectlassifiers on all 101 categories: one trained with all feztuiand one trained
using only foreground features. Then we ranked the classeghich segmentation most
helped the supervised classifier, since these directedthe twasses with the most vari-
able and confusing backgrounds. In this way, we formed aftass (Faces, Dalmatians,
Hedgehogs, and Okapi) and 10-class (previous four plusdreigpCarside, Cougaface,
Guitar, Sunflower, and Wheelchair) set. For each class, e¢hesfirst 50 images.

If our algorithm correctly identifies the important featsirave expect those features
to lie on the foreground objects since that is what primaghpccurs in these datasets. To
evaluate this, we compare the feature weights computed bynethod with the ground
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Figure 3: Evaluation of feature selection and category discovén). The average foreground
scores over iterations for all images from the 4-class (fop) 10-class (bottom) sets from the
Caltech-101(b) The cluster quality for those sets. The black dotted lindgcate the best possible
quality that could be obtained if the ground truth segmématvere known (see text).
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Figure 4: Examples showing the highest weighted features per imagthel left four examples,

our method attributes weight only to foreground featurefie Tight four are the examples our
method does most poorly on: it weights foreground featuighlyy but also (mistakenly) finds

good support for some background. (Best viewed in color.)
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truth list of foreground features. We quantify accuracy gy percentage of total feature
weight in an image that our method attributes to true foregdfeatures. To make values
comparable across images and classes, we conﬁﬁg&, wherefg andbg denote the
sums of all foreground (background) weights normalizedigyrtumber of all foreground
(background) features, respectively. If all weights wenefareground, the score would
be 1, while if all weights were on background, the score wdadd.

Figure 3(a) shows our method’s unsupervised foregrouredteh for the two datasets.
All features start with uniform weights, which yields a basere of 0.5. Then each im-
age's weights continually shift to the foreground, withrgfggant gains for most classes
as the clusters continue to be refined. In the 10-class sH¢ldgehog improves more
slowly. Upon examination, we found that this was due to maagidgehogs dispersed
across the initial clusters, resulting in more gradual esgence and cluster swaps.

As our method weights foreground features more highly, vge akpect a positive
effect on cluster quality. Since we know the true labels aheimnage, we can use the
F-measure to measure cluster homogeneity. The F-measasines the degree to which

each cluster contains only and all objects of a particulassIF = §; % max; F'(i, J),
whereF/'(i, ) = %, P and R denote precision and recall, respectively,iand
indexes the classes andndexes the clusters. High values indicate better qualiity-
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ure 3(b) shows the impact of foreground detection on clugiatity. To provide an upper
bound on what quality level would result if we were to hguerfectforeground seg-

mentation, we also evaluate clusters obtained usmythe foreground features (black
dotted lines). Note that without any supervision or fg/bgatation, our approach clus-
ters almost as well as the ideal upper bound. Also, as weéiettze better fg weights
incrementally improve the clusters, until quality levelg.oFigure 4 illustrates example
results. Additional examples can be found in [11].

Comparison with Existing Unsupervised Methods.Next we empirically compare
against results from alternative unsupervised visuahiegrmethods [4, 8, 15, 14].

The authors of [4] propose a clustering algorithm callechiffipropagation which
considers all points as candidate exemplars and uses regsassjng to iteratively find
the best set of exemplars that partition the data. They ctvassubsets of the Caltech-
101: a 20-class subset and a 7-class subset, taking the Gbsinfages of each class
(see [4] for class names). In Figure 5 (top table) we comparem@thod with the same
data, using the “purity” cluster quality measure used in Rijrity measures the extent to
which a cluster contains images of a single dominant classtyP= y ; ”—r: max P(i, j). A
strength of the affinity propagation method is that non-ioeiffinities are allowed, and
so the authors compare images with SIFT features and a vb&agd match, which is
insensitive to clutter [16]. Still, the clusters found byranethod are significantly more
accurate, indicating the strength of both our refinementgse and semi-local descriptor.

In Figure 5 (bottom table) we compare against the method]pfAjBich also forms
groups with partial-match spectral clustering, but doesatiempt to mutually improve
foreground feature weights and clusters as our method tls#sg the same 3,188 image
Caltech-4 database and base features, our method gives tlegter purity as well as
better prediction for novel examples. Results are averaged10 runs with randomly
selected learning/testing pools. Our algorithm’s very Isstandard deviations in accu-
racy indicate that it is less sensitive to the compositiothefunlabeled data, and provides
significantly more reliable groupings.

Finally, the plot in Figure 5 compares the accuracy of ournoés foreground dis-
covery to that of several latent topic models for the Caltectorcycle class, as reported
in [15]. The fg detection rate is computed by varying the shd among the top 20%
most confident features as prescribed in [15]. We comparenatinod with a standard
pLSA model, pLSA with spatial information [14], and a copesdence-based pLSA
variant [15]. The pLSA models compute foreground confiddrased on the probability
of the topic given the patch. Our approach outperforms therstfor most points on the
detection curve, providing much better precision for lolgégpositive rates.



Conclusions and Future Work. We have introduced a novel unsupervised method
for discovering foreground features in images. Clusteesdatermined by matching
weighted feature sets, and weights are iteratively adjusésed on contributions to intra-
cluster image matches. We show that this mutual reinforog¢mneproves both cluster
quality and foreground detection, with datasets contgifdur to twenty categories.

In future work, we will investigate how our algorithm couldcept incremental up-
dates to the unlabeled pool, and extend it to multiple-lahedter assignments. We also
plan to directly evaluate our semi-local region descripigainst related alternatives.
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