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Abstract

In interactive image search, a user iteratively refines his
results by giving feedback on exemplar images. Active se-
lection methods aim to elicit useful feedback, but traditional
approaches suffer from expensive selection criteria and
cannot predict informativeness reliably due to the impreci-
sion of relevance feedback. To address these drawbacks, we
propose to actively select “pivot” exemplars for which feed-
back in the form of a visual comparison will most reduce the
system’s uncertainty. For example, the system might ask,
“Is your target image more or less crowded than this im-
age?” Our approach relies on a series of binary search
trees in relative attribute space, together with a selection
function that predicts the information gain were the user to
compare his envisioned target to the next node deeper in a
given attribute’s tree. It makes interactive search more effi-
cient than existing strategies—both in terms of the system’s
selection time as well as the user’s feedback effort.

1. Introduction
In image search, the user often has a mental picture of

his or her desired content. For example, a shopper wants to
retrieve those catalog pages that match his envisioned style
of clothing; a witness wants to help law enforcement locate
a suspect in a database based on his memory of the face.
Therefore, a central challenge is how to allow the user to
convey that mental picture to the system. Due to the well
known semantic gap, one-shot retrieval is generally insuf-
ficient. Instead, an interactive approach lets the user help
the system refine the top-ranked results via iterative feed-
back [3, 19, 13, 23, 11, 26, 5]. The most common form of
interaction consists of binary relevance feedback, in which
the user declares certain exemplars to be relevant or irrel-
evant, and then the system updates its relevance metric in
response. With each round of feedback, the results are re-
ranked, and the top-ranked images (ideally) gradually con-
verge on the user’s target.

While this basic pipeline is well established, an impor-
tant question remains: On which images should the user
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Figure 1. Our image search approach actively requests feedback
on selected images in terms of visual attribute comparisons. To
formulate the optimal question to ask next, it unifies an entropy
reduction criterion with binary search trees in attribute space.

give feedback? Typically, the system simply displays a
screen full of top-ranked images, leaving a user free to pro-
vide feedback on any of them. This strategy has the appeal
of simultaneously showing the current results and accepting
feedback [26]. However, the images believed to be most
relevant need not be most informative for reducing the sys-
tem’s uncertainty. As a result, this passive approach may
fail to explore relevant portions of the feature space, and
can waste interaction cycles eliciting redundant feedback.

Thus, methods to actively select exemplar images for
user feedback are needed. The goal is to solicit feedback on
those exemplars that would most improve the system’s no-
tion of relevance. Many existing methods exploit classifier
uncertainty to find useful exemplars (e.g., [23, 11, 3, 26]).
However, traditional approaches have two main limitations.
First, the imprecision of binary relevance feedback (“Image
X is relevant; image Y is not.”) makes it difficult to reli-
ably eliminate database images as irrelevant since the sys-
tem does not know what about the images led to the user’s
response. This makes it ambiguous how to extrapolate rel-
evance predictions to other images, which in turn clouds
the active selection criterion. Second, existing active selec-
tion techniques add substantial computational overhead to
the interactive search loop, since ideally they must scan all
database images to find the most informative exemplars.

We introduce a novel approach that addresses these
shortcomings. We propose to guide the user through a
coarse-to-fine search using a relative attribute image rep-
resentation. At each iteration of feedback, the user pro-
vides a visual comparison between the attribute in his en-
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visioned target and a “pivot” exemplar, where a pivot sep-
arates all database images into two balanced sets. Further-
more, we show how to actively determine along which of
multiple such attributes the user’s comparison should next
be requested, based on the expected information gain that
would result. See Figure 1.

The approach works as follows. Given a database of im-
ages, we first construct a binary search tree for each relative
attribute of interest (e.g., “pointiness”, “shininess”, etc.).
Initially, the pivot exemplar for each attribute is the database
image with the median relative attribute value. Starting at
the roots of these trees, we predict the information gain that
would result from asking the user how his target image com-
pares to each of the current pivots. To compute the expected
gain, we introduce methods to estimate the likelihood of the
user’s response given the feedback history. Then, among the
pivots, the most informative comparison is requested, gen-
erating a question to the user such as, “Is your target image
more, equally, or less pointy than this image?” Following
the user’s response, the system updates its relevance predic-
tions on all images. It also moves the current pivot down
one level within the selected attribute’s tree (unless the re-
sponse is “equally”, in which case we no longer need to
explore this tree). The procedure iterates until the user is
satisfied with the top-ranked results.

In technical terms, our problem setting demands repeat-
edly estimating the total expected error reduction over all
unlabeled database images, as a function of requesting any
possible comparison from the human searcher. Whereas
prior information-gain methods would require a naive scan
through all database images for each iteration, the proposed
attribute search trees allow us to limit the scan to just one
image per attribute. Thus, our method is efficient both for
the system (which analyzes a small number of candidates
per iteration) and the user (who locates his content via a
small number of well-chosen interactions).

We demonstrate our method applied to several realistic
search tasks for shoes, people, and scenes. We quantify
its advantages over conventional passive and active meth-
ods [8, 23]. The results strongly support our pivot-based
approach as an efficient means to guide user feedback. For
example, in a database of∼15K images, a user can typically
locate his exact target image with just 12 rounds of feed-
back, whereas the standard approach requires 21 rounds to
reach the same level of accuracy.

Our main contributions are: (1) a new format for visual
search in which the system guides the user through a series
of informative visual comparisons, (2) an entropy reduction
criterion that exploits the proposed attribute binary search
trees for both efficiency and regularization, (3) a technique
to predict the likelihood of a user’s comparative response
given their feedback history, and (4) a probabilistic formu-
lation for using relative attribute feedback.

2. Related Work
Feedback in image search. The benefits of interactive
feedback for image search are well studied [3, 19, 26, 5]. In
practice, the images displayed to the user for feedback are
usually those ranked best by the system’s current relevance
model. However, if a user is cooperative, it can be more
valuable to present a mix of probable relevant and irrelevant
examples for feedback. If feedback is binary, with the user
labeling examples as relevant (positive) or irrelevant (nega-
tive), the selection can naturally be cast as an active learning
problem: the best examples to show are those that the rele-
vance classifier is most uncertain about [13, 23, 11, 26].

Notably, prior efforts to display the exemplar set that
minimizes uncertainty were forced to resort to sampling or
clustering heuristics due to the combinatorial optimization
problem inherent when categorical feedback is assumed
(e.g., [18, 3, 5]). In contrast, we show that eliciting compar-
ative feedback on ordinal visual attributes naturally leads to
an efficient sequential selection strategy, where each com-
parison is guaranteed to decrease the predicted relevance of
half of the unexplored database images.

Attributes for image search. Visual attributes are se-
mantic properties of objects (e.g., “fuzzy”, “plastic”) that
serve as a middle ground between low-level features (e.g.,
color, texture) and high-level categories. Attributes (or
“concepts”, their counterpart in multimedia retrieval) are
known to provide an effective representation for image
search [15, 10, 20, 22, 4, 8, 25, 7], especially since they per-
mit content-based keyword queries [10, 22, 7]. While often
treated as categorical (“is smiling” vs. “is not smiling”), at-
tributes can more generally be modeled as continuous or
relative properties (“is smiling more than X”) [16, 21].

While binary relevance feedback is most common, our
recent work [8] shows how relative visual attributes are use-
ful for feedback (e.g., “retrieve faces that are smiling more
than this one”). While this work also uses relative attribute
feedback, the similarity to [8] ends there. Whereas in [8]
search proceeds in a standard passive manner, with the user
offering feedback on images of his choosing among the top-
ranked ones, our main idea is an actively guided search pro-
cedure based on a sequence of system-requested compar-
isons. This entails novel methods for active selection with
binary attribute trees (Sec. 3.2) and user response predic-
tion (Sec. 3.4). Furthermore, we refine the simple counting
model of [8] to account for uncertainty in attribute predic-
tions (Sec. 3.3).

Active testing and “20 questions”. Active testing meth-
ods choose a series of useful “tests” (e.g., features to
extract) or label requests (“does the bird have a yellow
beak?”) [6, 2]. In the case where a human answers the
tests, attributes are well-suited to query for intermediate la-
bels that will lead to the right category label, as shown for



bird labeling [2]. Our work shares the spirit of rapidly re-
ducing uncertainty through a sequence of useful questions.
However, our aim is distinct. Active testing entails selecting
queries to classify a single novel image efficiently, whereas
we select queries to efficiently find a target in a database
of images. Moreover, our approach solicits visual com-
parisons—key to eliminating irrelevant content in search—
whereas prior work solicits traditional image labels.

Active classifier training with attributes. More distant
from our work, other work investigates training classifiers
with actively selected attribute labels. By modeling object
and attribute relationships [24, 9, 14], one can request the
most useful labels to refine the classifiers. Our goal is very
different: we do active feedback requests for image search,
not classification, and our approach requests visual compar-
isons, not attribute labels.

3. Approach
A user initiates a search with a multi-attribute query

(e.g., “black high-heels”) or a sample image (e.g., a snap-
shot of a pair of heels she saw). Our approach then re-
fines the results. It interacts with the user through multiple-
choice questions of the form: “Is the image you are looking
for more, less, (or equally) A than image I?”, where A is
a semantic attribute and I is an exemplar from the database
being searched. Our goal is to generate the series of such
questions that will most efficiently narrow down the rele-
vant images in the database, so that the user finds his target1

in few iterations. To this end, at each iteration we will ac-
tively select a comparison for the user to provide, that is,
the (A, I) pair which yields the expected maximal infor-
mation gain. Rather than exhaustively search all database
images as potential exemplars, however, we consider only a
small number of pivot exemplars—the internal nodes of bi-
nary search trees constructed for each attribute. The output
of the system is the list of database images, sorted by their
predicted relevance.

After reviewing an existing method [16] to predict rela-
tive attribute strengths (Sec. 3.1), we explain how we con-
struct attribute binary search trees (Sec. 3.2). Next we
present our model of image relevance that accounts for the
user’s attribute-based feedback (Sec. 3.3). Finally, we in-
troduce our active selection approach to determine which
comparison should be requested next (Sec. 3.4).

In the following, let I = {I1, . . . , IN} denote the N im-
ages in the database, each of which has a corresponding im-
age descriptor x1, . . . ,xN (e.g., GIST, bag of words, etc.).
Suppose we have an attribute vocabulary consisting of M
properties A1, . . . , Am, . . . , AM . For example, for a shoe

1Throughout we use “target” to refer to the imagined visual content of
the user. It could be a literal image s/he has seen before, or simply a mental
model of content of interest.

shopping database, those properties might be “pointiness”,
“shininess”, “heel height”, etc. We use Am(Ii) to denote
the true strength of an attribute m in image Ii—that is, as
would be perceived by a human viewer.

3.1. Relative Attribute Predictions

In order to utilize attribute-based comparisons, we need
to estimate the strength of each attribute in each database
image. To this end, following [16], we learn one ranking
function per attribute. For each attribute m, we obtain a set
of ordered pairs Om = {(Ii, Ij)}, for which each image Ii
has greater strength of attribute m than image Ij does, as
well as a set of unordered pairs Em = {(Ii, Ij)}, for which
both images in a pair exhibit the attribute equally. All such
pairs come directly from comparative human judgments.

For each attribute m, we use its associated training pairs
to learn a (possibly kernelized) ranking function: am(Ii) =
wT

mxi, which maps the image descriptor xi for image Ii
to its real-valued attribute strength. The projection pa-
rameters wm are optimized using a large-margin ranking
objective. It aims to satisfy the ordered pair constraints
above, such that wT

mxi > wT
mxj , ∀(Ii, Ij) ∈ Om, and

wT
mxi ≈ wT

mxj , ∀(Ii, Ij) ∈ Em, while at the same time
maintaining a wide margin in the output ranks of the nearest
training examples. See [16] for details.

These predicted attribute values am(Ii) are what we can
observe for image Ii. They are a function of (but distinct
from) the “true” latent attribute strengths Am(Ii). We will
refer to both below. Using standard features and kernels, we
find that 75% of held-out human comparisons are preserved
by attribute predictors trained with ∼200 pairs. Thus, they
are quite reliable; more elaborate features [10] or learning
algorithms [12] would likely improve them even further.

3.2. Attribute Binary Search Trees

For each attribute m = 1, . . . ,M , we construct a bi-
nary search tree. The tree recursively partitions all the
database images into two balanced sets, where the key at
a given node is the median relative attribute value occur-
ring within the set of images passed to that node. To
build the m-th attribute tree, we start at the root with all
database images, sort them by their predicted attribute val-
ues am(I1), . . . , am(IN ), and identify the median value.
Let Ip denote the “pivot” image—the one that has the me-
dian attribute strength. Those images exhibiting the at-
tribute less than Ip, i.e., all Ii such that am(Ii) ≤ am(Ip),
are passed to the left child, while those exhibiting the at-
tribute more, i.e., am(Ii) > am(Ip), are passed to the right
child. Then the splitting repeats recursively, each time stor-
ing the next pivot image and its relative attribute value at the
appropriate node.

Note that both the relative attribute ranker training and
the search tree construction are offline procedures; they are



performed once, before handling any user queries.
Already, one could imagine a search procedure that

walks a user through one such attribute tree, at each suc-
cessively deeper level requesting a comparison to the pivot,
and then eliminating the appropriate portion of the database
depending on whether the user says “more” or “less”. How-
ever, there are two problems with such a simple approach.
First, we cannot assume that the attribute predictions are
identical to the attribute strengths a user will perceive; thus,
a hard pruning of a full sub-tree is error-prone. Second, this
approach fails to account for the variable information gain
that could be achieved depending on which attribute is ex-
plored at any given round of feedback. Therefore, we pro-
pose a probabilistic representation of whether images sat-
isfy the comparison constraints (Sec. 3.3), and we use the
pivots to limit the pool of candidate images that are evalu-
ated for their expected information gain (Sec. 3.4).

3.3. Predicting the Relevance of an Image

Now we explain how we predict the relevance of a
database image, given the user’s comparative feedback. Let
yi ∈ {1, 0} denote the binary label for image Ii, which
reflects whether it is relevant to the user (matches his tar-
get), or not. Let F = {(Ipm , r)k}Tk=1 denote the set
of comparative constraints accumulated in the T rounds
of feedback so far. The k-th item in F consists of a
pivot image Ipm

for attribute m, and a user response r ∈
{“more”, “less”, “equally”}. The final output of our search
system will be a sorting of the database images Ii ∈ I ac-
cording to their probability of relevance, given the image
content and all user feedback: P (yi = 1|Ii,F).

Let Sk,i ∈ {0, 1} be a binary random variable represent-
ing whether image Ii satisfies the k-th feedback constraint.
For example, if the user’s k-th comparison yields response
r = “more”, then Sk,i = 1 if the database image Ii has
attribute m more than the corresponding pivot image Ipm .
The probability of relevance is thus the probability that all
T feedback comparisons in F are satisfied:

P (yi = 1|Ii,F) =
T∑

k=1

logP (Sk,i = 1|Ii), (1)

where we use a sum of log probabilities rather than a prod-
uct for numerical stability.

The probability that the k-th individual constraint is sat-
isfied given that the user’s response was r for pivot Ipm is:

P (Sk,i = 1|Ii) =


P (Am(Ii) > Am(Ip)) if r = “more”
P (Am(Ii) < Am(Ip)) if r = “less”
P (Am(Ii) = Am(Ip)) if r = “equally”.

To estimate these probabilities, we map the attribute pre-
dictions am(·) to probabilistic outputs, by adapting Platt’s

method [17] to the paired classification problem implicit in
the large-margin ranking objective. Specifically, this yields:

P (Am(Ii) > Am(Ip)) =
1

1 + exp(αm(am(Ii)− am(Ip)) + βm)
(2)

P (Am(Ii) = Am(Ip)) =
1

1 + exp(γm|am(Ii)− am(Ip)|+ δm)
, (3)

where the sigmoid parameters are learned using the sets
Om and Em from above. In particular, to learn αm and
βm, we use pairs with “more” judgments from Om as pos-
itive paired-instances, and “less” judgments as negative in-
stances. For γm and δm, we use “equally” pairs fromEm as
positive labels, and both “more” and “less” responses from
Om as negative instances. Note P (Am(Ii) < Am(Ip)) =
1 − P (Am(Ii) > Am(Ip)). When computing the user re-
sponse likelihoods in Sec. 3.4, we normalize these values so
the three probabilities (“more”/“less”/“equally”) sum to 1.

Our probabilistic model of relevance accounts for the
fact that predicted attributes can deviate from true perceived
attribute strengths. In contrast, prior work using relative at-
tribute feedback [8] makes hard decisions, simply counting
how many predicted attribute values satisfy the user’s con-
straints to measure relevance. We find that a hard pruning of
images on irrelevant branches of an attribute tree eliminates
the true target for 93% of the queries, clearly supporting the
proposed probabilistic formulation.

3.4. Actively Selecting an Informative Comparison

The proposed binary trees serve to guide the active ex-
emplar selection and reduce its computational overhead,
rather than completely eliminate images from considera-
tion. Our system maintains a set of M current pivot im-
ages (one per attribute tree) at each iteration, denoted P =
{Ip1 , . . . , IpM

}. The pivots are initially the root pivot im-
ages from each tree. During active selection, our goal is to
identify the pivot in this set that, once compared by the user
to his target, will most reduce the entropy of the relevance
predictions on all database images. Note that selecting a
pivot corresponds to selecting both an image as well as an
attribute along which we want it to be compared; Ipm

refers
to the pivot for attribute m.

Entropy reduction objective. Given the feedback history
F , we want to predict the information gain across all N
database images for each pivot in P . We will request a
comparison for the pivot that most reduces the total rele-
vance entropy over all images—or equivalently, the pivot
that minimizes the expected entropy when used to augment
the current set of feedback constraints.

The entropy based on the feedback thus far is:

H(F) = −
NX

i=1

X
`

P (yi = `|Ii,F) logP (yi = `|Ii,F), (4)



where ` ∈ {0, 1}. Let R be a random variable denoting
the user’s response, R ∈ {“more”, “less”, “equally”}. We
select the next pivot for comparison as:

I∗p = arg min
Ipm∈P

X
r

P (R = r|Ipm ,F) H(F ∪ (Ipm , r)). (5)

The basic idea of expected error reduction was first pro-
posed in [18] for active learning in text classification, and
variations have been explored in vision tasks (e.g., [2, 9,
14]). Our formulation is novel in that we survey only the
attribute pivots, exploiting the special structure of rankable
visual properties for substantial computational savings. In
contrast, existing work resorts to sampling heuristics [3],
approximations [5], or simply small data pools [9] to make
the problem tractable.

Furthermore, as we will show in the results, the pivots
also enhance selection accuracy, by essentially isolating
those images likely to impact relevance predictions. Intu-
itively, if a user has ruled out a subtree (“Target is bluer than
image with blueness X .”), it is likely redundant (low info
gain) to ask how the target compares to more data on that
path (“Is target bluer than image with blueness X − Y ?”),
i.e., ask the user to comment on something even less blue
than the previous exemplar.

User response likelihood. Optimizing Eqn. 5 requires es-
timating the likelihood of each of the three possible user re-
sponses to a question we have not issued yet. We develop
three possible strategies to estimate it. In each case, we use
cues from the available feedback history to form a “proxy”
for the user, essentially borrowing the probability that a new
constraint is satisfied from previously seen feedback.

For the first strategy, which we call All Relevant, we use
all relevant database images as the proxy. The assumption is
that the images that are relevant to the user thus far are (on
the whole) more likely to satisfy the user’s next feedback
than those that are irrelevant. This is reminiscent of active
classifier training, where posteriors estimated with the cur-
rent classifier are used as weights in the expected entropy
reduction of acquiring a new label. Ideally we would av-
erage the P (Sc,i = 1|Ii) values among only the relevant
images Ii, where c indexes the candidate new feedback for
a (yet unknown) user response R. Of course, we can only
predict relevance, so we compute the weighted probability
of each possible response R:

Pall(R = r|Ipm ,F) =
1

N

NX
i=1

P (yi = 1|Ii,F)P (Sc,i = 1|Ii),

(6)
where the all subscript stands for All Relevant.

The second strategy, which we call Most Relevant, is
similar, but uses only our current best guess for the target
image as the proxy:

Pmost(R = r|Ipm
,F) = P (Sc,b = 1|Ib), (7)

Pointy: more or less?  Shiny: more or less?  1 2 

3 

4 

Figure 2. We request feedback on images that elicit the most in-
formation, using binary search trees to focus the active selection.
In this sketch, M = 2 attribute trees are shown. Images with the
same color outline are the pairs considered at each round, and the
number in this color marks the image chosen at this round. Red
arrows denote the user’s responses. Here, first the user is asked to
compare his target to the boot pivot (1) in terms of pointiness; then
he is asked to compare it to (2) in terms of shininess, followed by
(3) in terms of pointiness, and so on. Best viewed in color.

where Ib is the database image that maximizes P (yi =
1|Ii,F), for i = 1, . . . , N .

The third strategy, which we call Similar Question, ex-
amines all previously answered feedback requests, and
copies the answer from the question that is most similar to
the new one. We define question similarity in terms of the
Euclidean distance between the pivot images’ descriptors
plus the similarity of the two attributes involved in either
question. We quantify the latter by the Kendall’s τ correla-
tion between the ranks they assign to a set of validation im-
ages. For example, this reflects that “feminine” and “heel
height” are more aligned than “feminine” and “grayness”.
Let r∗k denote the response to the most similar question k
found in the history F for the new pivot Ipm

under consid-
eration. Then we have:

Pquestion(R = r|Ipm ,F) =

{
1 if r = r∗k
0 otherwise .

(8)

We evaluate all three likelihood strategies in the results.

Recap of interaction loop. At each iteration, we present
the user with the pivot selected with Eqn. 5 and request the
specified attribute comparison. In order for the user to mon-
itor the search progress and stop if an image similar to his
target has been found, we also show him the current top-
ranked images. If further feedback is given, we first update
F with the user’s new image-attribute-response constraint.
Then we either replace the pivot in P for that attribute with
its appropriate child pivot (i.e., the left or right child in the
binary search tree if the response is “less” or “more”, re-
spectively) or terminate the exploration of this tree (if the
response is “equally”). Note that this means that the set of
pivots consists of pointers into the binary trees at varying
levels. See Figure 2. This is because our active selection
criterion considers which attribute will most benefit from
more refined feedback at any point in time.



Finally, the approach iterates until the user is satisfied
with the top-ranked results, or until all of the attribute trees
have bottomed out to an “equally” response from the user
(in which case, our method can gain no further knowledge
about the target given the available attribute vocabulary).

The cost of our selection method per round of feedback is
O(MN), whereM is the size of the attribute vocabulary,N
is the database size, and M � N . In contrast, a traditional
information gain approach would scan all database items
paired with all attributes, requiring O(MN2) time.

4. Experiments
We validate with three public datasets: Shoes [1], with

the attributes from [8] (14,658 images and 10 attributes);
outdoor Scenes (2,688 images and 6 attributes); and PubFig
celebrity Faces [10] (772 images and 11 attributes). We
concatenate GIST and color features for Shoes and Faces,
and GIST alone for Scenes. To train the relative attributes
am(·) and fit the sigmoid parameters in Sec. 3.3, we use the
human judgment data provided online by [8], with about
200 image pairs per attribute. See supp. file for details.

Evaluation metrics. In order to quantify accuracy pre-
cisely, we tell the user which image to search for. That
is, for a given search session, the user is instructed to give
feedback by comparing the target we specify to the vari-
ous methods’ selected exemplars. We report the percentile
rank each method assigns to the target at each iteration, de-
fined as the fraction of database images ranker lower than
the target. Higher percentile ranks are better; the ideal
method would rank the target at the top of the search results
page after very few iterations of feedback. Additionally, we
measure the NDCG@40 correlation between the method’s
full ranking and the ground truth ranking. Higher correla-
tions are better. To define the ground truth ranking, we sort
all database images according to their perceptual distance (a
learned metric on attributes and low-level features) from the
target, following [8]. The two metrics give complementary
information: while rank reveals how the exact target image
ranks, NDCG reveals how many images very similar to the
target are found among the top-ranked results.

Baselines. We compare our method ACTIVE ATTRIBUTE
PIVOTS against the following six methods:

• ATTRIBUTE PIVOTS is a simplified version of our
method that uses the proposed attribute trees to select
candidate images, but cycles among the attributes in a
round-robin fashion.
• ACTIVE ATTRIBUTE EXHAUSTIVE uses entropy to se-

lect questions like our method, but it evaluates all pos-
sible MxN candidate questions.
• TOP selects the image that has the current highest

probability of relevance and pairs it with a random at-

tribute. This method represents traditional interactive
methods that assume an “impatient” user for whom
feedback exemplars and search results must be one and
the same. It is similar in spirit to [8].

• PASSIVE selects a random image paired with a random
attribute for its question.

• ACTIVE BINARY FEEDBACK does not use statements
about the relative attribute strength of images, but
rather asks the user whether the exemplar is similar to
the target. This popular method uses a binary SVM to
rank images, and treats similar images as positives and
dissimilar images as negatives. It actively chooses the
image whose decision value is closest to 0, as in [23].

• PASSIVE BINARY FEEDBACK works as above, but ran-
domly selects the images for feedback.

Relative feedback methods use the same relevance pre-
diction function and only differ in the feedback they gather.

4.1. Results with Feedback by Simulated Users

To thoroughly test the methods, we first conduct exper-
iments where we simulate the user’s responses.2 We gen-
erate the response for, “Is the target image more, equally,
or less m than Ipm?” using the difference in the predicted
attribute values for the target and Ipm

. For a response of
“equally”, we use a threshold derived from the training
data. By extrapolating a sparse set of real human judgments
through a learned ranking function, we can perform large-
scale comparisons and isolate the impact of our idea from
the impact of the attribute rankers’ precision.

We initialize all attribute search methods with the same
feedback constraint. For ACTIVE BINARY FEEDBACK, we
respond with “similar” if the target and exemplar images are
within one standard deviation of the distances used for the
ground truth ranking. We initialize this method with one
positive and one negative image by peeking at the distances
between the target image and a pool of 40 images. We add
Gaussian noise to the relevance predictions of all methods in
order to reflect the discrepancy between perceived and pre-
dicted attributes. See supp. for more details. We show all
results over 200 randomly chosen queries (target images).

Comparison of likelihood models. Figure 3 compares
the three proposed methods of predicting the user response.
Most Relevant consistently outperforms the other two meth-
ods on all but the Scenes. This suggests that our best guess
at the target tends to be a sufficient proxy, having a fairly
similar attribute signature. All Relevant is slightly weaker,
indicating that isolating the most relevant instance gives a

2The protocol is related to standard validation for active learning, where
the algorithm receives the labels for those examples it queries, even if a
human is not answering “live” in the loop. Note, gathering all possible
comparisons in advance would cost $2B if paying Turkers 1 cent each!
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Figure 3. Comparing the proposed models for the likelihood of a
user’s response (higher curves are better). Best viewed in color.
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Figure 4. Comparison to existing interactive search methods
(higher and steeper curves are better). Best viewed in color.

Method/Dataset Shoes Scenes Faces
Active attribute pivots (Ours) 0.05 0.01 0.01

Active attribute exhaustive 656.27 28.20 3.42
Table 1. Selection time for one iteration of our method vs. the ex-
haustive active baseline, in seconds.

“cleaner” likelihood than attempting to refine it with our
uncertainty about each relevant instance. Similar Question
performs the best for a fraction of the iterations on Scenes,
but does poorly on Faces. This is likely because we can-
not estimate attribute similarity reliably due to the distinct
face attributes (e.g., face “chubbiness” has no strongly cor-
related attributes, whereas scene “openness” does). In all
remaining results, we use the Most Relevant method.

Comparison to existing methods. Figure 4 compares all
methods on all three datasets. Overall, our method finds the
target image most efficiently. Not only does it outperform

traditional passive selection (PASSIVE), but it also substan-
tially improves over the TOP approach. This shows that
relative attribute feedback alone (the contribution of [8])
does not offer the most efficient search; rather, our idea to
actively elicit comparisons is essential. We also see that
our full active approach outperforms the round-robin vari-
ant of our method (ATTRIBUTE PIVOTS), with an average
percentile rank 7.6% better after only 3 iterations. This
shows actively interleaving the trees allows us to focus on
attributes that better distinguish the relevant images.

Our method also outperforms ACTIVE ATTRIBUTE EX-
HAUSTIVE.3 This shows that the attribute trees serve as a
form of regularization, helping our method focus on those
comparisons that a priori may be most informative. Fur-
thermore, our method is orders of magnitude faster (see Ta-
ble 1).

The results confirm the striking advantage of attribute
feedback compared to binary relevance feedback. Binary
feedback has an advantage only in the first few iterations,
likely because we generously initialize it with 2 feedback
statements. We find that both feedback modes require sim-
ilar user time: 6.4 s for relative, and 5.5 s for binary, and
so the trends remain if we plot rank as a function of user
time (see supp). Interestingly, we find that PASSIVE BI-
NARY FEEDBACK is actually stronger than its active coun-
terpart for this data. This is likely because images near the
decision boundary were often negative, whereas the passive
approach samples more diverse instances.

In practical terms, we are interested in how many iter-
ations it takes to get the target in the top 40 most relevant
images, since that is how many images fit on a typical search
page (e.g., on Google). On average our method uses 12, 10,
and 4 iterations to place the target in the top 40 for Shoes,
Scenes, and Faces, vs. 21, 21, and 9 iterations for TOP.
Thus, our method saves a user up to 70 seconds per query.

4.2. Results with Live Users

Next, we test our method “live” in real time with Me-
chanical Turk workers. We compare its performance against
our ATTRIBUTE PIVOTS and the strongest baseline, TOP.
We issue 50 queries for Shoes-1k (a random 1000-image
subset of Shoes), Scenes, and Faces-Unique (1 image for
each of 200 individuals from the original PubFig dataset
[10], using the 6 most predictable attributes). All methods
share one simulated feedback statement at iteration 0, which
we do not plot. See supp. for details. Note, this experiment
is only possible because our method can make decisions in
real time, unlike the exhaustive active method.

Figure 5 shows the results. Consistent with the results
above, we see that typically our method ranks the target im-
age better than the baselines. We achieve a 100-200 raw

3The exhaustive baseline was too expensive to run on all 14K Shoes.
On a 1000-image subset, it does similarly as on other datasets; see supp.
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Figure 5. Our method makes quick and reliable choices, allowing
the MTurk users to more efficiently find the target.
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Figure 6. Using the user’s feedback on the left, we retrieve the
images on the right at the top of the results list.

rank improvement on two datasets, and a negligible 0-10
raw rank loss on Faces. This is a very encouraging result,
given the noise inherent in MTurk responses (in spite of
our best efforts at qualification tests) and the difficulty of
predicting all attributes reliably. Our informativeness pre-
dictions on Faces-Unique are imprecise since the facial at-
tributes are difficult for both the system and humans to com-
pare reliably (e.g., it is hard to say who among two white
people is whiter). This difficulty seems to hurt all methods,
judging by their flatter curves. Since the rank metric does
not give any credit for finding an image very close to the tar-
get, we also asked a separate set of workers to judge whether
any of the top 10 ranked images were “very similar” to the
target. For Shoes-1k, our full method takes only 1.9 itera-
tions on average to find one that is very similar, whereas our
ATTRIBUTE PIVOTS require 2.4 and TOP requires 3.15.

Figure 6 shows an example search done by an MTurker.
Notice how our method generates useful comparison ques-
tions across the different attributes, quickly converging on
top-ranked images that look like the target.

Conclusion Today’s visual search systems place the bur-
den on the user to initiate useful feedback by labeling im-
ages as relevant. In contrast, our system actively guides the
search based on visual comparisons, helping a user navi-
gate the image database via relative semantic properties.
Compared to existing active and passive methods, our pivot-
based formulation is both more efficient (by orders of mag-
nitude) and more accurate in practice. Results with both

simulated and live users confirm that we can rapidly pin-
point the visual target using a series of well-chosen com-
parative queries. In future work, we plan to explore ways to
personalize results given a user’s prior search sessions.
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