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Abstract

We propose an efficient approach that unifies activity cat-

egorization with space-time localization. The main idea is

to pose activity detection as a maximum-weight connected

subgraph problem over a learned space-time graph con-

structed on the test sequence. We show this permits an

efficient branch-and-cut solution for the best-scoring—and

possibly non-cubically shaped—portion of the video for a

given activity classifier. The upshot is a fast method that

can evaluate a broader space of candidates than was previ-

ously practical, which we find often leads to more accurate

detection. We demonstrate the proposed algorithm on three

datasets, and show its speed and accuracy advantages over

multiple existing search strategies.

1. Introduction

The activity detection problem entails both recognizing

and localizing categories of activity in an ongoing (meaning

“untrimmed”) video sequence. Reliable activity detection

would have major practical value for applications such as

video indexing, surveillance and security, and video-based

human computer interaction.

While the recognition portion of the problem has re-

ceived increasing attention in recent years, state-of-the-art

methods largely assume that the space-time region of in-

terest to be classified has already been identified (e.g., [25,

14]). However, for most realistic settings, a system must not

only name what it sees, but also partition out the temporal

or spatio-temporal extent within which the activity occurs.

The distinction is non-trivial; in order to properly recognize

an action, the spatio-temporal extent usually must be known

simultaneously.

To meet this challenge, existing methods tend to separate

activity detection into two distinct stages: the first generates

space-time candidate regions of interest from the test video,

and the second scores each candidate according to how well

it matches a given activity model (often a classifier). Most

commonly, candidates are generated either using person-

centered tracks [17, 19, 27, 11] or using exhaustive sliding

Figure 1. Our approach constructs a space-time video graph, and

efficiently finds the subgraph that maximizes an activity classi-

fier’s score. The detection result can take on non-cubic shapes

(see dotted shapes in top frames), as demanded by the action.

window search through all frames in the video [9, 5, 21].

Both face potential pitfalls. On the one hand, a method re-

liant on tracks is sensitive to tracking failures, and by fo-

cusing on individual humans in the video, it overlooks sur-

rounding objects that may be discriminative for an activity

(e.g., the car a person is approaching). On the other hand,

sliding window search is clearly a substantial computational

burden, and its frame-level candidates may be too coarse,

causing clutter features to mislead the subsequent classifier.

In both cases, the scope of space-time regions even consid-

ered by the classifier is artificially restricted, e.g., to person

bounding boxes or a cubic subvolume.

Our goal is to unify the classification and localization

components into a single detection procedure. We propose

an efficient approach that exploits top-down activity knowl-

edge to quickly identify the portion of video that maximizes

a classifier’s score. In short, it works as follows. Given

a novel video, we construct a 3D graph in which nodes

describe local video subregions, and their connectivity is

determined by proximity in space and time. Each node is

associated with a learned weight indicating the degree to

which its appearance and motion support the action class

of interest. At this point, we show the detection problem

is equivalent to solving a maximum-weight connected sub-

graph problem, meaning to identify the subset of connected

nodes whose total weight is maximal; for our setting, this in

turn is reducible to a prize-collecting Steiner tree problem,
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for which practical branch-and-cut optimization strategies

are available. This means we can efficiently identify both

the spatial and temporal region(s) within the sequence that

best fit a learned activity model. See Figure 1.

The proposed approach has several important properties.

First, for the specific case where our space-time nodes are

individual video frames, the detection solution is equivalent

to that of exhaustive sliding window search, yet costs orders

of magnitude less search time due to the branch-and-cut

solver. Second, we show how to create more general forms

of the graph that permit “non-cubic” detection regions, and

even allow hops across irrelevant frames in time that other-

wise might mislead the classifier (e.g., due to a temporary

occluding object). This effectively widens the scope of can-

didate video regions considered beyond that allowed by any

prior methods; the upshot is improved accuracy. Finally, the

method accommodates a fairly wide family of features and

classifiers, making it flexible as a general activity detection

tool. To illustrate this flexibility, as a second contribution,

we introduce a novel high-level descriptor amenable to sub-

graph search that reflects human poses and objects as well

as their relative temporal ordering.

We validate the algorithm on three challenging datasets.

The results demonstrate its clear speed and accuracy advan-

tages over both standard sliding window search as well as a

state-of-the-art branch-and-bound solution.

2. Related Work

We focus our literature review on methods handling ac-

tion detection in video. There is also a large body of work

in activity recognition (from either a sequence or a static

frame) where one must categorize a clip/frame that is al-

ready trimmed to the action of interest. Representations de-

veloped in that work are complementary and could enhance

results attainable with our detection scheme.

One class of methods tackles detection by explicitly

tracking people, their body parts, and nearby objects

(e.g., [17, 19, 11]). Tracking “movers” is particularly rel-

evant for surveillance data where one can assume a static

camera. However, relying on tracks can be limiting; it

makes the detector sensitive to tracking errors, which are

expected in video with large variations in backgrounds

or rapidly changing viewpoints (e.g., movies or YouTube

video). Furthermore, while good for activities that are truly

person-based—like handwaving or jumping jacks—a repre-

sentation restricted to person-tracks will suffer when defin-

ing elements of the action are external to people in the scene

(e.g., the computer screen a person is looking at, or the chair

he may sit in).

Conscious of the difficulty of relying on tracks, another

class of methods has emerged that instead treats activity

classes as learned space-time appearance and motion pat-

terns. The bag of space-time interest point features model

is a good example [14, 22]. In this case, at detection time the

classifier is applied to features falling within candidate sub-

volumes within the sequence. Typically the search is done

with a sliding window over the entire sequence [9, 5, 21],

or in combination with person tracks [11].

Given the enormous expense of such an exhaustive

search, some recent work explores branch-and-bound so-

lutions to efficiently identify the subvolume that maximizes

an additive classifier’s output [29, 28, 3]. This approach of-

fers fast detection and can localize activities in both space

and time, whereas sliding windows localize only in the tem-

poral dimension. However, in contrast to our approach, ex-

isting branch-and-bound methods are restricted to searching

over cubic subvolumes in the video; that limits detections to

cases where the subject of the activity does not change its

spatial position much over time. Our results demonstrate

the value of the more general detection shapes allowed by

our method.

An alternative way to avoid exhaustive search is through

voting algorithms. Recent work explores ways to com-

bine person-centric tracks or pre-classified sequences with

a Hough voting stage to refine the localization [27, 16], or

to use voting to generate candidate frames for merging [26].

Like any voting method, such approaches risk being sensi-

tive to noisy background descriptors that also cast votes, and

in particular will have ambiguity for actions with periodic-

ity. Furthermore, in contrast to our algorithm, they cannot

guarantee to return the maximum scoring space-time region

for a classifier.

Rather than pose a detection task, the multi-class recog-

nition approach of [7] uses dynamic programming to select

the temporal boundaries per action. Like our technique it

jointly considers recognition and segmentation. However,

unlike our method, it localizes only in the temporal dimen-

sion, assumes a multi-class objective where all parts of the

sequence will belong to some pre-trained category (thus re-

quiring one to learn a “background” activity class), and can-

not detect multiple activities occurring at the same time.

The branch-and-cut algorithm we use to optimize the

subgraph has also been explored for object segmentation in

static images [24]. In contrast, our approach addresses ac-

tivity detection, and we explore novel graph structures rele-

vant for video data.

3. Approach

Our approach first trains a detector using a binary classi-

fier and training examples where the action’s temporal ex-

tent is known. Then, given test sequences for which we

have no knowledge of the start and end of the activity, it

returns the subsequence (and optionally, the spatial regions

of interest) that maximizes the classifier score. This works

by creating a space-time graph over the entire test sequence

where each node’s weight indicates its features’ contribu-



tion to the classifier’s score. Then, the best scoring sub-

sequence is equivalent to the maximum weight connected

subgraph. This subgraph can be efficiently computed us-

ing an existing branch-and-cut algorithm, allowing optimal

solutions without exhaustive search.

We first define the classifiers accommodated by our

method (Sec. 3.1), and the features we use (Sec. 3.2). Then

we describe how the graphs are constructed (Sec. 3.3). Fi-

nally, we briefly explain the maximum subgraph problem

and branch-and-cut search (Sec. 3.4).

3.1. Detector Training and Objective

We are given labeled training instances of the activity of

interest, and train a binary classifier f : S → R to dis-

tinguish positive instances from all other action categories.

This classifier can score any subvolume S of a novel video

according to how well it agrees with the learned activity.

To perform activity detection, the goal is to determine the

subvolume in a new sequence Q that maximizes the score

S∗ = arg max
S∈Q

f(S). (1)

If we were to restrict the subvolume in the spatial dimen-

sions to encompass the entire frame, then S∗ would corre-

spond to the output of an exhaustive sliding window detec-

tor. More generally, the optimal subvolume S∗ is the set of

contiguous voxels of arbitrary shape in Q that returns the

highest classifier score.

Our approach requires the classifier to satisfy two prop-

erties. First, it must be able to score an arbitrarily shaped

set of voxels. Second, it must be defined such that features

computed within local space-time regions of the video can

be combined additively to obtain the classifier response for a

larger region. The latter is necessary so that we can decom-

pose the classifier response across the nodes of the space-

time graph, and thereby associate a single weight with each

node. Suitable additive classifiers include linear support

vector machines (SVM), boosted classifiers, or Naive Bayes

classifiers computed with localized space-time features, as

well as certain non-linear SVMs [23].

Our results use a linear SVM with histograms (bags)

of quantized space-time descriptors. The bag-of-features

(BoF) representation has been explored in a number of re-

cent activity recognition methods (e.g., [14, 10, 18]), and,

despite its simplicity, offers very competitive results. We

consider BoF’s computed over two forms of local descrip-

tors. The first consists of low-level histograms of oriented

gradients and flow computed at space-time interest points;

the second consists of a novel high-level descriptor that en-

codes the relative layout of detected humans, objects, and

poses. Both descriptors are detailed below in Sec. 3.2.

In either case, we compute a vocabulary of K visual

words by quantizing a corpus of features from the training

images. A video subvolume with N local features is ini-

tially described by the set S = {(xi,vi)}
N
i=1, where each

xi = (xi, yi, ti) refers to the 3D feature position in space

and time, and vi is the associated local descriptor. Then the

subvolume is converted to a K-dimensional BoF histogram

h(S) by mapping each vi to its respective visual word ci,

and tallying the word counts over all N features.

We use the training instances to learn a linear SVM,

which means the resulting scoring function has the form:

f(S) = β +
∑

i αi〈h(S), h(Si)〉, where i indexes the train-

ing examples, and α, β denote the learned weights and bias.

This can be rewritten as a sum over the contributions of

each feature. Let hj(S) denote the j-th bin count for his-

togram h(S). The j-th word is associated with a weight

wj =
∑

i αih
j(Si), for j = 1, . . . ,K. Thus the classifier

response for a subvolume S is:

f(S) = β +

K∑

j=1

wjhj(S) = β +

N∑

i=1

wci , (2)

where again ci is the index of the visual word that feature vi

maps to, ci ∈ [1,K]. By writing the score of a subvolume

as the sum of its N features’ “word weights”, we now have

a way to associate each local descriptor occurrence with a

single weight—its contribution to the total classifier score.

This same property of linear SVMs is used in [12]

to enable efficient subwindow search for object detection,

whereas we exploit it to score non-cubic subvolumes in

video for action detection. We stress that our method is not

limited to linear SVMs; alternative additive classifiers with

the properties described above are also permitted.

3.2. Localized SpaceTime Features

We consider two forms of localized descriptors for the

vi vectors above: a conventional low-level gradient-based

feature, and a novel high-level feature.

Low-level descriptors For low-level features, we use his-

tograms of oriented gradients (HoG) and histograms of opti-

cal flow (HoF) computed in local space-time cubes [14, 10].

The local cubes are centered at either 3D Harris interest

points [13] or densely sampled. These descriptors capture

the appearance and motion in the video, and their locality

lends robustness to occlusions. See [13, 14, 10] for details.

High-level descriptors We introduce a novel descriptor

for an alternative high-level representation. While low-level

gradient features are effective for activities defined by ges-

tures and movement (e.g., running vs. diving), many inter-

esting actions are likely better defined in terms of the se-

mantic interactions between people and objects. For exam-

ple, “answering phone” should be compactly describable in

terms of a person, a reach, a grasp of the receiver, etc.

To this end, we compose a descriptor that encodes the

objects and poses occurring in a space-time neighborhood.



Figure 2. Left: detected objects surrounding the person detection

C. Right: info captured in the high-level descriptor, relative to C.

Figure 3. Instances from four discovered person types.

First, we run a bank of object detectors [6] and a bank of

mid-level “poselet” detectors [2] on all frames. To capture

human pose, we categorize each detected person into one of

P = 15 “person types”. These types are discovered from

person detection windows in the training data: for each per-

son window we create a histogram of the poselet activations

that overlap it, and then quantize the space of all such his-

tograms with k-means to provide P discrete types. Each

reflects a coarse pose—for example, a seated person may

cause upper body poselets to fire, whereas a hugging person

would trigger poselets from the back. Figure 3 shows four

example person types discovered on the Hollywood data.

Given the sparse set of bounding box detections in a test

sequence, we form one neighborhood descriptor per box.

This descriptor reflects (1) the type of detector (e.g., person

type #3, car) that fired at that position, (2) the distribution of

object/person types that also fired within a 50-frame tempo-

ral window of it, and (3) their relative space-time distances.

See Figure 2. To quantize this complex space into discrim-

inative high-level “words”, we design a twist on the stan-

dard random forest technique. When training the random

forest, we choose spatial distance thresholds, temporal dis-

tance thresholds, and object types to parameterize semantic

questions that split the raw descriptor inputs so as to reduce

action label entropy. Each training and testing descriptor is

then assigned a visual word according to the indices of the

leaf nodes it reaches when traversing each tree in the forest.

Essentially, this reduces each rich neighborhood of space-

time object relationships to a single quantized descriptor,

i.e., a single index ci in Eqn. 2.

In contrast to the low-level features, this descriptor en-

codes space-time ordering, demonstrating that our max-

subgraph scheme is clearly not limited to pure bag-of-

words representations. Furthermore, it yields sparser video

graphs, since the number of detected objects is typically

much fewer than the number of space-time interest points.

x 

y 
t 

(a) Temporal only (T)
x 

y 
t 

(b) Spatio-temporal (ST)

Figure 4. The two node structures we consider.

3.3. Definition of the SpaceTime Graph

So far we have defined the training procedure and fea-

tures we use. Now we describe how we construct a space-

time graph G = (V,E) for a novel test video, where V is

a set of vertices (nodes) and E is a set of edges. Recall

that a test video is “untrimmed”, meaning that we have no

prior knowledge about where an action(s) starts or ends in

either the spatial or temporal dimensions. Our detector will

exploit the graph to efficiently identify the most likely oc-

currences of a given activity. We present two variants each

for the node and link structures, as follows.

Node structure Each node in the graph is a set of contigu-

ous voxels within the video. In principle, the smallest pos-

sible node would be a pixel, and the largest possible node

would be the full test sequence. What, then, should be the

scope of an individual node? The factors to consider are

(1) the granularity of detection that is desired (i.e., whether

the detector should predict only when the action starts and

ends, or whether it should also estimate the spatial localiza-

tion), and (2) the allowable computational cost. Note that

nodes larger than individual voxels or frames are favorable

not only for computational efficiency, but also to aggregate

neighborhood statistics to give better support when the de-

tector considers that region for inclusion.

With this in mind, we consider two possible node struc-

tures. The first breaks the video into frame-level slabs, such

that each node is a sequence of F consecutive frames. The

second breaks the video into a grid of H × W × F space-

time cubes. In all our results, we set F = 5 or 10, and let

H and W be 1

3
of the frame dimensions.1 See Figure 4. At

detection time, the two forms yield a temporal subgraph (T-

Subgraph) and spatio-temporal subgraph (ST-Subgraph),

respectively. Note that a T-Subgraph will be equivalent to

a sliding window search result with a frame step size of F .

In contrast, a ST-Subgraph will allow irregular, non-cubic

detection results. See the first and last images in Figure 6.

After building a graph with either node structure for a

test video, we compute the weight for each node v:

ω(v) =
∑

xj∈v

wcj , (3)

where xj is the 3D coordinate of the j-th local descriptor

falling within node v ∈ V , and cj is its quantized feature

1Rather than space-time cubes, one could use space-time segments

from a bottom-up grouping algorithm, though at greater expense.
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(b) Neighbors + “Jump”

Figure 5. The two linking strategies we consider. Numbers shown

on nodes indicate weights; white nodes indicate those that would

be selected under either linking strategy (see text).

index. Note that xj is the space-time interest point position

for our low-level features, while xj is the center of the orig-

inating object detection window for our high-level features.

Intuitively, nodes with high positive weights indicate that

the activity covers that space-time region, while nodes with

negative weights indicate the absence of the activity.

Linking strategies The connectivity between nodes also

affects both the shape of candidate subvolumes and the cost

of subgraph search. We explore two strategies. In the first,

we link only those neighboring nodes that are temporally

(and spatially, for the ST node structure) adjacent (see Fig-

ure 5 (a)). In the second, we additionally link nodes that

are within the first two temporal neighbors (see Figure 5

(b)); we call this variant T-Jump-Subgraph. Since at test

time we will seek a maximum scoring connected subgraph,

the former requires detection subvolumes to be strictly con-

tiguous in time (and thus equates to the options available to

a sliding window), while the latter allows subvolumes that

“jump” over an adjacent neighbor in time.

By allowing jumps, we can ignore misleading features

that may interrupt an otherwise good instance of an ac-

tion. For example, Figure 5 depicts some temporal nodes

and their associated weights ω(vi)’s, under either connec-
tivity scheme. The max subgraph without jumps in (a) is the

first two nodes only; in contrast, for the same node weights,

the max subgraph with jumps in (b) extends to include

the fourth node, yielding a higher weight subgraph (4+2+5

vs. 4+2). This can be useful when the skipped node(s) con-

tain noisy features, such as an object temporarily block-

ing the person performing the activity. Like the space-time

nodes presented above, the use of temporal jumps further

expands the space of candidate subvolumes our method can

search, at some additional computational cost. One might

consider more complicated linking strategies which could

provide even greater flexibility for detection, but at a higher

computational cost; we leave this as future work.

3.4. Searching for the Maximum Weight Subgraph

Having defined the graph constructed on an untrimmed

test sequence, we are ready to describe the detection proce-

dure to maximize f(S) in Eqn. 1. Our detection objective

is an instance of the maximum-weight connected subgraph

T-Sliding or 

T-Subgraph 

T-Jump-

Subgraph 

ST-Cube-

Sliding 

ST-Cube-

Subvolume 

ST-

Subgraph 

Figure 6. Sketch of candidate subvolume types considered by dif-

ferent methods, ordered approximately from least to most flexible.

Dataset Features Num

test

videos

Ave

length

(#frames)

Ave

length of

action

Node/step

size

(#frames)

UCF-Concat Dense+HoG3D 12 589 13% 5

Hollywood STIP+HoG/HoF 211 474 62% 10

uncropped or high-level

MSR Action STIP+HoG/HoF 16 756 10% 10

Table 1. Properties of the three datasets.

problem (MWCS): Given a connected undirected, vertex-

weighted graph G = (V,E) with weights ω : V → R,

find a connected subgraph T = (VT ⊆ V,ET ⊆ E) of G,

that maximizes the score W (T ) =
∑

v∈VT
ω(v). The best-

scoring subgraph is the subvolume in the video most likely

to encompass the activity of interest.

With both positive and negative weights, the problem is

NP-complete [8]; an exhaustive search would enumerate

and score all possible subsets of connected nodes. How-

ever, MWCS can be transformed into an instance of the

prize-collecting Steiner tree problem [4], which is solvable

by transforming the graph into a directed graph and formu-

lating an integer linear programming (ILP) problem with

binary variables for every vertex and edge. Then by relax-

ing the integrality requirement, the problem can be solved

with linear programming using a branch-and-cut algorithm

(see [15]). This method gives optimal solutions and is very

efficient in practice for the space-time graphs in our setting.

The max-subgraph approach specifically seeks the sub-

volume within the entire test sequence that maximizes the

activity classifier’s output. To return multiple top-scoring

detections, we follow the protocol of [29]. Essentially,

this entails iteratively running detection for the best-scoring

subvolume, then removing the nodes participating in the de-

tection subvolume (equivalently, zeroing out their weights).

Note that with the space-time node structure, this still al-

lows for detecting instances that overlap in time.

4. Experimental Results

Datasets We validate on three datasets: a concatenated

form of UCF Sports [20], the uncropped Hollywood

videos [14], and MSR Actions [29]. See Table 1 for an

overview of the dataset properties. On average, the action of

interest occupies only 18% of the total test sequence, mak-

ing detection (as opposed to classification) necessary. We

use the authors’ code for HoG3D/HoG/HoF [14, 10], with

default parameter settings. For all datasets, we train a binary

SVM to build a detector for each action.



Baselines We compare to three baselines: (1) T-Sliding:

a standard temporal sliding window. This is the status quo

method in the literature, e.g., [9, 5, 21]. Its results are

equivalent to our T-Subgraph variant (using temporal link-

ing structure), but computed with exhaustive search. (2) ST-

Cube-Sliding: a variant of sliding window that searches all

cuboid subvolumes having any rectangular combination of

the spatial-nodes used by our method. Its search scope is

similar to our ST-Subgraph, except that it lacks all possible

spatial links, meaning the detected subvolume cannot shift

spatial location over time. (3) ST-Cube-Subvolume: the

state-of-the-art branch-and-bound method of [29]. It con-

siders all possible cube-shaped subvolumes, and returns the

one maximizing the sum of feature weights inside. Its scope

is more flexible than ST-Cube-Sliding. Its objective is iden-

tical to ours, except that it is restricted to searching cube-

shaped volumes that cannot shift spatial location over time.

We use the authors’ code.2

We consider three variants of our approach: T-Subgraph,

T-Jump-Subgraph, and ST-Subgraph, as defined in Sec. 3.

To recap, T-Subgraph provides equivalent accuracy to T-

Sliding, but is faster.3 T-Jump-Subgraph and ST-Subgraph

provide more flexibility for detection, allowing temporal

discontinuities and spatial changes not permitted by any of

the above methods. Figure 6 depicts the scope of the regions

searched by each method.

Evaluation metrics We use the mean overlap accuracy

for evalution, following [27, 11, 29]. Whether performing

temporal or full spatio-temporal detection, this metric com-

putes the intersection of the predicted detection region with

the ground truth, divided by the union. We use detection

time (on our 3.47GHz Intel Xeon CPUs) to evaluate com-

putational cost.

We stress that our approach is a new strategy for detec-

tion; results in the literature focus largely on classification,

and so are not directly comparable. The sliding window and

subvolume baselines are state-of-the-art methods for detec-

tion, so our comparisons with identical features and classi-

fiers give clear insight into our method’s performance.

4.1. Temporal Detection on UCF Sports

Since the UCF clips are already cropped to the action of

interest, we modify it to make it suitable for detection. We

2We found its behavior sensitive to its penalty value parameter, which

is a negative prior on zero-valued pixels [29]. The default setting was weak

for our data, so for fairest comparisons, we tuned for best results on UCF

and then fixed it for the rest.
3For the special case of temporal search, one can obtain equivalent so-

lutions using 1-D branch-and-bound search to detect the max subvector

along the temporal axis [1]. In practice we find this method’s run-time to

be similar or slightly faster than T-Subgraph. Note, however, that it is not

applicable for any other search scope handled by our approach.

Verbs T-Sliding ST-Cube-

Subvol [29]

Our-T-

Subgraph

Our-T-Jump-

Subgraph

Diving 0.8106 0.7561 0.8106 0.9091

Lifting 0.7899 0.8058 0.7899 0.8096

Riding 0.5349 0.5075 0.5349 0.3888

Running 0.4602 0.3269 0.4602 0.4705

Skateboard 0.1407 0.1057 0.1407 0.1803

Swing-Bench 0.5520 0.6259 0.5520 0.4582

Swing-Side 0.6728 0.3478 0.6728 0.7212

Walking 0.4085 0.3462 0.4085 0.4657

Table 2. Mean overlap accuracy for the UCF Sports data.

Detection

time (ms)

T-Sliding ST-Cube-

Subvol [29]

Our-T-

Subgraph

Our-T-Jump-

Subgraph

Mean 1.25×10
5

7.87×10
4

1.02×10
2

6.51 × 10
2

Stdev 7.52×10
3

3.17×10
4

5.35×10
1

3.17 × 10
2

Table 3. Search time for the UCF Sports data.

Verbs T-Sliding ST-Cube-

Subvol [29]

Our-T-

Subgraph

Our-T-Jump-

Subgraph

AnswerPhone 0.3968 0.2905 0.3968 0.3994

GetOutCar 0.2276 0.2267 0.2276 0.2921

HandShake 0.3071 0.3390 0.3071 0.3663

HugPerson 0.3869 0.4486 0.3869 0.4150

Kiss 0.3822 0.4230 0.3831 0.4412

SitDown 0.3612 0.2861 0.3612 0.3550

SitUp 0.2592 0.2053 0.2592 0.3255

StandUp 0.3475 0.3013 0.3475 0.3775

Table 4. Mean overlap accuracy on uncropped Hollywood data.

Detection

Time (ms)

T-Sliding ST-Cube-

Subvol [29]

Our-T-

Subgraph

Our-T-Jump-

Subgraph

Mean 3.71×10
3

1.70×10
5

6.63 × 10 5.69 × 10
2

Stdev 1.03×10
4

5.79×10
5

7.51 × 10 1.77 × 10
3

Table 5. Search time on uncropped Hollywood data.

form 12 test sequences by concatenating 8 different clips

each from different verbs. All test videos are totally distinct.

We train the SVM on a disjoint set of cropped instances. We

perform temporal detection only, since the activities occupy

the entire frame.

Table 2 shows the accuracy results, and Table 3 shows

the search times. For almost all verbs, our subgraph ap-

proaches outperform the baselines. Further, our T-Jump

variant gives top accuracy in most cases, showing the ad-

vantage of ignoring noisy features (in this data, often found

near the onset or ending of the verb). ST-Cube-Subvolume

is often weaker than sliding window; we find it often fires

on a small volume with highly weighted features when the

activity changes in spatial location over time. However, it

is best on “Swing-Bench”, likely because the backgrounds

are fairly static, minimizing misleading features. Both our

subgraph methods are orders of magnitude faster than the

baselines. (Note that the ST-Cube-Subvolume’s higher cost

is reasonable since here it is searching a wider space.)

4.2. Temporal Detection on Hollywood

We next test the Hollywood data. The dataset creators

provide both the noisy “uncropped” versions of the se-

quences, which are only roughly aligned to the action and

contain about 40% extraneous frames, as well as the “clean”

or cropped versions of the sequences, which have been

trimmed temporally to the action of interest. Existing work

uses this data for classification, and so trains and tests with



Test sequence composition Accuracy

Raw uncropped clips 24.83%

Output from T-Subgraph 29.66%

Manual ground truth 29.97%

Table 6. Recognition accuracy on Hollywood as test input varies.

the cropped versions. To perform temporal detection, we

instead train with the cropped clips, and test with the un-

cropped clips.

Table 4 shows the accuracy results, and Table 5 shows

the search times. Our T-Jump-Subgraph achieves the best

accuracy for 6 of the 8 verbs, with even more pronounced

gains than on UCF. This again shows the value of skipping

brief negatively weighted portions; e.g., “AnswerPhone”

can transpire across several shot boundaries, which tends

to mislead the baselines. Our method is again significantly

faster than the baselines. Our T-Jump-Subgraph is slower

than our T-Subgraph search, given the higher graph com-

plexity (which also makes it more accurate).

One might wonder whether a naive detector that simply

classifies the entire uncropped clip could do as well. To

check, we compare recognition results when we vary the

composition of the test sequence to be either (a) the un-

cropped clip, (b) the output of our detector, or (c) the ground

truth cropped clip. Table 6 shows the result. We see indeed

that detection is necessary; using our output is much better

than the raw untrimmed clips, and only slightly lower than

using the manually provided ground truth.

4.3. SpaceTime Detection on MSR Actions

The MSR dataset differs from the above in that test se-

quences may contain multiple simultaneous instances of

different actions, and the actors change their position over

time. This makes a good testbed to evaluate our ST-

Subgraph with the node structure in Figure 4(b), and we link

neighboring nodes both in space and time. Following [29],

we train detectors using KTH data [22].

Table 7 shows the temporal detection accuracy. Even

under the temporal criterion, our ST-Subgraph is most ac-

curate, since it can isolate those nodes that participate in

the action. However, that accuracy does come at the cost of

longer search time (see Table 8). Figure 7 illustrates how

our space-time node structure succeeds when the location

of activity changes over time, whereas ST-Cube-Subvolume

may be trapped in cube-shaped maxima.

Figure 8 further evaluates detection of multiple instances

per clip, using the procedure described in Sec. 3.4. A detec-

tion is regarded as correct if the temporal overlap accuracy

is greater than 1/8, following [29, 3]. Our method yields the

highest average precision.

Table 9 shows the full space-time localization accuracy,

evaluated under the provided ground truth (first numbers)

and our own refined annotations (second numbers). The

original ground truth labels only the hand regions (see Fig-

Verbs T-Sliding ST-Cube-

Sliding

ST-Cube-

Subvol [29]

Our-T-

Subgraph

Our-ST-

Subgraph

Boxing 0.0541 0.0717 0.0794 0.0541 0.0989

Clapping 0.0982 0.0982 0.0602 0.0982 0.1754

Waving 0.2342 0.2204 0.2669 0.2342 0.2926

Table 7. Mean temporal overlap accuracy on the MSR dataset.

Detection

Time (ms)

T-Sliding ST-Cube-

Sliding

ST-Cube-

Subvol [29]

Our-T-

Subgraph

Our-ST-

Subgraph

Mean 4.2×10
3

5.5×10
4

3.0×10
5

2.8×10
2

3.1×10
6

Stdev 3.3×10
3

4.2×10
4

1.6×10
5

2.3×10
2

4.6×10
6

Table 8. Search time on the MSR dataset.

Figure 7. Example of ST-Subgraph’s top output (top) and the top

4 detections from ST-Cube-Subvolume [29] (bottom). Red rectan-

gles denote ground truth. Brighter areas denote detections.
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(a) Boxing
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(b) Hand Clapping
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(c) Hand Waving

Figure 8. Detecting multiple instances per sequence on MSR.

Numbers in legends indicate mAP.

Verbs ST-Cube-

Sliding

ST-Cube-

Subvol [29]

Our-ST-

Subgraph

Boxing 0.0474/0.0478 0.0456/0.0193 0.0309/0.0417

Hand Clapping 0.0261/0.0373 0.0173/0.0071 0.0295/0.0630

Hand Waving 0.0912/0.0851 0.1013/0.0581 0.0699/0.1121

Table 9. Mean space-time overlap accuracy on the MSR dataset;

first value uses hand-based ground truth, second value uses person-

based ground truth. (T-Sliding/T-Subgraph are omitted since they

don’t do spatial localization.)

ure 7), whereas our ground truth labels the whole person

performing the action; it is unclear which is more appro-

priate so we include both. Results are mixed between the

methods, with a slight edge for our ST-Subgraph. Also, only

the non-rectangular shape detection from our ST-Subgraph

reflects the large spatial motions in actions.

4.4. Summary of TradeOffs in Results

There are three dimensions of trade-offs between all

methods tested: search time, search scope, and detection ac-

curacy. Figure 9 summarizes all trade-offs for all datasets,

using more complex polygon symbols for the methods

that search a wider scope of subvolume shapes (e.g., least

complex for T-Sliding/T-Subgraph, most complex for ST-



Figure 9. Overview of all methods on the three datasets.

Verbs T-Subgraph (HoG/HoF) T-Subgraph (high-level)

AnswerPhone 0.3968 0.1741

GetOutCar 0.2276 0.1447

HandShake 0.3071 0.4194

HugPerson 0.3869 0.5292

Kiss 0.3822 0.4906

SitDown 0.3612 0.3753

SitUp 0.2592 0.3843

StandUp 0.3475 0.2636

Table 10. Mean overlap accuracy on Hollywood for low-level fea-

tures vs. the proposed high-level descriptors.

Subgraph). Importantly, we see that increased search scope

generally boosts accuracy. In addition, the flexibility of the

graph structure in our subgraph algorithm allows it to per-

form best per dataset in terms of either speed (see verti-

cal blue dotted lines) or accuracy (see horizontal red dotted

lines). We provide our source code and data in our project

page: http://vision.cs.utexas.edu/projects/maxsubgraph.

4.5. Subgraph Search with Highlevel Features

Finally, we test our novel high-level descriptor on Holly-

wood, since its actions contain human-object interactions.

We apply 6 object detectors—bus, car, chair, dining ta-

ble, sofa, and phone—to every 5th frame, and use random

forests with 10 trees. Table 10 shows the results, com-

pared to our method using low-level features. For 5 of the

8 verbs, the proposed descriptor improves accuracy. It is

best for verbs based on the interaction between two people

(e.g., kiss) or involving an obvious change in pose (e.g., sit

up), showing the strength of the proposed person types to

capture pose. For other verbs with varied objects (answer

phone, get out of car), it hurts accuracy due to object detec-

tor failures in this dataset.

5. Conclusions

We presented a novel branch-and-cut subgraph frame-

work for activity detection that efficiently searches a wide

space of temporal or space-time subvolumes. Compared to

traditional sliding window search, it significantly reduces

computation time. Compared to existing branch-and-bound

methods, its flexible node structure offers more robust de-

tection in noisy backgrounds. Our novel high-level descrip-

tor also shows promise for complex activities, and makes

it possible to preserve the spatio-temporal relationships be-

tween humans and objects in the video, while still exploit-

ing the fast subgraph search.
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