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Abstract

We present a method to automatically discover meaningful features in unla-
beled image collections. Each image is decomposed into semi-local features
that describe neighborhood appearance and geometry. The goal is to deter-
mine for each image which of these parts are most relevant, given the image
content in the remainder of the collection. Our method first computes an
initial image-level grouping based on feature correspondences, and then iter-
atively refines cluster assignments based on the evolving intra-cluster pattern
of local matches. As a result, the significance attributed toeach feature in-
fluences an image’s cluster membership, while related images in a cluster
affect the estimated significance of their features. We showthat this mutual
reinforcement of object-level and feature-level similarity improves unsuper-
vised image clustering, and apply the technique to automatically discover
categories and foreground regions in images from benchmarkdatasets.

1 Introduction

Learning to describe and recognize visual objects is a fundamental problem in computer
vision that serves as a building block to many potential applications. Recent years have
shown encouraging progress, particularly in terms of generic visual category learning [25,
12, 26, 2, 13] and robust local feature representations [16,1, 10]. A widespread strategy
is to determine the commonalities in appearance and shape amongst a group of labeled
images, and then search for similar instances in new images based on those patterns.
Typically a supervised setting is assumed, where the recognition method is trained with
manually prepared exemplars of each class of interest.

However, carefully labeled exemplars are expensive to obtain in the large numbers
needed to fully represent a category’s variability, and methods trained in this manner can
suffer from unintentional biases imparted by dataset creators. Recognition methods stand
to gain from stores of unstructured, unlabeled images and videos, if they can infer which
basic visual patterns are meaningful. While recent work hasbegun to address the need for
looser supervision requirements [25, 26, 6, 8], learning from completely unlabeled im-
ages remains difficult. Unsupervised learners face the sameissues that plague supervised
methods—clutter, viewpoint, intra-class appearance variation, occlusions—but must han-
dle them without any explicit annotation guidance.

We are interested in automatically identifying the foreground object(s) of interest
among an unlabeled pool of images. To qualify as foreground,we say that the visual
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(a) Image clusters are updated based on
weighted semi-local feature matches.

(b) Feature weights are updated
based on current clusters.

Figure 1: Illustration of the proposed method. The images are groupedbased on weighted semi-
local feature matchings (a), and then image-specific feature weights are adjusted based on their
contribution in the match relative to all other intra-cluster images (b). These two processes are iter-
ated (as denoted by the block arrows in the center) to simultaneously determine foreground features
while improving cluster quality. Dotted arrows denote images with updated cluster memberships.

pattern must have observable support within the collection—that is, it must re-occur re-
peatedly, albeit with some variation in appearance across the instances. Isolating “impor-
tant” features that are responsible for generating naturalimage clusters would be useful
to detect discovered objects in novel images, or to generatecompact summaries of visual
content. Thus the task is essentially unsupervised featuresubset selection: to determine
which portion of the features present can be used to form highquality clusters under a
chosen clustering objective.

We propose a solution that seeks the mutual support between discovered objects and
their defining features. An initial image-level grouping iscomputed based on the corre-
spondences between any two images’ semi-local features. Within each initial group, the
pattern of the matches is analyzed to determine how responsible each part was for placing
its parent image into its current cluster. From this, we compute a significance weight on
each feature. The groups and feature weights are then iteratively refined by alternately
computing 1) the cluster membership given the re-weighted features and 2) the feature
weights given the newly refined memberships (see Figure 1). Due to the reciprocal rein-
forcement, the iterative process yields both a partition ofthe unlabeled inputs as well as
their detected foreground. We also define a new semi-local region descriptor to provide a
flexible encoding of local appearance and geometry.

Our results show that unsupervised foreground feature detection aids in grouping sim-
ilar objects, while important features are better found on objects of interest when given
partitions of partially re-occurring patterns. We compareour approach with existing un-
supervised learning algorithms and show improvements on benchmark datasets.

2 Related Work
In this section we review relevant work in supervised image feature selection, weakly
supervised and unsupervised category learning, and semi-local descriptors.

Various recognition methods can learn categories from labeled images with segmented



foreground and then detect them within cluttered images; in[12, 17], the authors show
how to weight features matched to a novel test image based on their agreement with
known object geometry, thereby downplaying background. The paradigm of “weak super-
vision” suggested in [25] has since been pursued by a number of methods (e.g. [26, 2]). In
this model, categories are learned from cluttered, unsegmented labeled images; one seeks
the parts that best fit all examples sharing the same label. Discriminative feature selec-
tion strategies have also been explored to detect features that occur frequently in in-class
examples but rarely on the background [18, 3]. The idea of “cosegmentation” was intro-
duced in [20], where the common parts of an image pair are simultaneously segmented.
Our approach shares the goal of identifying consistent features in cluttered images, but
unlike the above methods it does not employ any labeled examples to do so.

Recent work has considered ways to discover latent visual themes in images using
topic models developed for text, such as probabilistic Latent Semantic Analysis (pLSA)
or Latent Dirichlet Allocation [19, 22, 6, 15]. The models use feature co-occurrence
patterns to recover the underlying distributions (topics)that best account for the data.
The notion of text documents containing unordered words canbe transferred to images
composed of “visual words”. Recent extensions incorporatespatial constraints [6, 15], or
use segmentation to reduce the spatial extent of each “document” [22].

Other approaches treat unsupervised category learning as an image clustering prob-
lem. In [8], local feature matches are used with spectral clustering, and in [4] a message-
passing algorithm propagates non-metric affinities and identifies good exemplars. Our
method also begins by computing pairwise affinities betweenimages. In contrast to these
techniques, however, the proposed approach allows common feature matches to reinforce
and refine the discovered groups; as a result it provides boththe groupings as well as the
predicted foreground-background separation.

The problem of unsupervised feature selection has receivedlimited attention in the
machine learning community (see [5] and references therein), but existing methods pre-
sume a vector input space, many assume the data to be generated by certain parametric
distributions, and/or are specifically tailored to a particular clustering method—any of
which can be ill-suited for the visual learning scenario.

Researchers have proposed “semi-local” feature descriptors that capture information
about local neighborhoods surrounding an interest point [10, 1, 18, 24]. The general idea
is to build more specific features that reflect some geometry and aggregate nearby fea-
tures into a single descriptor. In order to compute more reliable correspondences between
images, we design a new descriptor that counts the co-occurrence of each visual word
type relative to an interest point, accumulating the countsat increasingly distant spatial
regions and in distinct relative configurations.

Our main contribution is a new approach to perform unsupervised foreground fea-
ture selection from collections of unlabeled images. Whereas previous feature selection
methods could detect foreground or discriminative features in labeled images, our method
discovers them in unlabeled images. In practice, we show that this allows more accurate
unsupervised category learning with benchmark recognition datasets.

3 Approach
The goal is to predict which regions in unlabeled images correspond to foreground, and
in doing so to improve accuracy in unsupervised visual pattern discovery. Given a set



of unlabeled images, our method groups similar examples based on the correspondence
between their semi-local features. After an initial grouping, we weight each feature ac-
cording to its contribution to the match between the image that contains it and every other
intra-cluster image. Then, the groupings and weights for the whole image collection are
iteratively re-computed, in the end producing both a partition of the image collection as
well as weights that reflect the degree to which a feature is believed to be foreground. We
first describe the grouping process in detail, and then overview our semi-local descriptor.

3.1 Simultaneous Image Grouping and Foreground Detection
GivenN unlabeled images,U = {I1, ..., IN}, we represent each imageIi as a set of weighted
features,Xi = {( f1,w1),( f2,w2), ...,( f|Xi |,w|Xi |)}, where eachf j ∈ ℜd is a local image
descriptor weighted with somewj ≥ 0. The weight on a feature vector determines its im-
portance within the image, and will affect any matching computed for the set in which it
is contained. Initially, all feature weights are set to a uniform value (one). Subsequently,
every time we cluster the images, the support (or lack of support) computed for a feature
within a group will result in an increase (or decrease) of itsweight. Those weight updates
in turn influence the image groups found at the next iteration.

Clustering Weighted Feature Sets.A good clustering should group together images
that have a consistent repeated appearance pattern. However, given that the images will
likely be cluttered and may contain multiple objects, the pattern need not encompass the
entire image. Therefore, we want to compute clusters based on the appearance agree-
ment of some portion of each example—that is, based on a matchbetween subsets of the
semi-local features. Further, the weight on a feature should dictate how much attention
an image-to-image comparison pays to it, so that features with high weight have more
influence on the measured cost of a match, and features with low weight have little effect.

To accomplish such a grouping, we perform spectral clustering with an affinity matrix
that reflects the least-cost partial matching between weighted point sets. Also known as
the Earth Mover’s Distance (EMD) [21], this optimal match cost M(X,Y) reflects how
much effort is required to transform weighted point setX into weighted point setY:

M(X,Y) =
∑i ∑ j Fi, j D(X( fi),Y( f j ))

∑i ∑ j Fi, j
, (1)

whereX( f ) andY( f ) denote features from setsX andY, respectively, andD(X( fi),Y( f j))
denotes the distance between pointsX( fi) andY( f j). The valuesFi, j are scalars giving the
flow, or amount of weight that is mapped from pointX( fi) to pointY( f j ). Note that this
takes into account the distance between matched points as well as the amount of weight
(mass or “dirt”) attached to each one. The EMD has previouslybeen used in supervised
tasks to compare textures’ local feature distributions [9].

In our case, we use the weights to encode priority in the matching: assuming an im-
age’s foreground features are relatively highly weighted,a second image cannot produce
a low matching cost against it unless it has similar point(s)to the foreground with sim-
ilar total weight(s). Likewise, a feature with low weight cannot contribute much cost to
any match, so its influence is negligible. At each clusteringiteration, we compute affini-
ties using theN×N matrix C of matching scores between all pairs of unlabeled images:
Cm,n = M(Xm,Xn), for m,n = 1, . . . ,N. These affinities are input to a spectral clustering
algorithm that partitions theN examples intok groups. In our implementation we use
the normalized cuts criterion [23], due both to its efficiency and the fact that it prefers
farther-reaching clusters; however alternate spectral methods are plausible.



Refining Foreground Feature Weights from the Current Clusters. Given ak-way
partition of the images, we update the weights attached to each feature by leveraging
any current regions of agreement among the images in a singlepartition. Even when all
pairs of examples within a cluster have high matching similarity, because each matching
can draw from different combinations of features, heterogenous clusters are possible. To
overcome this, we look to the pattern of the flow fields computed by Eqn. 1. The idea
is to use information among the “good” matches (images amongst which all pairs have
similar matching points) to re-interpret the “bad” matches(images amongst which similar
matching points exist, but are not consistent across all intra-cluster pairs).

The flow field specifies which features in two images best matchwhich, and using
what amount of weight. Given a cluster ofC images{X1, . . . ,XC}, for each example
Xi , i = 1, . . . ,C, we define(C− 1) |Xi |-dimensional weight vectors denotedwi j , with
j = {{1, . . . ,C} \ i}. That is, we compute a vector of feature weights for thei-th example
against every other image within the cluster. Each of the weight entries inwi j specifies
how much its feature fromXi contributed to the match with setXj . We define thed-th

element aswi j (d) = ∑
|Xj |
p=1Fd,p/D(Xi( fd),Xj ( fp)), for d = 1, . . . , |Xi |. Each weight is the

sum of all the flow amounts from that particular feature inXi to any other feature in the
other setXj , normalized by the inter-feature distance between the matches (we useL2).
We compute the final updated weights{w1, . . . ,w|Xi |} as the element-wise median of these
(C−1) vectors, normalized to maintain the original total weight.The final weights give
a robust estimate of how much each feature consistently matched with other features in
intra-cluster images. We normalize to maintain constant total weight per image, such that

∑|Xi |
p=1wp = |Xi |. This prevents weights attached to an irrelevant example from wasting

away to nothing and getting stuck in their initial cluster.
Essentially, our method updates the feature weights of eachimage to produce tighter

clusters in subsequent iterations. This is possible because the weight updates guarantee
that the matching cost between two images decreases when compared to that obtained
prior to the weight updates. Our method then chooses the weights (by the median) for
each image such that the overall matching cost between intra-cluster images decreases.

In general, if a clump of images in a cluster contains instances of the same category,
high weights will be attributed to their consistently re-occurring parts—the foreground.
Note that depending on the current cluster membership, the updated feature weights can
be quite different from the weights that were used to computethe clusters. To begin the
next iteration, we re-compute the flows and affinities between all pairs of allN examples
using the new weights, and re-cluster. As the weight distributions shift, subsequent least-
cost matches are biased towards matching those features more likely to be foreground.
We iterate between the matching, clustering, and re-weighting, until there is no change in
the cluster assignments or until the average percent changein weight is below a threshold.
In practice, we observe the most impact from the first severaliterations (see Section 4).

Due to the complexity of computing the optimal matching on weighted point sets,
in practice we compute the matrixC with a variant of the pyramid match kernel (PMK)
algorithm [7]. The PMK approximates the least cost match forunweighted sets in linear
time in the number of points in a set by intersecting multi-resolution histograms com-
puted in the feature space (see [7]). Though defined for unweighted point sets, we can
apply weights by scaling histogram counts by a point’s weight upon insertion. Given two
multi-resolution histograms, for every intersecting bin,we compute the optimal matching
between the features from both sets that share the bin. We record the flow and cost that



Figure 2: Semi-local de-
scriptor schematic for base
feature p. Ellipses denote
features, their patterns indi-
cate the visual word types,
numbers indicate the rank
order of spatial proximity
to the base feature, andqi ’s
denote quadrants relative to
p. (Best viewed in color.)

each point at the current resolution level contributes to the match; any remaining weight
is propagated to the next coarser pyramid level and can be used in future matchings. Zero-
weighted features at any level do not contribute to the match. When all bins have been
intersected, we have accumulated the approximate flow and match cost. Each per-bin flow
computation is super-linear in the intersection value, butfeature space partitions given by
the pyramid result in small and gradually increasing intersection counts.

While the method in [8] uses weights to affect PMK matching cost, it does not com-
pute flow fields that are influenced by the weights. More importantly, that clustering
method is a one-shot process that does not benefit from the mutual updating between
clusters and feature weights.

3.2 Semi-Local Proximity Distribution Descriptors
Our algorithm description thus far implies an orderless set-of-features representation. Lo-
cal features are a favored representation due to their resilience under occlusion and clutter.
Yet, too much locality can be problematic: features with minimal spatial extent may be
too generic and easily matched to anything, and comparing unordered sets fails to enforce
geometry. Thus, we propose a novelsemi-localregion descriptor that encodes the appear-
ance and relative locations of other features in a spatial neighborhood. Our descriptor is
inspired by the proximity distribution kernel [13], which compares images described by
cumulative histograms of nearby visual word pairs. However, while their approach sum-
marizes an entire image with one histogram, we design a proximity distribution feature
for each interest point, which makes it possible to use rich local configuration cues within
an explicit, weighted matching (and thus calculate the flow as described above).

We extract local patch features at all interest points. Thenwe construct a standard
n-word visual vocabulary from a random pool of descriptors (we use SIFT [16]), and
record each feature’s word type. For each patch, for each of four directions (quadrants)
relative to its center, we compute a cumulative distribution that counts the number of each
type of visual word that occurs within that feature’sr spatially nearest neighbor features,
incremented over increasing values ofr (see Figure 2).

More precisely, consider an image with patches{p1, . . . , pm} and their associated
word types{v1, . . . ,vm}. For eachpi , we constructR total 4n-dimensional histogram
vectorsHr(pi), for r = 1, . . . ,R. In each, the firstn bins represent quadrant 1, the next
n bins represent quadrant 2, and so on. Eachn-length chunk is a histogram counting
the number of occurrences of each word typev j within pi ’s r spatially nearest feature
points, divided into quadrants relative topi . Note that higher values ofr produce a vector
Hr(pi) covering a spatially larger region. Finally, our semi-local descriptor forpi is the
concatenation of theseR histograms:f (pi) = [H1(pi), . . . ,HR(pi)].



Every patch’sR× 4n-length vector is a scale- and translation-invariant encoding of
neighborhoodappearance and coarse geometry. (We can add rotation invariance by setting
quadrants based on a feature’s dominant gradient; we have not yet explored this variant.)
Due to the high-dimensionality and correlation among dimensions, we compute compact
descriptors using PCA. Matching sets of our descriptors does not explicitly require spatial
contiguity. Still, individual matches are dependent due totheir spatial extent and overlap.

Discussion. What are the assumptions of our approach? For a pattern to be dis-
covered, it must have support among multiple examples in thecollection. Further, only
visual patterns that share some configuration of similar semi-local regions can ever be
found (e.g., our method will not discover a single cluster consisting of both soccer balls
and volleyballs, but it can discover a group comprised of different people’s faces). Finally,
somesupport for a pattern must be detected in the initial iteration for progress towards
refining that pattern to be made in the remaining iterations.

Note that features that are strictly speaking “background”can also earn high weights,
if they happen to consistently re-occur with the same foreground class. So, what is learned
depends on what the collectionU contains: for example, if bikes are typically against a
bike rack, then we can expect the pattern to be found as a single entity. The same holds for
images with multiple objects that repeatedly co-occur—forexample, if computer monitors
always exist on desks. This is a natural outcome for unsupervised learning from static
images (e.g., nothing can indicate that the bike and rack arenot one composite object
unless they often occur separately), and satisfies the problem definition.

4 Results
We performed experiments both to analyze the mutual reinforcement of foreground and
clusters, and to compare against existing unsupervised methods. We work with images
from the Caltech-101, because the dataset provides object segmentations that we need as
ground truth to evaluate our foreground detection. Unless otherwise specified below, we
sample SIFT features at regular image intervals and discardany contrast-free regions.

To determine when to stop iterating, we measure the percent change in the average
feature weight change in all images from one iteration to thenext, and stop once it slows
to 15% or less (a threshold we set arbitrarily). When clustering, we setk as the number of
classes present in the dataset in order to evaluate how well the true objects are discovered.
We fix the neighborhood parameter atR= 64, following [13]. We set the vocabulary size
n depending on the number of input images (n= 200 for the smaller sets, andn= 400 for
the large ones) in an attempt to get good coverage.

Analyzing the Effects of Mutual Foreground/Clustering Reinforcement. While
some classes in the Caltech-101 are fairly clutter-free, wepurposely select classes with
the highest clutter in order to demonstrate our method’s impact. To do this, we first built
supervisedclassifiers on all 101 categories: one trained with all features, and one trained
using only foreground features. Then we ranked the classes for which segmentation most
helped the supervised classifier, since these directed us tothe classes with the most vari-
able and confusing backgrounds. In this way, we formed a four-class (Faces, Dalmatians,
Hedgehogs, and Okapi) and 10-class (previous four plus Leopards, Carside, Cougarface,
Guitar, Sunflower, and Wheelchair) set. For each class, we use the first 50 images.

If our algorithm correctly identifies the important features, we expect those features
to lie on the foreground objects since that is what primarilyre-occurs in these datasets. To
evaluate this, we compare the feature weights computed by our method with the ground
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(a) Quality of foreground detection
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Figure 3: Evaluation of feature selection and category discovery.(a) The average foreground
scores over iterations for all images from the 4-class (top)and 10-class (bottom) sets from the
Caltech-101.(b) The cluster quality for those sets. The black dotted lines indicate the best possible
quality that could be obtained if the ground truth segmentation were known (see text).

Figure 4:Examples showing the highest weighted features per image. In the left four examples,
our method attributes weight only to foreground features. The right four are the examples our
method does most poorly on: it weights foreground features highly, but also (mistakenly) finds
good support for some background. (Best viewed in color.)

truth list of foreground features. We quantify accuracy by the percentage of total feature
weight in an image that our method attributes to true foreground features. To make values
comparable across images and classes, we computef g

f g+bg, where f g andbg denote the
sums of all foreground (background) weights normalized by the number of all foreground
(background) features, respectively. If all weights were on foreground, the score would
be 1, while if all weights were on background, the score wouldbe 0.

Figure 3(a) shows our method’s unsupervised foreground selection for the two datasets.
All features start with uniform weights, which yields a basescore of 0.5. Then each im-
age’s weights continually shift to the foreground, with significant gains for most classes
as the clusters continue to be refined. In the 10-class set, the Hedgehog improves more
slowly. Upon examination, we found that this was due to many hedgehogs dispersed
across the initial clusters, resulting in more gradual convergence and cluster swaps.

As our method weights foreground features more highly, we also expect a positive
effect on cluster quality. Since we know the true labels of each image, we can use the
F-measure to measure cluster homogeneity. The F-measure measures the degree to which
each cluster contains only and all objects of a particular class: F = ∑i

ni
n maxj F ′(i, j),

whereF ′(i, j) = 2×R(i, j)×P(i, j)
R(i, j)+P(i, j) , P and R denote precision and recall, respectively, andi

indexes the classes andj indexes the clusters. High values indicate better quality.Fig-
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Figure 5:Comparison with existing unsupervised visual categorization methods (see text).

ure 3(b) shows the impact of foreground detection on clusterquality. To provide an upper
bound on what quality level would result if we were to haveperfect foreground seg-
mentation, we also evaluate clusters obtained usingonly the foreground features (black
dotted lines). Note that without any supervision or fg/bg annotation, our approach clus-
ters almost as well as the ideal upper bound. Also, as we iterate, the better fg weights
incrementally improve the clusters, until quality levels out. Figure 4 illustrates example
results. Additional examples can be found in [11].

Comparison with Existing Unsupervised Methods.Next we empirically compare
against results from alternative unsupervised visual learning methods [4, 8, 15, 14].

The authors of [4] propose a clustering algorithm called affinity propagation which
considers all points as candidate exemplars and uses message passing to iteratively find
the best set of exemplars that partition the data. They chosetwo subsets of the Caltech-
101: a 20-class subset and a 7-class subset, taking the first 100 images of each class
(see [4] for class names). In Figure 5 (top table) we compare our method with the same
data, using the “purity” cluster quality measure used in [4]. Purity measures the extent to
which a cluster contains images of a single dominant class, Purity = ∑ j

n j
n maxi P(i, j). A

strength of the affinity propagation method is that non-metric affinities are allowed, and
so the authors compare images with SIFT features and a voting-based match, which is
insensitive to clutter [16]. Still, the clusters found by our method are significantly more
accurate, indicating the strength of both our refinement process and semi-local descriptor.

In Figure 5 (bottom table) we compare against the method of [8], which also forms
groups with partial-match spectral clustering, but does not attempt to mutually improve
foreground feature weights and clusters as our method does.Using the same 3,188 image
Caltech-4 database and base features, our method gives better cluster purity as well as
better prediction for novel examples. Results are averagedover 10 runs with randomly
selected learning/testing pools. Our algorithm’s very small standard deviations in accu-
racy indicate that it is less sensitive to the composition ofthe unlabeled data, and provides
significantly more reliable groupings.

Finally, the plot in Figure 5 compares the accuracy of our method’s foreground dis-
covery to that of several latent topic models for the Caltechmotorcycle class, as reported
in [15]. The fg detection rate is computed by varying the threshold among the top 20%
most confident features as prescribed in [15]. We compare ourmethod with a standard
pLSA model, pLSA with spatial information [14], and a correspondence-based pLSA
variant [15]. The pLSA models compute foreground confidencebased on the probability
of the topic given the patch. Our approach outperforms the others for most points on the
detection curve, providing much better precision for low false positive rates.



Conclusions and Future Work. We have introduced a novel unsupervised method
for discovering foreground features in images. Clusters are determined by matching
weighted feature sets, and weights are iteratively adjusted based on contributions to intra-
cluster image matches. We show that this mutual reinforcement improves both cluster
quality and foreground detection, with datasets containing four to twenty categories.

In future work, we will investigate how our algorithm could accept incremental up-
dates to the unlabeled pool, and extend it to multiple-labelcluster assignments. We also
plan to directly evaluate our semi-local region descriptoragainst related alternatives.
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