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This document contains information supplementary to
the main paper. In particular:

• Sec 1: Architectures for our method and baselines
were overviewed in Sec 3.2, Fig 2, and Sec 4 in the
paper. We specify these in more detail in Sec 1 in this
document.

• Sec 2: Optimization details are specified in Sec 2.

• Sec 3.1: In Sec 3.3, we argued that ShapeCodes ben-
efit object recognition by lifting 2D views to 3D. We
also briefly mentioned that ShapeCodes are equivariant
to 3D rotations. In Sec 3.1, we explain the rotational
equivariance of ShapeCodes and its connection to their
usefulness for object recognition.

• Sec 3.2: In Sec 4.3 (in particular, Tab 2) in the pa-
per, we presented classification results using our fea-
tures with fixed 1000-sample per class training sets,
and mentioned experiments with varying training set
sizes. In Sec 3.2 in this document, we present the re-
sults of those experiments, supplementing the results
in the paper. Additionally, rather than reporting only
best layer performance per method as in the paper, re-
sults are reported per-layer for fc1, fc2, and fc3.

• Sec 3.3: In Sec 4.3 in the paper, we evaluated our un-
supervised features for discriminativeness when used
for a classification task. We also referenced similar re-
sults for an image retrieval task, but omitted details due
to space constraints. In Sec 3.3 in this document, we
present these experiments and results.

• Sec 3.4: In Sec 4.3 in the paper, we compared our
ShapeCode features against those from two alternative
single-view 3D approaches: PointSetNet [5] and 3D-
R2N2 [3]. We provide additional details on those ex-
periments in Sec 3.4.

• Sec 4.1 and Sec 4.2: We showed quantitative recon-
struction results on ModelNet seen/unseen class and

ShapeNet seen/unseen class datasets in Sec 4.2 and
Tab 1 in the paper. Here, we present additional anal-
ysis of our reconstruction results in two ways: (i) in
Sec 4.1, we show category-wise quantitative results
for our image-based shape reconstruction experiments,
and (ii) in Sec 4.2, we analyze which views lead to
higher and lower reconstruction errors for objects of
each category.

• Sec 4.3: We showed a small selection of viewgrid re-
constructions in Fig 3 in the paper. Here, we present
randomly selected examples of inferred viewgrids by
our method on all seen and unseen classes in both
datasets, in Sec 4.3.

1. Network architectures

Architectures for our method and baselines were
overviewed in Sec 3.2, Fig 2, and Sec 4 in the paper. Fig 1
shows the complete specifications of network architectures
used in training various methods used in our experiments:
Ours (and Ours w. canonical alignment), Autoencoder, Dr-
LIM, and Egomotion. As shown in the figure, all architec-
tures are kept as close to identical as possible, for fairness.
Context is kept close to the authors’ original model in [12].

2. Optimization details

Models are initialized with parameters drawn from a uni-
form distribution between -0.1 and +0.1. The mean squared
error loss is optimized through standard minibatch SGD
(batch size 32, momentum 0.9) via backpropagation. For
our method and all baselines in Paper Sec 4, we optimize
the learning rate hyperparameter on validation data. Train-
ing terminates when the loss on the validation set begins to
rise.
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Network architecture specifications
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Figure 1: Architecture of our system and various baselines. See Sec 1.



3. ShapeCodes for recognition
3.1. Why are ShapeCodes useful for recognition?

ShapeCodes lift 2D views to 3D, which, as shown in the
paper, is beneficial for downstream recognition tasks. Here,
we elaborate on the rotation-equivariance of ShapeCode
features and its connection to discriminativeness.

ShapeCode is rotation-equivariant: ShapeCodes aim to
capture a representation of the object shape, aligned to
the single observed viewpoint. When the input viewpoint
changes, the target viewgrid for training ShapeCodes is a
simple transformation of the original target viewgrid. Views
in the viewgrid are reindexed to their new relative positions
to the input. ShapeCodes thus encourage equivariance to
observed viewpoint: for an object instance X with views
y(θi),

ShapeCode(y(θi + ∆θ)) = f∆θ(ShapeCode(θi)), (1)

where f∆θ(.) is a simple function representing the
ShapeCode “equivariance map” for viewpoint rotations by
∆θ.

Orbits of equivariance maps: If rotation is only per-
mitted along one axis (easy to generalize to multiple
axes), and ∆ is sufficiently small, then all view features
ShapeCode(y(θ)) can be reached from a given starting
view ShapeCode(y(θ0)) by applying f∆θ over and over,
θ−θ0
∆θ times. In other words, in the learned ShapeCode

space, all views lie within an “orbit” of the simple equiv-
ariance map f∆θ.

Equivariant features for recognition: Why should these
equivariant features aid recognition? Consider an “object
instance classification” problem: all views y(θ) of an ob-
ject X must be mapped to the same label. In the ShapeCode
space, these views all lie within the orbit of a simple func-
tion. Instance classification is now the problem of drawing
boundaries around this simple orbit, which requires only a
low-capacity classifier. This is exactly what we mean when
we say a feature space is discriminative: a classifier is easy
to learn.

Taking a step back, classification by definition requires
mapping all instances of a class to one label, so it is clear
that it requires invariance to intra-class variations, includ-
ing 3D rotations. For any such intra-class variation, equiv-
ariance to that variation is a principled intermediate objec-
tive, since invariance is a special case of equivariance. The
usefulness of equivariant features in recognition has been
explored before in [9, 4, 10, 7]. Intuitively, equivariance is
better achieved without losing specificity, since a represen-
tation fully invariant to strong viewpoint changes—to the

point of entirely different aspects—must also wash away
defining properties of the object category.

3.2. Per-layer classification results vs. training
dataset size

Nearest neighbor classification results are presented in
the paper in Sec 4.3, as a means of evaluating the unsuper-
vised features learned by our method for discriminativeness.
In particular, Tab 2 in the main paper shows best results
from across fc1, fc2, and fc3 for each method. Here, we
break these results down layer-wise.

In addition, nearest neighbor classifiers are often sensi-
tive to the size and constitution of the training set, so we also
test the stability of the results in Tab 2 from the main paper.
To do this, we sample multiple training sets of varying sizes
ranging from 50 to 1000 samples per class (50, 100, 200,
300, . . . 1000), and report accuracies for k-nearest neighbor
classification (k=5 as in the paper) with each training set.

These are presented for both seen and unseen class sub-
sets of both ModelNet and ShapeNet, in Fig 2. We observe
that curves corresponding to different methods rarely over-
lap as the training set is varied, establishing the stability of
the results in Tab 2. In particular, our ShapeCodes continue
to produce the most discriminative features at all training
set sizes. Trends for fc1, fc2, and fc3 are all similar.

3.3. Image retrieval results

In Sec 4.3 in the paper, we evaluated our unsupervised
features for discriminativeness when used for a classifica-
tion task. We also referenced similar results for an image
retrieval task, but omitted details due to space constraints.
For this task, we present a query image from the test set,
and retrieve the closest images in the training set, as mea-
sured by Euclidean distance in the learned feature space.
For representations that encode semantics, these closest im-
ages would belong to the same category as the query, so we
evaluate various representations on their ability to retrieve
images from the same class as the query.1

We measure top-1, top-5, and top-20 accuracies. We sep-
arately test fc1, fc2, and fc3 features from our method and
the baselines, as in the classification experiments in Sec 4.3
in the paper. Results are shown in Tab 1, for both seen and
unseen classes on ModelNet and ShapeNet.

Trends are very similar to those observed for classifica-
tion in the paper. Ours and Ours w. CA once again easily
outperform all baselines. Performance for all methods re-
main roughly similar at all three feature layers, except Dr-
LIM. DrLIM is strongest at fc1, and weakens at fc2 and still

1For the unseen class experiments, images were retrieved from the cor-
responding unseen class training set, disjoint from the test set from which
queries were drawn.



ModelNet seen classes: k-NN classification results with varying training set sizes
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ModelNet unseen classes: k-NN classification results with varying training set sizes
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ShapeNet seen classes: k-NN classification results with varying training set sizes
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ShapeNet unseen classes: k-NN classification results with varying training set sizes
fc1 features fc2 features fc3 features

50 200 400 600 800 1000
Number of Training Samples per Class

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Ac
cu

ra
cy

VGG (supervised)
Pixels
Random weights
DrLIM
 Autoencoder
Context
Egomotion
Ours w. canonical alignment
Ours

50 200 400 600 800 1000
Number of Training Samples per Class

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Ac
cu

ra
cy

VGG (supervised)
Pixels
Random weights
DrLIM
 Autoencoder
Context
Egomotion
Ours w. canonical alignment
Ours

50 200 400 600 800 1000
Number of Training Samples per Class

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Ac
cu

ra
cy

VGG (supervised)
Pixels
Random weights
DrLIM
 Autoencoder
Context
Egomotion
Ours w. canonical alignment
Ours

Figure 2: ModelNet and ShapeNet seen and unseen classes k-NN classification, varying training set size. Each column shows
a different layer (fc1, fc2, fc3) for ShapeCodes and various baselines. VGG and Inpainting baselines do not use the same
architecture; their curves are the same in all three columns. See Sec 3.2.



further at fc3, indicating that the invariance enforced by Dr-
LIM at fc3 (See Fig 1) leads to loss of discriminativeness.

An interesting trend related to generalization to unseen
classes is observed most clearly in the ShapeNet experi-
ments, where the number of classes among seen and unseen
classes is comparable (30 and 25 respectively), so that the
numbers are roughly comparable among seen and unseen
class experiments. Note how features from the Autoencoder
baseline have much lower accuracies on unseen classes than
on seen classes, demonstrating lack of generalization. Our
ShapeCodes have very similar accuracies on seen and un-
seen classes, thus establishing that they learn generalizable
features. DrLIM and Egomotion accuracies are also com-
parable for seen and unseen classes, but significantly lower
than our method.

3.4. Details of comparison to PointSetNet and 3D-
R2N2

In Sec 4.3 in the paper, we compared the classification
performance of our features learned using a viewgrid recon-
struction objective to features from two baseline approaches
designed primarily for 3D reconstruction. Here we recap
those baselines and provide additional details about this
comparison.

PointSetNet [5] produces point coordinates representing
the “point cloud” representation of object shape. As input,
it receives a single image of an object and its ground truth
segmentation mask. We use models provided by the au-
thors, which were trained in Tensorflow on ShapeNet ob-
jects. We extract 768-dimensional features from the “two-
branch” variant of their model. These features are extracted
at the output of the encoder, right before processing through
the first deconvolutional layer.

3D-R2N2 [3] constructs a voxel grid from any given
number of views of an object. In our experiments, we op-
erate it in single image mode. The authors provide mod-
els trained on ShapeNet in Theano. We extract 8192-
dimensional (128x4x4x4 3D convolutional maps flattened)
features at the output of the 3D convolutional LSTM in the
encoder of their “Residual GRU network” model.

Note that the goal in those papers is reconstruction, not
recognition. So the off-the-shelf models we use for this
application are being used outside the authors original in-
tent. In that sense, they suffer some inherent disadvantages.
Being trained specifically for reconstruction, these existing
off-the-shelf models lack the generality of our models. In
particular:

• The authors’ models were trained on images of objects
with limited variation in viewpoint (PointSetNet: ele-
vation fixed at 20°, and 3D-R2N2: elevations sampled
from 25°to 30°). Throughout our experiments, we test

on images more from more diverse viewpoints, vary-
ing over ± 90°(see Tab 1 (left) in the paper).

• Both these methods were trained solely on ShapeNet,
so transfer to ModelNet is difficult, as reflected in their
scores in Tab 2 in the paper.

• Authors of both these methods render object views
slightly differently from us. Visually, their images
have light gray backgrounds while ours are white.
Their images also have a mix of grayscale and color
objects, while ours are all rendered in grayscale for
uniformity. We will open-source our rendering codes
for future use and comparison.

• PointSetNet in particular was designed to exploit
ground truth segmentation masks. However, these are
not available in the unsupervised image feature learn-
ing setting, so we set the segmentation mask to the
whole image.

We are the first to leverage single-view reconstruction as a
self-supervised feature learning task that encourages useful
shape cues to be captured. Our comparison to [5] and [3]
is intended mainly to test that our approach yields better
features than off-the-shelf prior methods that target single-
view reconstruction as an end in itself. It is encourag-
ing that targeting viewgrids as implicit 3D representations
through our method works better than targeting point clouds
or voxel grids (both explicit 3D representations) through
these prior approaches. As pointed out in Sec 3.1 in the pa-
per, viewgrids offer particular advantages for our embodied
self-supervised learning setting.

4. Viewgrid lifting results analysis
4.1. Category-wise viewgrid results

We showed quantitative reconstruction results on Mod-
elNet seen/unseen class and ShapeNet seen/unseen class
datasets in Sec 4.2 and Tab 1 in the paper.

To break down those results in more detail, we present
per-pixel mean squared errors for each category individu-
ally in Fig 3 and 4, arranged in sorted order for seen and
unseen classes separately for each dataset.

As can be seen, while the distribution of errors among
unseen classes is shifted towards higher errors from the
seen classes, there is a significant overlap i.e., many un-
seen classes have lower reconstruction errors than many
seen classes, indicating significant generalization from seen
to unseen classes.

4.2. Influence of observed view position

Having analyzed reconstruction error on a category-wise
basis in Sec 4.1, we now further break down the errors sum-
marized in Tab 1 in the paper, this time on the basis of the



ModelNet retrieval results
Datasets→ ModelNet-seen classes (30 cls)
Layers→ fc1 fc2 fc3
Methods↓/Metrics→ top-1 top-5 top-20 top-1 top-5 top-20 top-1 top-5 top-20

VGG [13] (supervised) 67.0 60.0 50.5 67.0 60.0 50.5 67.0 60.0 50.5
Pixels 55.2 46.9 36.6 55.2 46.9 36.6 55.2 46.9 36.6
Random weights 51.6 44.2 34.9 50.0 42.9 34.2 50.4 42.8 34.0
DrLIM [6] 58.8 51.1 41.7 56.7 48.8 39.7 53.8 46.3 37.1
Autoencoder [8, 2, 11] 54.8 46.5 37.5 55.1 46.7 37.5 55.5 47.3 37.7
Context [12] 54.0 45.7 36.5 54.0 45.7 36.5 54.0 45.7 36.5
Egomotion [1] 56.6 48.8 39.6 57.6 49.6 39.9 57.4 49.6 39.7
Ours w. canonical alignment 64.3 57.9 49.5 64.4 58.2 50.2 63.5 57.7 50.0
Ours 65.6 59.2 49.7 64.9 58.3 49.5 65.5 58.4 49.7

Datasets→ ModelNet-unseen classes (10 cls)
Layers→ fc1 fc2 fc3
Methods↓/Metrics→ top-1 top-5 top-20 top-1 top-5 top-20 top-1 top-5 top-20

VGG [13] (supervised) 64.4 56.7 49.3 64.4 56.7 49.3 64.4 56.7 49.3
Pixels 60.3 53.9 44.5 60.3 53.9 44.5 60.3 53.9 44.5
Random weights 60.0 52.6 44.3 57.9 51.7 43.5 57.9 51.1 43.0
DrLIM [6] 64.7 58.5 49.5 63.9 56.8 47.6 60.7 54.0 44.8
Autoencoder [8, 2, 11] 60.5 54.7 45.5 60.0 54.3 45.5 60.6 54.0 45.1
Context [12] 60.3 54.4 45.1 60.3 54.4 45.1 60.3 54.4 45.1
Egomotion [1] 63.4 57.4 48.2 64.2 57.3 48.2 63.8 57.4 48.3
Ours w. canonical alignment 69.0 63.9 56.3 68.8 63.8 56.5 68.4 63.3 56.3
Ours 69.8 64.7 55.9 69.2 63.9 55.5 68.5 64.0 55.2

ShapeNet retrieval results
Datasets→ ShapeNet-seen classes (30 cls)
Layers→ fc1 fc2 fc3
Methods↓/Metrics→ top-1 top-5 top-20 top-1 top-5 top-20 top-1 top-5 top-20

VGG [13] (supervised) 54.7 49.3 42.0 54.7 49.3 42.0 54.7 49.3 42.0
Pixels 42.8 36.5 28.6 42.8 36.5 28.6 42.8 36.5 28.6
Random weights 38.6 32.9 26.4 37.5 31.9 25.8 36.4 32.0 25.7
DrLIM [6] 47.1 40.2 31.3 45.9 39.6 30.2 43.3 37.1 28.9
Autoencoder [8, 2, 11] 42.5 36.8 29.6 42.6 37.1 29.8 42.3 37.4 29.5
Context [12] 46.0 39.1 31.1 46.0 39.1 31.1 46.0 39.1 31.1
Egomotion [1] 48.9 42.1 33.3 47.5 40.6 32.1 47.2 40.1 31.7
Ours w. canonical alignment 56.1 50.8 44.0 57.3 51.6 45.2 56.9 51.4 43.6
Ours 56.0 50.2 42.4 55.8 50.5 42.8 55.3 49.6 42.2

Datasets→ ShapeNet-unseen classes (25 cls)
Layers→ fc1 fc2 fc3
Methods↓/Metrics→ top-1 top-5 top-20 top-1 top-5 top-20 top-1 top-5 top-20

VGG [13] (supervised) 54.0 49.3 42.4 54.0 49.3 42.4 54.0 49.3 42.4
Pixels 44.6 40.4 33.6 44.6 40.4 33.6 44.6 40.4 33.6
Random weights 26.6 20.8 15.4 25.9 21.0 15.3 25.7 20.4 15.2
DrLIM [6] 48.1 41.5 36.1 48.3 41.8 34.7 44.9 41.1 34.1
Autoencoder [8, 2, 11] 30.7 23.9 17.0 31.1 23.9 17.3 30.5 23.9 17.2
Context [12] 46.8 42.1 35.4 46.8 42.1 35.4 46.8 42.1 35.4
Egomotion [1] 49.9 43.6 37.1 49.4 42.8 36.3 48.7 42.5 36.1
Ours w. canonical alignment 53.7 49.1 42.9 53.4 49.6 43.5 52.8 49.1 43.6
Ours 54.9 49.3 42.7 55.1 49.5 42.7 54.7 49.2 42.4

Table 1: Above: Retrieval experiments on ModelNet (1000 training samples per class). Seen class (top) and unseen class
(bottom) results. Results reported as top-1, top-5 and top-20 accuracies. (Higher is better.) Below:.Retrieval experiments on
ShapeNet (1000 training samples per class). Seen class (top) and unseen class (top) results. Results reported as top-1, top-5
and top-20 accuracies. (Higher is better.) See Sec 3.3.

dependence of those errors on the observed view. Specifi-
cally, in both ModelNet and ShapeNet, models are manually
aligned to some canonical starting positions. This means
that we can meaningfully attempt to understand which posi-
tions in the viewgrid, when observed, led to higher or lower
reconstruction errors for the full viewgrid for each category.
In other words, which views are more or less informative
to our ShapeCodes learning approach? The following is a
longer version of Table 4 in the main paper and accompa-

nying discussion.
Fig 5 shows these results for ModelNet seen classes. For

each class, a heatmap of mean-square errors is overlaid over
the average viewgrid for that class. We also show a map for
all seen classes at the top; the accompanying colorbar illus-
trates how lower MSEs correspond to darker, colder, blue
colors, and higher MSEs to lighter, warmer, yellow col-
ors. Similar charts for ModelNet unseen classes, ShapeNet
seen classes, and ShapeNet unseen classes are shown in Fig-



ModelNet category-wise MSE

Figure 3: ModelNet seen (top) and unseen (bottom) class
reconstruction performance in MSE per class (lower is bet-
ter). Seen classes are not evenly represented in the training
set, so the number of training samples per class is indicated
in parentheses next to the corresponding class name. See
Sec 4.1.

ures 6, 7, and 8 respectively.

Studying these heatmaps reveal some intuitive and inter-
esting trends. Across all datasets, perfectly aligned viewing
positions from where only a single, or a small number of
faces of an object are visible, have yellowish, lighter high-
lights indicating high reconstruction errors conditioned on
those views i.e. lower informativeness. This is intuitively
reasonable, as observing one face leaves more of the ob-
ject fully unobserved, making the hallucination of rotated
views much harder. See for instance, the ModelNet seen
class “bench” heatmap in Fig 5, which has characteristic

ShapeNet category-wise MSE

Figure 4: ShapeNet seen (top) and unseen (bottom) class
reconstruction performance in MSE per class (lower is bet-
ter). Seen classes are not evenly represented in the training
set, so number of training samples per class are indicated in
parentheses next to the class names. See Sec 4.1.

yellowish horizontal and vertical stripes running across the
viewgrid corresponding to elevations and azimuths that only
reveal a small number of faces of the object. Top and bot-



tom views, sampled at -90°and +90°in ModelNet, are con-
sistently uninformative, since very different shapes can have
very similar overhead views. Among the unseen classes in
Fig 6, see the chair class heatmap that also shows how per-
fectly aligned views lead to poor viewgrid inference.

Shapes that have narrow linear projections along some
directions tend to present very little information from the
corresponding views. See the horizontal view of the air-
plane and the keyboard (middle row in the corresponding
viewgrids, corresponding to zero azimuth) in Fig 5, or the
side-on views for the display category heatmap in Fig 7, and
for the earphone category heatmap in Fig 8.

Overall, these trends largely agree with our intuitive no-
tions of which views are most informative for 3D under-
standing, and serve as evidence that our method learns to
lift 2D shapes to 3D shapes by observing meaningful and
appropriate cues.

4.3. Additional viewgrid examples

Finally, we present additional examples of reconstruc-
tion, to accompany those presented in Fig 3 in the paper. In
particular, we show a randomly sampled object (observed
at a random view) and the corresponding viewgrid recon-
structed by our method for each seen and unseen category
in ModelNet (seen: Fig 9, unseen: Fig 10) and ShapeNet
(seen: Fig 11, unseen: Fig 12).

These are presented for inspection to get a sense for
the tendencies, successes, and failings of the underlying
ShapeCodes representation. See for example the keyboard
example in Fig 9, where the observed view is a very nar-
row strip, with slight variations in shading providing just the
only geometric cue. Yet, our reconstruction is reasonable.
Even for the guitar example in the same figure, a similar
linear view with slight shading differences is observed. Our
method correctly reconstructs guitar-like shapes, since the
pose and shape of the guitar are insufficiently constrained
by the observed view, our method averages over all allow-
able possibilities to minimize MSE, resulting in fuzzy out-
put views.

Another interesting example is the laptop image in Fig 9,
where the observed view could represent a laptop that is
opened at either the front end or the back end. In the recon-
struction, the network appears to average over both possibil-
ities in all views, so that there are several views in the recon-
structed viewgrid that look like a laptop with two screens
open and facing each other.

Other cases demonstrate that the reconstructed views
output by our method do not fully represent its internal un-
derstanding. For instance, in the range hood example in
Fig 9, the reconstructed version of the observed view ap-
pears to lose the clear layering in the original view that is
an important cue in understanding its geometry. However,
the remaining views in the reconstruction demonstrate that

while the network has not successfully rendered the layer-
ing in the observed view, the network did observe the layer-
ing cue and form an appropriate representation of the shape.

The “table”, “night stand”, “dresser”, and “desk” recon-
structions among unseen classes in Fig 10 also demonstrate
good generalization to unseen shapes. On the ShapeNet
dataset too, the example reconstructions for “camera”,
“can”, “basket” in Fig 12 also show evidence of good gen-
eralization.

Our method learns ShapeCode representations that lift
2D views to 3D, by training on the viewgrid reconstruction
task. As such, the recovered viewgrids shown in these fig-
ures are important not as photorealistic 3D reconstructions,
but rather as visualized evidence of meaningful shape rep-
resentations being trained on the pretext task, incorporating
uncertainty about unobserved views.
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ModelNet seen classes: reconstruction errors conditioned on observed position - part 1 of 2: “airplane” to “lamp”

Figure 5: ModelNet seen classes reconstruction MSE, conditioned on observed view - part 1 of 2 (best observed in pdf at
high resolution). See Sec 4.2. (continues on the next page)



ModelNet seen classes: reconstruction errors conditioned on observed position - part 2 of 2: “laptop” to “xbox”

Figure 5: (continued from the previous page) ModelNet seen classes reconstruction MSE, conditioned on observed view -
part 2 of 2 (best observed in pdf at high resolution). See Sec 4.2.



ModelNet unseen classes: reconstruction errors conditioned on observed position

Figure 6: ModelNet unseen classes reconstruction MSE, conditioned on observed view (best observed in pdf at high resolu-
tion). See Sec 4.2.



ShapeNet seen classes: reconstruction errors conditioned on observed position - part 1: “airplane” to “jar”

Figure 7: ShapeNet seen classes reconstruction MSE, conditioned on observed view (best observed in pdf at high resolution).
See Sec 4.2. (continues on the next page)



ShapeNet seen classes: reconstruction errors conditioned on observed position - part 2: “knife” to “watercraft”

Figure 7: (continued from previous page) ShapeNet seen classes reconstruction MSE, conditioned on observed view (best
observed in pdf at high resolution). See Sec 4.2.



ShapeNet unseen classes: reconstruction errors conditioned on observed position

Figure 8: ShapeNet unseen classes reconstruction MSE, conditioned on observed view (best observed in pdf at high resolu-
tion). See Sec 4.2.



ModelNet seen classes reconstruction examples - part 1 of 4: “airplane” to “curtain”
airplane bench bookshelf

bottle bowl car

cone cup curtain

Figure 9: Examples of randomly sampled reconstructions from various ModelNet seen classes - part 1 of 4 (best observed in
pdf at high resolution). See Sec 4.3. (continues on the next page)



ModelNet seen classes reconstruction examples - part 2 of 4: “door” to “person”
door flower pot glass box

guitar keyboard lamp

laptop mantel person

Figure 9: (continued from the previous page) Examples of randomly sampled reconstructions from various ModelNet seen
classes - part 2 of 4 (best observed in pdf at high resolution). See Sec 4.3. (continues on the next page)



ModelNet seen classes reconstruction examples - part 3 of 4: “piano” to “tv stand”
piano plant radio

range hood sink stairs

stool tent tv stand

Figure 9: (continued from the previous page) Examples of randomly sampled reconstructions from various ModelNet seen
classes - part 3 of 4 (best observed in pdf at high resolution). See Sec 4.3.



ModelNet seen classes reconstruction examples - part 4 of 4: “vase” to “xbox”
vase wardrobe xbox

Figure 9: Examples of randomly sampled reconstructions from various ModelNet seen classes - part 4 of 4 (best observed in
pdf at high resolution). See Sec 4.3. (continues on the next page)



ModelNet unseen classes reconstruction examples - part 1 of 2: “bathtub” to “monitor”
bathtub bed chair

desk dresser monitor

Figure 10: Examples of randomly sampled reconstructions from various ModelNet unseen classes - part 1 of 2 (best observed
in pdf at high resolution). See Sec 4.3. (continues on the next page)



ModelNet unseen classes reconstruction examples - part 2 of 2: “night stand” to “toilet”
night stand sofa table

toilet

Figure 10: (continued from the previous page) Examples of randomly sampled reconstructions from various ModelNet unseen
classes - part 2 of 2 (best observed in pdf at high resolution). See Sec 4.3.



ShapeNet seen classes reconstruction examples - part 1 of 2: “airplane” to “jar”
airplane bathtub bench bookshelf

bottle bus cabinet car

chair clock display faucet

file cabinet guitar jar knife

Figure 11: Examples of randomly sampled reconstructions from various ShapeNet seen classes - part 1 of 2 (best observed
in pdf at high resolution). See Sec 4.3. (continues on next page)



ShapeNet seen classes reconstruction examples - part 2 of 2: “knife” to “watercraft”
lamp laptop loudspeaker motorcycle

pistol pot rifle sofa

table telephone train trash can

watercraft

Figure 11: (continued from the previous page) Examples of randomly sampled reconstructions from various ShapeNet seen
classes - part 2 of 2 (best observed in pdf at high resolution). See Sec 4.3.



ShapeNet unseen classes reconstruction examples - part 1 of 2: “bag” to “mug”
bag basket bed birdhouse

bowl camera can cap

computer keyboard dishwasher earphone helmet

mailbox microphone microwave mug

Figure 12: Examples of randomly sampled reconstructions from various ShapeNet unseen classes - part 1 of 2 (best observed
in pdf at high resolution). See Sec 4.3. (continues on the next page)



ShapeNet unseen classes reconstruction examples - part 2 of 2: “piano” to “washer”
piano pillow printer remote

rocket skateboard stove tower

washer

Figure 12: (continued from the previous page) Examples of randomly sampled reconstructions from various ShapeNet unseen
classes - part 2 of 2 (best observed in pdf at high resolution). See Sec 4.3.




