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Abstract. In a wearable camera video, we see what the camera wearer
sees. While this makes it easy to know roughly what he chose to look at, it
does not immediately reveal when he was engaged with the environment.
Specifically, at what moments did his focus linger, as he paused to gather
more information about something he saw? Knowing this answer would
benefit various applications in video summarization and augmented re-
ality, yet prior work focuses solely on the “what” question (estimating
saliency, gaze) without considering the “when” (engagement). We pro-
pose a learning-based approach that uses long-term egomotion cues to de-
tect engagement, specifically in browsing scenarios where one frequently
takes in new visual information (e.g., shopping, touring). We introduce
a large, richly annotated dataset for ego-engagement that is the first of
its kind. Our approach outperforms a wide array of existing methods.
We show engagement can be detected well independent of both scene
appearance and the camera wearer’s identity.

1 Introduction

Imagine you are walking through a grocery store. You may be mindlessly plow-
ing through the aisles grabbing your usual food staples, when a new product
display—or an interesting fellow shopper—captures your interest for a few mo-
ments. Similarly, in the museum, as you wander the exhibits, occasionally your
attention is heightened and you draw near to examine something more closely.

These examples illustrate the notion of engagement in ego-centric activity,
where one pauses to inspect something more closely. While engagement happens
throughout daily life activity, it occurs frequently and markedly during “brows-
ing” scenarios in which one traverses an area with the intent of taking in new
information and/or locating certain objects—for example, in a shop, museum,
library, city sightseeing, or touring a campus or historic site.

Problem definition We explore engagement from the first-person vision per-
spective. In particular, we ask: Given a video stream captured from a head-
mounted camera during a browsing scenario, can we automatically detect those
time intervals where the recorder experienced a heightened level of engagement?
What cues are indicative of first-person engagement, and how do they differ from
traditional saliency metrics? To what extent are engagement cues independent
of the particular person wearing the camera (the “recorder”), or the particular
environment they are navigating? See Fig. 1.

While engagement is interesting in a variety of daily life settings, for now we
restrict our focus to browsing scenarios. This allows us to concentrate on cases
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Fig. 1: The goal is to identify time intervals when the camera wearer’s engagement
is heightened, meaning he interrupts his ongoing activity to gather more information
about some object in the environment. Note that this is different than detecting what
the camera wearer sees or gazes upon, which comes for “free” with a head-mounted
camera and/or eye tracking devices.

where 1) engagement naturally ebbs and flows repeatedly, 2) the environment
offers discrete entities (products in the shop, museum paintings, etc.) that may
be attention-provoking, which aids objectivity in evaluation, and 3) there is high
potential impact for emerging applications.

Applications A system that can successfully address the above questions would
open up several applications. For example, it could facilitate camera control, al-
lowing the user’s attention to trigger automatic recording/zooming. Similarly, it
would help construct video summaries. Knowing when a user’s engagement is
waning would let a system display info on a heads-up display when it is least
intrusive. Beyond such “user-centric” applications, third parties would relish
the chance to gather data about user attention at scale—for instance, a vendor
would like to know when shoppers linger by its new display. Such applications
are gaining urgency as wearable cameras become increasingly attractive tools in
the law enforcement, healthcare, education, and consumer domains.

Novelty of the problem The rich literature on visual saliency—including
video saliency [1–8]—does not address this problem. First and foremost, as dis-
cussed above, detecting moments of engagement is different than estimating
saliency. While a person always sees something, he does not pay attention to
everything he sees; knowing what a person is looking at does not reveal when
the person is engaging with the environment. Nearly all prior work studies vi-
sual saliency from the third person perspective and equates saliency with gaze:
salient points are those upon which a viewer would fixate his gaze, when ob-
serving a previously recorded image/video on a static screen. In contrast, our
problem entails detecting temporal intervals of engagement as perceived by the
person capturing the video as he moves about his environment. Thus, recorder
engagement is distinct from viewer attention. To predict it from video requires
identifying time intervals of engagement as opposed to spatial regions that are
salient (gaze worthy) per frame. As such, estimating egocentric gaze [9–11] is
also insufficient to predict first-person engagement.

Challenges Predicting first-person engagement presents a number of chal-
lenges. First of all, the motion cues that are significant in third-person video
taken with an actively controlled camera (e.g., zoom [4, 12–14]) are absent in
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passive wearable camera data. Instead, first-person data contains both scene
motion and unstable body motions, which are difficult to stabilize with tradi-
tional methods [15]. Secondly, whereas third-person data is inherently already
focused on moments of interest that led the recorder to turn the camera on,
a first-person camera is “always on”. Thirdly, whereas traditional visual atten-
tion metrics operate with instantaneous motion cues [1,2,16,17] and fixed sliding
temporal window search strategies, detecting engagement intervals requires long-
term descriptors and handling intervals of variable length. Finally, it is unclear
whether there are sufficient visual cues that transcend user- or scene-specific
properties, or if engagement is strongly linked to the specific content a user ob-
serves (in which case, an exorbitant amount of data might be necessary to learn
a general-purpose detector).

Our approach We propose a learning approach to detect time intervals where
first-person engagement occurs. In an effort to maintain independence of the
camera wearer as well as the details of his environment, we employ motion-
based features that span long temporal neighborhoods and integrate out local
head motion effects. We develop a search strategy that integrates instantaneous
frame-level estimates with temporal interval hypotheses to detect intervals of
varying lengths, thereby avoiding a naive sliding window search. To train and
evaluate our model, we undertake a large-scale data collection effort.

Contributions Our main contributions are as follows. First, we precisely de-
fine egocentric engagement and systematically evaluate under that definition.
Second, we collect a large annotated dataset spanning 14 hours of activity ex-
plicitly designed for ego-engagement in browsing situations. Third, we propose
a learned motion-based model for detecting first-person engagement. Our model
shows better accuracy than an array of existing methods. It also generalizes to
unseen browsing scenarios, suggesting that some properties of ego-engagement
are independent of appearance content.

2 Related Work

Third-person image and video saliency Researchers often equate human
gaze fixations as the gold standard with which a saliency metric ought to cor-
relate [18, 19]. There is increasing interest in estimating saliency from video.
Initial efforts examine simple motion cues, such as frame-based motion and
flicker [8, 18, 20]. One common approach to extend spatial (image) saliency to
the video domain is to sum image saliency scores within a temporal segment,
e.g., [21]. Most methods are unsupervised and entail no learning [4–8, 18, 20].
However, some recent work develops learned measures, using ground truth gaze
data as the target output [1–3,16,22].

Our problem setting is quite different than saliency. Saliency aims to predict
viewer attention in terms of where in the frame a third party is likely to fixate
his gaze; it is an image property analyzed independent of the behavior of the
person recording the image. In contrast, we aim to detect recorder engagement
in terms of when (which time intervals) the recorder has paused to examine
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something in his environment.1 Accounting for this distinction is crucial, as we
will see in results. Furthermore, prior work in video saliency is evaluated on
short video clips (e.g., on the order of 10 seconds [23]), which is sufficient to
study gaze movements. In contrast, we evaluate on long sequences—30 minutes
on average per clip, and a total of 14 hours—in order to capture the broad
context of ego-behavior that affects engagement in browsing scenarios.

Third-person video summarization In video summarization, the goal is to
form a concise representation for a long input video. Motion cues can help detect
“important” moments in third-person video [12–14, 17, 21], including temporal
differences [17] and cues from active camera control [12–14]. Whereas prior meth-
ods try to extract what will be interesting to a third-party viewer, we aim to
capture recorder engagement.

First-person video saliency and gaze Researchers have long expected that
ego-attention detection requires methods distinct from bottom-up saliency [24].
In fact, traditional motion saliency can actually degrade gaze prediction for first-
person video [11]. Instead, it is valuable to separate out camera motion [10] or
use head motion and hand locations to predict gaze [9]. Whereas these methods
aim to predict spatial coordinates of a recorder’s gaze at every frame, we aim to
predict time intervals where his engagement is heightened. Furthermore, whereas
they study short sequences in a lab [10] or kitchen [9], we analyze long data in
natural environments with substantial scene changes per sequence.

We agree that first-person attention, construed in the most general sense,
will inevitably require first-person “user-in-the-loop” feedback to detect [24]; ac-
cordingly, our work does not aim to detect arbitrary subjective attention events,
but instead to detect moments of engagement to examine an object more closely.

Outside of gaze, there is limited work on attention in terms of head fixation
detection [15] and “physical analytics” [25]. In [15], a novel “cumulative displace-
ment curve” motion cue is used to categorize the recorder’s activity (walking,
sitting, on bus, etc.) and is also shown to reveal periods with fixed head position.
They use a limited definition of attention: a period of more than 5 seconds where
the head is still but the recorder is walking. In [25], inertial sensors are used in
concert with optical flow magnitude to decide when the recorder is examining a
product in a store. Compared to both [15, 25], engagement has a broader defi-
nition, and we discover its scope from data from the crowd (vs. hand-crafting a
definition on visual features). Crucially, the true positives reflect that a person
can have heightened engagement yet still be in motion.

First-person activity and summarization Early methods for egocentric
video summarization extract the camera motion and define rules for important
moments (e.g., intervals when camera rotation is below a threshold) [26, 27],
and test qualitatively on short videos. Rather than inject hand-crafted rules,
we propose to learn what constitutes an engagement interval. Recent methods

1 Throughout, we will use the term “recorder” to refer to the photographer or the
first-person camera-wearer; we use the term “viewer” to refer to a third party who
is observing the data captured by some other recorder.
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explore ways to predict the “importance” of spatial regions (objects, people)
using cues like hand detection and frame centrality [28, 29], detect novelty [30],
and infer “social saliency” when multiple cameras capture the same event [31–
33]. We tackle engagement, not summarization, though likely our predictions
could be another useful input to a summarization system.

In a sense, detecting engagement could be seen as detecting a particular
ego-activity. An array of methods for classifying activity in egocentric video
exist, e.g., [34–41]. However, they do not address our scenario: 1) they learn
models specific to the objects [34, 36–38, 40, 41] or scenes [39] with which the
activity takes place (e.g., making tea, snowboarding), whereas engagement is
by definition object- and scene-independent, since arbitrary things may capture
one’s interest; and 2) they typically focus on recognition of trimmed video clips,
versus temporal detection in ongoing video.

3 First-Person Engagement: Definition and Data

Next we define first-person engagement. Then we describe our data collection
procedure, and quantitatively analyze the consistency of the resulting annota-
tions. We introduce our approach for predicting engagement intervals in Sec. 4.

3.1 Definition of first-person engagement

This research direction depends crucially on having 1) a precise definition of
engagement, 2) realistic video data captured in natural environments, and 3) a
systematic way to annotate the data for both learning and evaluation.

Accordingly, we first formalize our meaning of first-person engagement. There
are two major requirements. First, the engagement must be related to external
factors, either induced by or causing the change in visual signals the recorder
perceives. This ensures predictability from video, excluding high-attention events
that are imperceptible (by humans) from visual cues. Second, an engagement
interval must reflect the recorder’s intention, as opposed to the reaction of a
third-person viewer of the same video.

Based on these requirements, we define heightened ego-engagement in
a browsing scenario as follows. A time interval is considered to have a high
engagement level if the recorder is attracted by some object(s), and he inter-
rupts his ongoing flow of activity to purposefully gather more information about
the object(s). We stress that this definition is scoped specifically for browsing
scenarios; while the particular objects attracting the recorder will vary widely,
we assume the person is traversing some area with the intent of taking in new
information and/or locating certain objects.

The definition captures situations where the recorder reaches out to touch or
grasp an object of interest (e.g., when closely inspecting a product at the store),
as well as scenarios where he examines something from afar (e.g., when he reads
a sign beside a painting at the museum). Having an explicit definition allows
annotators to consistently identify video clips with high engagement, and it lets
us directly evaluate the prediction result of different models.

We stress that ego-engagement differs from gaze and traditional saliency.
While a recorder always has a gaze point per frame (and it is correlated with the
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Mall Market Museum All

Attention Ratio 0.305 0.451 0.580 0.438
#intervals (per min.) 1.19 1.22 1.50 1.30
Length Median (sec) 7.5 12.1 13.3 11.3
Length IQR (sec) 11.6 18.2 20.1 17.6

Table 1: Basic statistics for ground truth intervals.

frame center), periods of engagement are more sparsely distributed across time,
occupy variable-length intervals, and are a function of his activity and changing
environment. Furthermore, as we will see below, moments where a person is ap-
proximately still are not equivalent to moments of engagement, making observer
motion magnitude [25] an inadequate signal.

3.2 Data collection

To collect a dataset, we ask multiple recorders to take videos during browsing
behavior under a set of scenarios, or scene and event types. We aim to gather
scenarios with clear distinctions between high and low engagement intervals that
will be apparent to a third-party annotator. Based on that criterion, we collect
videos under three scenarios: 1) shopping in a market, 2) window shopping in
shopping mall, and 3) touring in a museum. All three entail spontaneous stimuli,
which ensures that variable levels of engagement will naturally occur.

The videos are recorded using Looxcie LX2 with 640 × 480 resolution and
15 fps frame rate, which we chose for its long battery life and low profile. We
recruited 9 recorders—5 females and 4 males—all students between 20-30 years
old. Other than asking them to capture instances of the scenarios above, we
did not otherwise instruct the recorders to behave in any way. Among the 9
recorders, 5 of them record videos in all 3 scenarios. The other 4 record videos in
2 scenarios. Altogether, we obtained 27 videos, each averaging 31 minutes, for a
total dataset of 14 hours. To keep the recorder behavior as natural as possible,
we asked the recorders to capture the video when they planned to go to such
scenarios anyway; as such, it took about 1.5 months to collect the video.

After collecting the videos, we crowdsource the ground truth annotations on
Amazon Mechanical Turk. Importantly, we ask annotators to put themselves in
the camera-wearer’s shoes. They must precisely mark the start and end points
of each engagement interval from the recorder’s perspective, and record their
confidence.2 We break the source videos into 3 minutes overlapping chunks to
make each annotation task manageable yet still reveal temporal context for the
clip. We estimate the annotations took about 450 worker-hours and cost $3,000.
Our collection strategy is congruous with the goals stated above in Sec. 3.1, in
that annotators are shown only the visual signal (without audio) and are asked
to consider engagement from the point of view of the recorder. See Supp. file.

Despite our care in the instructions, there remains room for annotator sub-
jectivity, and the exact interval boundaries can be ambiguous. Thus, we ask 10

2 For a portion of the video, we also ask the original recorders to label all frames for
their own video; this requires substantial tedious effort, hence to get the full labeled
set in a scalable manner we apply crowdsourcing.
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Turkers to annotate each video. Positive intervals are those where a majority
agree engagement is heightened. To avoid over-segmentation, we ignore intervals
shorter than 1 second. For each positive interval, we select the tightest annota-
tion that covers more than half of the interval as the final ground truth.

The resulting dataset contains examples that are diverse in content and du-
ration. The recorders are attracted by a variety of objects: groceries, household
items, clothes, paintings, sculptures, other people. In some cases, the attended
object is out of the field of view, e.g., a recorder grabs an item without directly
looking at it, in which case Turkers infer the engagement from context.

Table 1 summarizes some statistics of the labeled data. On average, the
recorder is engaged about 44% of the time (see “Attention Ratio”), and it in-
creases once to twice per minute. This density reflects the browsing scenarios on
which we focus the data. The length of a positive interval varies substantially:
the interquartile range (IQR) is 17.6 seconds, about 50% longer than the me-
dian. Some intervals last as long as 5 minutes. Also, the different scenarios have
different statistics, e.g., Museum scenarios prompt more frequent engagement.
All this variability indicates the difficulty of the task.

The new dataset is the first of its kind to explicitly define and thoroughly
annotate ego-engagement. It is also substantially larger than datasets used in
related areas—nearly 14 hours of video, with test videos over 30 minutes each.
By contrast, clips in third-person saliency datasets are typically 20 seconds [23]
to 2 minutes [42], since the interest is in gauging instantaneous gaze reactions.

3.3 Evaluating data consistency

How consistently do third-party annotators label engagement intervals? We ana-
lyze their consistency to verify the predictability and soundness of our definition.

Table 2 shows the analysis. We quantify label agreement in terms of the
average F1 score, whether at the frame or interval level (see Supp.). We consider
two aspects of agreement: boundary (how well do annotators agree on the start
and end points of a positive interval?) and presence (how well do they agree on
the existence of a positive interval?).

First we compare how consistent each of the 10 annotators’ labels are with
the consensus ground truth (see “Turker vs. Consensus”). They have reasonable
agreement on the rough interval locations, which verifies the soundness of our
definition. Still, the F1 score is not perfect, which indicates that the task is
non-trivial even for humans. Some discrepancies are due to the fact that even
when two annotators agree on the presence of an interval, their annotations
will not match exactly in terms of the start and end frame. For example, one
annotator might mark the start when the recorder searches for items on the
shelf, while another might consider it to be when the recorder grabs the item.
Indeed, agreement on the presence criterion (right column) is even higher, 0.914.
The “Random vs. Consensus” entry compares a prior-informed random guess to
the ground truth.3 These two extremes give useful bounds of what we can expect

3 We randomly generate interval predictions 10 times based on the prior of interval
length and temporal distribution and report the average.
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Frame F1
Interval F1

Boundary Presence

Turker
vs. Consensus 0.818 0.837 0.914
vs. Recorder 0.589 0.626 0.813

Random
vs. Consensus 0.426 0.339 0.481
vs. Recorder 0.399 0.344 0.478

Table 2: Analysis of inter-annotator consistency.

from our computational model: a predictor should perform better than random,
but will not exceed the inter-human agreement.

Next, we check how well the third-party labels match the experience of the
first-person recorder (see “Turker vs. Recorder”). We collect 3 hours of self-
annotation from 4 of the recorders, and compare them to the Turker annotations.
Similar to above, we see the Turkers are considerably more consistent with the
recorder labels compared to the prior-informed random guess, though not per-
fect. As one might expect, Turker annotations have higher recall, but lower (yet
reasonable) precision against the first-person labels. Overall, the 0.813 F1 score
for Turker-Recorder presence agreement indicates our labels are fairly faithful
to individuals’ subjective interpretation.

4 Approach

We propose to learn the motion patterns in first-person video that indicate en-
gagement. Two key factors motivate our decision to focus on motion. First,
camera motion often contains useful information about the recorder’s inten-
tion [10, 12, 13]. This is especially true in egocentric video, where the recorder’s
head and body motion heavily influence the observed motion. Second, motion
patterns stand to generalize better across different scenarios, as they are mostly
independent of the appearance of the surrounding objects and scene.

Our approach has three main stages. First we compute frame-wise predic-
tions (Sec. 4.1). Then we leverage those frame predictions to generate interval
hypotheses (Sec. 4.2). Finally, we describe each interval as a whole and classify it
with an interval-trained model (Sec. 4.3). By departing from traditional frame-
based decisions [17,26,27], we capture long-term temporal dependencies. As we
will see below, doing so is beneficial for detecting subtle periods of engagement
and accounting for their variable length. Fig. 2 shows the workflow.

4.1 Initial frame-wise estimates

To first compute frame-wise predictions, we construct one motion descriptor per
frame. We divide the frame into a grid of 16 × 12 uniform cells and compute
the optical flow vector in each cell. Then we temporally smooth the grid motion
with a Gaussian kernel. Since at this stage we want to capture attention within a
granularity of a second, we set the width of the kernel to two seconds. As shown
in [15], smoothing the flow is valuable to integrate out the regular unstable
head bobbles by the recorder; it helps the descriptor focus on prominent scene
and camera motion. The frame descriptor consists of the smoothed flow vectors
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(4) Compute interval motion by 
Temporal Pyramid (Sec. 4.3)

(5) Estimate interval engagement & 
select candidates (Sec. 4.3)

(3) Generate interval 
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(2) Estimate frame-wise 
engagement level (Sec. 4.1)

(1) Compute frame-wise 
motion descriptor (Sec. 4.1)

t
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Fig. 2: Workflow for our approach.

concatenated across cells, together with the mean and standard deviation of all
cells in the frame. It captures dominant egomotion and dynamic scene motion—
both of which are relevant to first-person engagement.

We use these descriptors, together with the frame-level ground truth (cf. Sec. 3.2),
to train an i.i.d. classifier. We use random forest classifiers due to their test-time
efficiency and relative insensitivity to hyper-parameters, though of course other
classifiers are possible. Given a test video, the confidence (posterior) output by
the random forest is used as the initial frame-wise engagement estimate.

4.2 Generating interval proposals

After obtaining the preliminary estimate for each frame, we generate multiple
hypotheses for engagement intervals using a level set method as follows. For
a given threshold on the frame-based confidence, we obtain a set of positive
intervals, where each positive interval consists of contiguous frames whose con-
fidence exceeds the threshold. By sweeping through all possible thresholds (we
use the decile), we generate multiple such sets of candidates. Candidates from
all thresholds are pooled together to form a final set of interval proposals.

We apply this candidate generation process on both training data and test
data. During training, it yields both positive and negative example intervals
that we use to train an interval-level classifier (described next). During testing,
it yields the hypotheses to which the classifier should be applied. This detection
paradigm not only lets us avoid sliding temporal window search, but it also
allows us to detect engagement intervals of variable length.

4.3 Describing and classifying intervals

For each interval proposal, we generate a motion descriptor that captures both
the motion distribution and evolution over time. Motion evolution is important
because a recorder usually performs multiple actions within an interval of engage-
ment. For example, the recorder may stop, turn his head to stare at an object,
reach out to touch it, then turn back to resume walking. Each action leads to a
different motion pattern. Thus, unlike the temporally local frame-based descrip-
tor above, here we aim to capture the statistics of the entire interval. We’d also



10 Y.-C. Su and K. Grauman

like the representation to be robust to time-scale variations (i.e., yielding similar
descriptors for long and short instances of the same activity).

To this end, we use a temporal pyramid representation. For each level of the
pyramid, we divide the interval from the previous level into two equal-length
sub-intervals. For each sub-interval, we aggregate the frame motion computed
in Sec. 4.1 by taking the dimension-wise mean and variance. So, the top level
aggregates the motion of the entire interval, and its descendants aggregate in-
creasingly finer time-scale intervals. The aggregated motion descriptors from all
sub-intervals are concatenated to form a temporal pyramid descriptor. We use
3-level pyramids. To provide further context, we augment this descriptor with
those of its temporal neighbor intervals (i.e., before and after). This captures
the motion change from low engagement to high engagement and back.

We train a random forest classifier using this descriptor and the interval
proposals from the training data, this time referring to the interval-level ground
truth from Sec. 3.2. At test time, we apply this classifier to a test video’s interval
proposals to score each one. If a frame is covered by multiple interval proposals,
we take the highest confidence score as the final prediction per frame.

4.4 Discussion

Our method design is distinct from previous work in video attention, which
typically operates per frame and uses temporally local measurements of mo-
tion [1, 2, 16, 17, 26, 27]. In contrast, we estimate enagement from interval hy-
potheses bootstrapped from initial frame estimates, and our representation cap-
tures motion changes over time at multiple scales. People often perform multiple
actions during an engagement interval, which is well-captured by considering an
interval together. For example, it is hard to tell whether the recorder is attracted
by an object when we only know he glances at it, but it becomes clear if we know
his following action is to turn to the object or to turn away quickly.

Simply flagging periods of low motion [15, 25, 27] is insufficient to detect all
cases of heightened attention, since behaviors during the interval of engagement
are often non-static and also exhibit learnable patterns. For example, shoppers
move and handle objects they might buy; people sway while inspecting a paint-
ing; they look up and sweep their gaze downward when inspecting a skyscraper.

External sensors beyond the video stream could potentially provide cues
useful to our task, such as inertial sensors to detect recorder motion and head
orientation. However, such sensors are not always available, and they are quite
noisy in practice. In fact, recent attempts to detect gazing behavior with iner-
tial sensors alone yield false positive rates of 33% [25]. Similarly, although gaze
could be informative for engagement, it requires greater instrumentation (i.e.,
eye tracker calibrated for each user) and will limit the applicability to generic
egocentric video such as existing data on the web. This argues for the need for
visual features for the challenging engagement detection task.

5 Experiments

We validate on two datasets and compare to many existing methods.
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Market Shopping Mall Museum 

Fig. 3: Example engagement intervals detected by our method. Note the intra-interval
variation: the recorder either performs multiple actions (Market), looks at an item from
multiple views (Mall) or looks at multiple items (Museum). See videos on our website.

Baselines We compare with 9 existing methods, organized into four types:

Saliency Map: Following [17,21], we compute the saliency map for each frame
and take the average saliency value. We apply the state-of-the-art learned video
saliency model [1] and five others that were previously used for video summa-
rization: [6,7,17,19,20]. We use the original authors’ code for [1,6,7,19,20] and
implement [17]. Except [6], all these models use motion.

Motion Magnitude: Following [25, 27], this baseline uses the inverse motion
magnitude. Intuitively, the recorder becomes more still during his moments of
high engagement as he inspects the object(s). We apply the same flow smooth-
ing as in Sec. 4.1 and take the average.

Learned Appearance (CNN): This baseline predicts engagement based on
the video content. We use state-of-the-art convolutional neural net (CNN) im-
age descriptors, and train a random forest with the same frame-based ground
truth our method uses. We use Caffe [43] and the provided pre-trained model
(BVLC Reference CaffeNet).

Egocentric Important Region: This is the method of [28]. It is a learned
metric designed for egocentric video that exploits hand detection, centrality
in frame, etc. to predict the importance of regions for summarization. While
the objective of “importance” is different than “engagement”, it is related and
valuable as a comparison, particularly since it also targets egocentric data. We
take the max importance per frame using the predictions shared by the authors.

Some of the baselines do not target our task specifically, a likely disadvantage.
Nonetheless, their inclusion is useful to see if ego-engagement requires methods
beyond existing saliency metrics. Besides, our baselines also include methods
specialized for egocentric video [25,28], and one that targets exactly our task [25].

For the learned methods (ours, CNN and Important Regions), we use the clas-
sifier confidences to rate frames by their engagement level. Note that the CNN
method has the benefit of training on the exact same data as our method. For
the non-learned methods (saliency, motion), we use their magnitude. We evalu-
ate two versions of our method: one with the interval proposals (Ours-interval)
and one without (Ours-frame). The boundary agreement is used for interval
prediction evaluation to favor methods with better localization of attention.

Datasets We evaluate on two datasets: our new UT Egocentric Engagement
(UT EE) dataset and the public UT Egocentric dataset (UT Ego). We select
all clips from UT Ego that contain browsing scenarios (mall, market), yielding
3 clips with total length of 58 minutes, and get them annotated with the same
procedure in Sec. 3.2.
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Frame F1 Interval F1

GBVS (Harel 2006 [19]) 0.462 0.286
Self Resemblance (Seo 2009 [20]) 0.471 0.398
Bayesian Surprise (Itti 2009 [7] ) 0.420 0.373
Salient Object (Rahtu 2010 [6]) 0.504 0.389
Video Attention (Ejaz 2013 [17]) 0.413 0.298
Video Saliency (Rudoy 2013 [1]) 0.435 0.396
Motion Mag. (Rallapalli 2014 [25]) 0.553 0.403

Cross Recorder

CNN Appearance 0.685 0.486
Ours – frame 0.686 0.533
Ours – interval 0.674 0.572

Ours – GT interval 0.822 0.868

Cross Scenario

CNN Appearance 0.656 0.463
Ours – frame 0.683 0.531
Ours – interval 0.665 0.553

Ours – GT interval 0.830 0.860

Cross Recorder AND Scenario

CNN Appearance 0.655 0.463
Ours – frame 0.680 0.532
Ours – interval 0.661 0.544

Ours – GT interval 0.823 0.856

Table 3: F1-score accuracy of all methods on UT EE. (The cross-recorder/scenario distinctions are
not relevant to the top block of methods, all of which do no learning.)

Implementation details We use the code of [44] for optical flow computation.
Flow dominates our run-time, about 1.2 s per frame on 48 cores. The default
settings are used for this and all the public saliency map codes. Using the scikit-
learn package [45] for random forest, we train 2,400 trees in all results and leave
all other parameters at default. The sample rate of video frames is 15 fps for
optical flow and 1 fps for all other computation, including evaluation.

5.1 UT Egocentric Engagement (UT EE) dataset

We consider three strategies to form train-test data splits. The first is leave-
one-recorder-out, denoted cross-recorder, in which we train a predictor for
each recorder using exclusively video from other recorders. This setting tests
the ability to generalize to new recorders (e.g., can we learn from John’s video
to predict engagement in Mary’s video?). The second is leave-one-scenario-out,
denoted as cross-scenario, in which we train a predictor for each scenario using
exclusively video from other scenarios. This setting examines to what extent
visual cues of engagement are independent of the specific activity or location the
recorder (e.g., can we learn from a museum trip to predict engagement during a
shopping trip?). The third strategy is the most stringent, disallowing any overlap
in either the recorder or the scenario (cross recorder AND scenario).

Fig. 4(A)∼(C) show the precision-recall curves for all methods and settings
on the 14 hour UT EE dataset, and we summarize them in Table 3 using the
F1 scores; here we set the confidence threshold for each video such that 43.8%
of its frames are positive, which is the ratio of positives in the entire dataset.
Our method significantly outperforms all the existing methods. We also see our
interval proposal idea has a clear positive impact on interval detection results.
However, when evaluated with the frame classification metric (first column in
Table 3), our interval method does not improve over our frame method. This is
due to some inaccurate (too coarse) proposals, which may be helped by sampling
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Fig. 4: Precision-recall accuracy on the UT EE dataset. Our approach detects engage-
ment with much greater accuracy than an array of saliency and content-based methods,
and our interval proposal idea improves the initial frame-wise predictions.

the level sets more densely. We also show an upper bound for the accuracy with
perfect interval hypotheses (see Ours-GT interval), which emphasizes the need
to go beyond frame-wise predictions as we propose.

Fig. 4 and Table 3 show our method performs similarly in all three train-test
settings, meaning it generalizes to both new recorders and new scenarios. This is
an interesting finding, since it is not obvious a priori that different people exhibit
similar motion behavior when they become engaged, or that those behaviors
translate between scenes and activities. This is important for applications, as it
would be impractical to collect data for all recorders and scenarios.

The CNN baseline, which learns which video content corresponds to engage-
ment, does the best of all the baselines. However, it is noticeably weaker than
our motion-based approach. This result surprised us, as we did not expect the
appearance of objects in the field of view during engagement intervals to be
consistent enough to learn at all. However, there are some intra-scenario visual
similarities in a subset of clips: four of the Museum videos are at the same mu-
seum (though the recorders focus on different parts), and five in the Mall contain
long segments in clothing stores (albeit different ones). Overall we find the CNN
baseline often fails to generate coherent predictions, and it predicts intervals
much shorter than the ground truth. This suggests that appearance alone is a
weaker signal than motion for the task.

Motion Magnitude (representative of [25,27]) is the next best baseline. While
better than the saliency metrics, its short-term motion and lack of learning lead
to substantially worse results than our approach. This also reveals that people
often move while they engage with objects they want to learn more about.

Finally, despite their popularity in video summarization, Saliency Map meth-
ods [1,6,7,17,19,20] do not predict temporal ego-engagement well. In fact, they
are weaker than the simpler motion magnitude baseline. This result accentuates
the distinction between predicting gaze (the common saliency objective) and
predicting first-person engagement. Clearly, spatial attention does not directly
translate to the task. While all the Saliency Map methods (except [6]) incorpo-
rate motion cues, their reliance on temporally local motion, like flickers, makes
them perform no better than the purely static image methods.

Fig. 3 shows example high engagement frames. Please see the project
webpage for video results.
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Fig. 5: Precision-recall accuracy on UT Ego
dataset.
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Fig. 6: Start-point accuracy on UT EE, mea-
suring how well the onset of an engagement
interval is detected in a streaming manner.

5.2 UT Egocentric dataset

Fig. 5 shows the results on the UT Ego dataset. The outcomes are consistent with 
those on UT EE above, and again our method performs the best. Whereas [28] 
is both trained and tested on UT Ego, our method does not do any training on 
the UT Ego data; rather, we use our model trained on UT EE. This ensures 
fairness to the baseline (and some disadvantage to our method).

Our method outperforms the Important Regions [28] method, which is specif-
ically designed for first-person data. This result gives further evidence of our 
method’s cross-scenario generalizability. Important Regions [28] does outperform 
the Saliency Map methods on the whole, indicating that high-level semantic con-
cepts are useful for detecting engagement, more so than low-level saliency. The 
CNN baseline does poorly, which reflects that its content-specific nature hinders 
generalization to a new data domain.

5.3 Start point correctness

Finally, Fig. 6 evaluates start point accuracy on UT EE. This setting is of interest 
to applications where it is essential to know the onset of engagement, but not 
necessarily its temporal extent. Here we run our method in a streaming fashion 
by using its frame-based predictions, without the benefit of hindsight on the 
entire intervals. Due to space limits, we defer to the Supp. for details.

6 Conclusion

We explore engagement detection in first-person video. By precisely defining the 
task and collecting a sizeable dataset, we offer the first systematic study of this 
problem. We introduced a learning-based approach that discovers the connection 
between first-person motion and engagement, together with an interval proposal 
approach to capture a recorder’s long-term motion. Results on two datasets show 
our method consistently outperforms a wide array of existing methods for visual 
attention. Our work provides the foundation for a new aspect of visual attention 
research. In future work, we will examine the role of external sensors (e.g., audio, 
gaze trackers, depth) that could assist in ego-engagement detection when they 
are available.
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