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Abstract. Manually segmenting and labeling objects in video sequences is quite
tedious, yet such annotations are valuable for learning-based approaches to ob-
ject and activity recognition. While automatic label propagation can help, existing
methods simply propagate annotations from arbitrarily selected frames (e.g., the
first one) and so may fail to best leverage the human effort invested. We define
anactive frame selection problem: selectk frames for manual labeling, such that
automatic pixel-level label propagation can proceed with minimal expected er-
ror. We propose a solution that directly ties a joint frame selection criterion to
the predicted errors of a flow-based random field propagation model. It selects
the set ofk frames that together minimize the total mislabeling risk over the en-
tire sequence. We derive an efficient dynamic programming solution to optimize
the criterion. Further, we show how to automatically determine how many total
framesk should be labeled in order to minimize the total manual effort spent
labeling and correcting propagation errors. We demonstrate our method’s clear
advantages over several baselines, saving hours of human effort per video.

1 Introduction

Semantic segmentation of objects in video sequences is important for many high-level
applications, such as recognizing human actions, medical imaging, and automated ve-
hicle driving. Gathering useful labeled data appears key for methods to learn to parse
videos, but it requires considerable manual effort. In particular, labeling the boundaries
of all objects of interest in each frame is tedious and time-consuming. The cost can
be mitigated by exploiting interactive segmentation techniques [24, 15, 1, 3] or region
tracking and segmentation methods [16, 9]. Researchers have also developed methods
to propagate manual annotations across video frames using interfaces with interpolation
tools [23, 26] or inference in space-time graphical models [14, 6, 2, 18, 8]. Typically a
user annotates some frame (e.g., the first one), then invokes the propagation engine.

While semi-automatic methods are promising, existing techniques have two main
limitations. First, they assume that the provided labeled frame(s) are already fixed, and
focus only on how to optimize the propagation across the remaining unlabeled frames.
However, there is no guarantee an arbitrarily selected frame (or even a human-selected
frame) provides sufficient information to optimally propagate to the rest. Second, they
assume some fixed number of initial frames, or else that a human labeler will watch
the algorithm’s intermediate outputs and decide when a new label is necessary to get
the method back on track. However, this neglects the fact that there is a direct trade-off
between the number of frames initially labeled and the amount of erroneously propa-
gated labels someone will need to fix afterwards—and that trade-off is video dependent.
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active selection propagatelabel

Fig. 1. Goal: actively selectk video
frames for a human to label, so as
to ensure minimal expected error
across the entire sequence after au-
tomatic propagation. Best viewed in
color.

More importantly, requiring a human in the loop to catch propagated errors precludes
the possibility of “farming” each frame-level annotation job to multiple people working
in parallel, which would be desirable for large-scale annotation efforts.

We instead propose toactivelyselect frames for label propagation. The goal is to
leverage the required human effort more purposefully, by allowing the propagation al-
gorithm’s expected errors to automatically guide which frames are presented to a hu-
man for manual labeling.1 Thek most useful frames are jointly chosen according to the
expected label error, were they to be propagated via a dense flow-based random field
model. Specifically, we compute the predicted mislabeling rate for every framej should
framei be labeled and propagated to it, based on the expected optical flow error and
model uncertainty. We then formulate the bestk-selection as an optimization problem
to minimize total propagation error, and provide an efficient dynamic programming al-
gorithm to solve it in time polynomial in the number of total frames. After obtaining
the selected annotations, we propagate the labels sequentially with that same model. We
further show how to optimize over the number of frames that need to be selected.

In this way, our method reduces total manual effort—both by keeping the number
of selected frames low, and by ensuring that after propagation minimal human fixing
is required. Moreover, by reducing video annotation tok independent image labeling
tasks, it has the advantage that one may elect to have them alllabeled in parallel (e.g.,
on Mechanical Turk, if desired). The propagation to unlabeled frames is completely
automatic and done offline, so no further user intervention is required.

While our work sharesactive learning’s high-level motivation to minimize human
involvement, the active frame selection problem we define isdistinct. Traditional active
selection methods aim to choose useful instances for category labeling, such that a
classifier’s uncertainty on unseen instances will be reduced (e.g., [21, 11]). In contrast,
the active video frame selection problem aims tojointly select those frames in light of
theirknown temporal orderingsuch that theexpected propagation errors on the current
sequencewill be minimized. Furthermore, the fact that thek-selection jointly influences
many frames in either direction in time means that a naive approach—i.e., one that
selects representative keyframes, or one that looks only forward in time to detect abrupt
changes—would not meet our goal. Rather, we need to model the “trackability” as part
of the selection criterion.

To our knowledge, we are the first to define the active video frame selection prob-
lem, where the system determines which subset of frames require labeling. The pro-

1 Throughout we assume a dense labeling, where the annotator marks thepixel-level boundaries
of all objects present in the frame.
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posed approach is a novel solution to maximize annotator effort in this important, prac-
tical setting. We demonstrate its advantages on challenging videos, as compared to a
method that uniformly samples frames for labeling and a clustering-based keyframe
selection technique. Our results indicate that active frame selection is crucial to most
efficiently use human time for video annotation.

2 Related Work

Interactive segmentation techniques help a user extract objects from videos [1, 24,
15, 3] or groups of related images [4]. Such methods offer novel interfaces to indicate
foreground objects in a space-time volume [24, 3], to propagate an initial foreground
region while the user corrects any mistakes along the way [1,15], or to intelligently
recommend where a user should scribble [4]. In contrast to our problem, these meth-
ods attempt binary labelings and, more importantly, assumea user is closely involved
throughout to refine the segmentation at each step. Our goal is toguidethe user to the
frames that most require attention.

Researchers are also developingnovel video annotation toolsamenable to online
data collection [26, 23]. LabelMe Video allows users to drawpolygons around objects
and select a start and end frame; interpolation transfers the polygons to other frames.
The crowd-sourcing study in [23] asks a worker to draw a bounding box everyT frames,
and then interpolates the object path efficiently. Both methods assume the object’s mo-
tion is either static or uniform during interpolation. As such, our approach can naturally
enhance such tools, removing the burden on a user to have insight on which frames are
usable for propagation.

Video object segmentationtakes an unsupervised approach [9, 16, 10, 19]. Graph-
based clustering [10], tracking [9], and random field models[16, 19] have all been ex-
plored. Optionally, when labeled frames are available, such methods can perform label
transfer using tracks [9] or dense correspondences [12]. A well-known challenge in
tracking is “drift”, where small errors accumulate over time. Our approach counters
this pitfall by requesting more labeled frames where flow errors appear to accumulate,
and by using an appearance model for uniform regions with fewkeypoints.

A few recent methods directly addresslabel propagation in videousing probabilis-
tic models [14, 6, 2, 18]. The methods typically assume the label field in the first (and/or
last) frame of the sequence is given, and then automaticallytrack through the remaining
frames based on the objects’ color and motion properties.

Active learning methodsconsider how to select useful instances to refine a classi-
fier, and in particular “batch-mode” selection methods havebeen explored for training
object classifiers [21, 11]. We also want to reduce manual intervention, but our setting
differs significantly: our objective is to minimize propagation error rather than build
a classifier, and the selection criterion must account for both the information overlap
between selected frames as well as the likelihood of successful flow-based transfer to
all unlabeled frames. Very recent work considers ways to actively train an “object vs.
background” classifier for a given video, iteratively requesting a bounding box or su-
perpixel label in a selected uncertain frame [22, 8]. Like our approach, these methods
aim to efficiently use annotator effort for video labeling. However, whereas we jointly
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solve for a labeling of all objects in the video and explicitly model the “trackability”
for active selection, the previous techniques handle a single object of interest indepen-
dently and base selection on traditional measures of classifier uncertainty. Furthermore,
both prior methods assume an annotator remains in the loop for each sequential request
following a classifier update, whereas our method computes the set of frames requiring
annotation at once. This makes it uniquely amenable to annotators working in parallel
(e.g., for crowdsourcing), and in principle enables non-myopic selection.

Finally, keyframe selectionfindsrepresentativeframes using clustering (e.g., [25])
or by maximizing the dissimilarity between keyframes [7, 13]. While intended for visual
summarization—not active annotation—they serve as a naturalbaseline; we find they
underperform our approach, due to their failure to quantifyhow well labels can be
transferred to the unselected frames.

3 Approach

Our goal is to annotate all objects in a video with minimal manual effort. To achieve
this, our method first selects a set of informative frames forhuman labeling, and then
propagates those labels to the rest of frames using optical flow and appearance-based
models.

We first define the propagation algorithm (Section 3.1), since by design our selection
criterion is closely aligned with it. Then in Section 3.2, wedefine the optimization
problem for selection that minimizes the total predicted error on all frames, and finally
derive a dynamic programming algorithm to efficiently solveit.

3.1 Video Label Propagation

Let F = {f1, f2, ..., fN} be the sequence ofN frames from a video that need to be
annotated, such that each pixel will be assigned one ofC object labels. Givenk frames
S = {fn1

, . . . , fnk
}, with corresponding labels{Ln1

, . . . , Lnk
}, whereS ⊂ F , we

propagate their labels to the rest of the video. EachLni
is a matrix of labels having the

same dimensions as the image frame (height by width) indexedby the 2D pixel coordi-
natesp, and eachLni

(p) ∈ {1, . . . , C}. Let (lt, rt) be the indices of the closest labeled
frames before and after framet, respectively (“left” and “right” oft).2 We assume that
given labels(Llt , Lrt

), the rest of the frames do not affect the labels of framet.
In this section, we devise two methods for propagation: a basic flow-based approach

and an enhanced variant that uses the flow model within a Markov Random Field. The
simpler flow-based model is the core that ties to the selection procedure, while the MRF
strengthens it with motion-based data terms and usual smoothness constraints. We test
both in experiments.

Pixel Flow Propagation Method The basic propagation method uses dense optical
flow to track every pixel inft in both the forward and backward directions until it
reaches the closest labeled frames on either side. We estimate the expected propagation

2 Frame indices(lt, rt) might not exist if the number of labeled frames is< 2, or if i < n1 or
i > nk. For clarity we omit such cases, as they do not affect the method description.
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Fig. 2.Relationship between flow and label transfer.

error as the pixel is being tracked, and choose its label fromeitherlt or rt, whichever
has the smaller error. By tracking the flow in both temporal directions, we account for
the fact that object motion in a video can cause one or the other to be more reliable; for
example, if an object is moving away from the camera, the earlier frames offer higher
resolution on the object and are more reliably propagated, whereas if it is approaching
the camera, the opposite is true.

Let w denote a flow field indexed by pixel positions that returns the2D flow vector
at a given point. Given the forward flow field from framet to t+1, wt, and the backward
field from t to t− 1, ŵt, each pixel positionp in framet can be tracked to the next and
previous frames:

p
′ = p + wt(p),

p̂
′ = p + ŵt(p). (1)

Defining the expected propagation error.Even with a good dense flow algorithm,
inevitably errors occur due to boundaries, occlusions, andwhen pixels change in ap-
pearance, or enter/leave the frame. Thus, we explicitly model the probability that a
pixel is mistracked. In the following, we define this propagation error for a later frame
t + j back to t, i.e., using the forward flow fromp to p

′ (see Figure 2). All terms are
analogously defined for propagating from a prior framet − j.

The probability that pixelp in framet will be mislabeled if we were to obtain its
label from framet + 1 is:

P(p, t + 1, t) = 1 − exp(−d(p, t)), where (2)

d(p, t) = β (dapp(p, t) + dmot(p, t) + docc(p, t) + dout(p, t)) ,

andβ is a scaling parameter.P(p, t−1, t) is defined analogously usinĝw, p̂′, andt−1.
The component distances reflect the expected forms of tracking error. Specifically,

dapp(p, t) = ‖ft(p) − ft+1(p
′)‖ (3)

computes the color difference, and the flow differences are

dmot(p, t) = ‖wt(p) − wt+1(p
′)‖. (4)

The latter helps identify pixels that drift across object boundaries, thus having the mo-
tion of two different objects. We detect occlusions using the consistency of the forward
and backward flow:

docc(p, t) =
‖wt(p) + ŵt+1(p)‖

‖wt(p)‖ + ‖ŵt+1(p)‖
. (5)
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Fig. 3.Schematic for the propagation process to label framet. Frameslt andrt denotet’s closest
labeled frames before (“left”) and after (“right”). Dark blue framesdenote thek = 3 selected
frames. Dotted arrows denote optical flow or MRF-based propagation from adjacent frames,
which propagate labels tot from either direction to generate label matricesL

(lt)
t andL

(rt)
t (shown

in gray). They combine to formLt, the final label estimate fort.

Essentially,docc reflects that if a pixel is not occluded, we expect the two flowsto be
opposite in direction, making the numerator close to 0. Finally, we setdout(p, t) = 0
if p

′ is within the frame, and a constantR if it has left. Large values for anyd(·)
term indicates a pixel may have been wrongly mapped to a different object, and hence
is likely to cause a propagation error. Note that each term contributes equally to the
distance since large values for any one is likely to cause an error.

When there is more than one frame between labeled framert and current framet, we
must predict errors accumulated over successive frames. Defining the error recursively,
we have:

P(p, t + j, t) = P(p, t + j − 1, t) (6)

+ (1 − P(p, t + j − 1, t))P(p, t + j, t + j − 1),

for j > 1. In other words, pixelp was either mislabeled along some hop fromt + j − 1
back tot, or else those hops were all correct and the wrong label was propagated from
the single hop from adjacent framest+j andt+j−1. We will refer to these mislabeling
probabilities again in Section 3.2 to define the selection objective.

Minimization and final label map.Thus, to estimate the final labelLt(p) for pixel
p in framet with the flow alone, we first computeP(p, lt, t) andP(p, rt, t) recursively
using Eqn. 6 to obtain the two corresponding label estimatesL(lt)(p) andL(rt)(p), and
then take the best prediction:Lt(p) = L(j∗)(p), wherej∗ = argminj={lt,rt} P(p, j, t).
See Figure 3. Tracking in both directions helps avoid mistakes made if propagating only
one way. Iflt or rt does not exist, then the labels are simply obtained from the tracked
points in the other labeled frame.

Pixel Flow + MRF Propagation Method The previous section defined both the basic
flow-based propagation, and (more crucial to our selection approach) a means to esti-
mate propagation errors. Next we explain an enhanced variant that uses flow tracking
within a space-time Markov Random Field (MRF) model. The MRFvariant helps us
(a) infer label maps that are smooth in space and time, and (b)enhance each pixel’s
label estimate using object appearance models defined by thelabeled frames.
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The use of a random field for video segmentation is itself not new (e.g., see [16, 15,
18, 19] for variants); however, our formulation specifically allows for the propagated er-
ror predictions that are central to active frame selection,as we will see in the following.

Given labels on the subsequent framet+1, we define a random field fort with nodes
at every pixel, and hidden nodes corresponding to their unknown labels. To obtain the
backward label assignment3 for t, we minimize the energy:

E(Lt) =
∑

p

Ap(Lt(p)) + Tp(Lt(p)) +
∑

p,q∈N

Vp,q

(

Lt(p), Lt(q)
)

,

whereAp is a unary potential based on an appearance model defined by framert, Tp

is a unary potential based on transferred labels fromt + 1, andVp,q is the pairwise
potential computed overN, the set of neighboring pixels in a4−connected grid. They
are defined as follows.

Node potentials.The manual segmentation of framert yields object regions taking
on (perhaps a subset of) theC possible object labels. We use its regions to fitC Gaussian
mixture models, one per label. LetN (µc, Σc) denote thec-th label’s mixture model,
defined over a featureF (p) consisting of color and entropy-based features (detailed in
Sec. 4). We define:

Ap(c) = − log P( F (p) | N (µc, Σc)). (7)

We expect this color model to primarily help fill in background objects at pixels oc-
cluded in the previous frame.

The other node potential reflects the cost of transferring a label forp from the next
framet + 1. We define:

Tp(c) =

{

d(p, t) if c = Lt+1(p
′)

U otherwise,
(8)

whered(p, t) is defined in Eqn. 2, andU is a constant. This achieves label smoothness
in time, where we account for estimated motion by usingp

′.
Pairwise potential. The edge term is based on both the appearance and motion

similarity of neighboring pixelsp andq in framet:

Vp,q(Lt(p), Lt(q)) = δ(Lt(p) 6= Lt(q))S(p, q), (9)

whereδ denotes the delta function, and

S(p, q) = exp(−βf‖ft(p) − ft(q)‖) + exp(−βw‖wt(p) − wt(q)‖), (10)

with scaling parametersβf , βw set as the inverse of the mean values of the correspond-
ing terms over the entire frame. This term penalizes assigning different labels to neigh-
boring pixels with similar color and flow.

Minimization and final label map.The total MRF energy can be efficiently mini-
mized using the algorithm of [5] in order to transfer labels from t + 1 and obtainLt.

3 As above, we describe the label transfer in the backward direction, from rt to t in order to
estimateL(rt); again, analogous equations apply to map fromlt to t in order to estimateL(lt).
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Since this requires that we have already obtained labels on the subsequent framet + 1,
we start from the nearest labeled frame to the right,rt, and transfer labels backward
sequentially tot in order to obtainL(rt). Analogously, we transfer fromlt forwards to
t to obtainL(lt). Finally, to smoothly combine the two label maps, we simply minimize
a second MRF energy function using the expected propagationerrors. See Figure 3.

3.2 Active Selection of a Set of Frames

With the label propagation and error predictions defined, wenow explain the novel ac-
tive selection optimization problem. Recall that existingmethods sample manual labels
at fixed intervals [26, 23] or simply annotate some manually chosen frame(s) [9, 14, 3,
6, 2, 18]. The pitfall of such an arbitrary selection is that it ignores correlations between
frames that can affect interpolation/propagation reliability, which do not necessarily
vary uniformly over time. In the following we show how to automate this selection.

Selection Criterion To get a well-segmented video, there are two sources of manual
effort cost: (1) the cost of fullylabelinga frame from scratch, denotedCℓ, and (2) the
cost ofcorrectingerrors by the automatic propagation, denotedCc. Both are in units of
time. One can obtain realistic estimates of these constantsby observing annotators with
the label propagation tool. In our experiments we letCℓ = 25 minutes (based on reports
from [9]), andCc = 1 minute, the correction time typically needed to achieve1% pixel
error. Alternatively, one could replace the constants withframe-specific segmentation
costs when available, e.g., as predicted with a learned model [20].

We now define an optimization problem for the best set of frames from which to
propagate. Our aim is to chooseS∗ = {fn1

, fn2
..., fnk∗

} to minimize the total expected
effort:

S∗, k∗ = argmin
S⊂F,k

k Cℓ + E(S)Cc, where (11)

E(S) =

N
∑

t=1

∑

p∈t

min
j∈{lt,rt}

P(p, j, t). (12)

E(S) counts the expected number of erroneous pixels, and is computed using Eqns. 6
and 2. Since choosing which frame to propagateper pixeladds a factor of height×width
to the computation time, we modify this to select which frameto propagateper frame.
Thus we can rewrite the cost in terms of anN × N matrix C, whereC(j, t) =
∑

p∈t P(p, j, t):

E(S) =

N
∑

t=1

min
j∈{lt,rt}

C(j, t). (13)

In many practical applications, our algorithm would be given a “budget” fork,
meaning the total number of frames that one is willing to pay to have labeled. In that
case, we target the fixed number ofk frames that minimize total propagation error, and
the above reduces to:

S∗ = argmin
S⊂F

E(S). (14)
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Fig. 4.Sketch to illustrate the index notation (a) and the three cases in the DP solution (b-d).

Without a specified budget, the algorithm chooses bothk∗ andS∗ by solving Eqn. 14
for k = {1, . . . , N} and then selecting the best one. In that case, we automatically de-
termine which framesandhow many are necessary to minimize the combined labeling
and correcting effort.

Note that our approach specifically models the interaction between work done “up
front” when a user labels frames and the work done making corrections after propa-
gation. While requesting too many labeled frames overburdens the annotators, so can
requesting too few—since correction costs are likely to increase in response. Impor-
tantly, our algorithm accounts for thiscombinedtradeoff when making its selection.

A naive approach for optimizing Eqn. 14 would take timeO(
(

N
k

)

), since there are
that many subsets ofF . However, since the problem exhibits optimal substructure, we
next present a much more efficient polynomial time dynamic programming solution.

Dynamic Programming Solution Let T (i, b, n) be the optimal value ofE(·) for se-
lectingb frames from the firstn frames, wherei denotes the index of theb-th selected
frame. See Figure 4(a). Note that this value is valid only when b ≥ 1, i ≥ b, n ≥ i;
otherwise, we set it to∞. We define the following recurrences for computing all other
valid values ofT :

Case 1: 1-way→ end.n > i

T (i, b, n) = T (i, b, n − 1) + C(i, n).

Sincei is the last labeled frame, it will propagate its labels to allframes to its right
(see Fig. 4(b)). Therefore, the optimal cost of propagatingto the firstn frames is
simply the sum of the optimal cost of propagating to alln− 1 frames, plus the cost
of propagating from framei to framen.
Case 2: 1-way→ beginning.b = 1 andn = i

T (i, b, n) =

i−1
∑

j=1

C(i, j).

Sincei is the first frame that is labeled, it propagates its labels toall frames before
it (see Fig. 4(c)).
Case 3: Both ways.b > 1 andn = i

T (i,b, n) =
i−1
min

j=b−1
T (j, b − 1, n − 1) −

i−1
∑

m=j+1

C(j,m)

+

i−1
∑

m=j+1

min(C(j,m), C(i,m)). (15)
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In this case, we need to consider all possible choicesj = {b− 1, . . . , i− 1} for the
index of the(b − 1)-th frame, and select the best in conjunction with framei. See
Fig. 4(d). The last term reflects that every framem betweeni andj obtains its label
from the frame with the smaller error. We subtract the valueC(j,m) in the second
term because it was already added in Case 2.

OnceT is computed, we obtain the optimal value for a givenk as:

E(S∗) = min
i∈{k,...,N}

T (i, k,N), (16)

wherei starts atk since the minimum selected index fork total frames isk. We obtain
the selected indices by keeping track of which framej resulted in the smallest value in
Eqn. 15 for everyi, b, and then backtracking from the minimum index.

The time complexity of the procedure isO(N3k), since we need to computeNk

values in Case 3, where in the worst case each value would require N2 computations.
For N = 1000 our Matlab implementation takes about 6 seconds. We can reduce this
complexity further by keeping the matrixC sparse, by computing values only within
a range of frames. In addition, for very long videos, it wouldbe natural to run our
algorithm on sub-clips found automatically with shot detection or event segmentation.

4 Results

We now demonstrate our approach is an effective way to selectframes for labeling. We
considerthree baselines:

– Uniform-f : samplesk frames uniformly starting with the first frame, and propa-
gates labels in the forward direction only using our pixel flow method.

– Uniform : samplesk frames uniformly and transfers labels in both directions. Each
frame obtains its labels from the closest labeled frame.

– Keyframe: selectsk representative frames by performingk-way spectral clustering
on global Gist features extracted for each frame. It requests labels for the frame per
cluster with highest intra-cluster affinity.

We evaluate three variants of our approach;DP-PF: selectsk frames using our
dynamic programming (DP) algorithm and propagates labels using our pixel flow ap-
proach,DP-MRF: selects using our DP algorithm and propagates using our MRF-based
formulation.DP2-MRF: automatically selects the number of frames and their indices
by minimizing total annotation cost as defined in Eqn. 11.

Datasets.We use four publicly available datasets4: (1) Camseq01: 101 frames of a
moving driving scene. (2) Camvidseq05: first 3000 frames from 0005VD sequence de-
picting a driving scene. (3) Labelme8126: (MVI 8126 from ICCV LabelMeVideo [26])
167 frames depicting a traffic signal, and (4) Segtrack [18],which consists of 6 videos.
All four are challenging due to camera ego-motion, color overlap between fg and bg,
interframe motion, occluding objects, and deformable shapes.

Ground truth. Both Camseq01 and Camvidseq05 have labels for each pixel from
one of 32 object classes relevant in a driving environment. Camvid seq05 has ground

4 Dataset links available athttp://vision.cs.utexas.edu/projects/videoseg.
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Labelme8126 Camseq01 Camvidseq05
k = 1 5 10 15 1 5 10 15 1 15 30 45 60

E
rr

or

DP-MRF (Ours) 103 43 34 25 305 120 84 75 1017 342 201 136 92
DP-PF (Ours) 109 47 31 27 314 129 90 81 1137 420 283 159 107

Keyframe 119 62 41 30 323 153 113 86 1119 571 390 232 144
Uniform 166 58 35 31 609 132 101 83 1394 506 298 161 127

Uniform-f 166 81 51 41 609 180 120 96 1394 463 254 163 127
Time savings over

133.6 125.3 33.4 41.890.9 60.6 85.9 40.4504.9 599.0 262.4 123.8 173.3
best baseline (mins)

Table 1.Results on Labelme, Camseq, and Camvid datasets. Values are averagenumber of incor-
rect pixels (the standard metric in prior work [2, 4, 6, 8, 15, 18]) overall framesin hundreds of
pixels for our method and the 3 baselines, for varyingk values. In all cases, our active approach
outperforms the baselines, and yields significant savings in human annotation time (last row).

birdfall2 girl cheetah parachute penguin monkeydog
DP-MRF (Ours) 38 491 466 32 728 723
DP-PF (Ours) 50 487 487 45 612 592

Keyframe 36 557 534 42 706 569
Uniform 37 518 581 52 1172 472

Uniform-f 98 2564 802 119 967 787
Time savings over

-1.5 19.5 43.0 6.2 59.1 -75.4
best baseline (secs)

Table 2. Results on the Seg-
track dataset. Values denote
pixel errors when selecting
k = 5 frames for annotation.

truth for only every 30 frames, so for that data we restrict both selection and evaluation
to the labeled frames. This also serves to illustrate how we can reduce selection time for
long sequences, since we makeC a100×100 matrix rather than its default3000×3000
(selection time drops from750 to 0.06 secs). The Segtrack videos have ground truth for
the foreground target object, and thus allow us to demonstrate our method for the case
where there is only one main object of interest.

Since Labelme8126 lacked ground truth, we manually labeled each frame by seg-
menting the first frame using an interactive toolkit5. This took 2-3 minutesper frame
to correct 2-3% pixel errors, which confirms that even correcting segmentation errors
takes significant effort, a major motivator for this work!

Implementation details.We compute optical flow using [17]. We resize all images
to 398x530 and choose the 10 most frequent classes for all three videos. All other
classes, which occur in< 0.1% of the pixels, are Background. We use 5 components
for the GMMs over 6-dim features per pixel (r, g, b color plus each channel’s entropy
in a 9 × 9 patch surrounding the pixel). We setβ = 1, R = 0.5, andU = 10; we did
not try other values. We setCℓ to 25 minutes (as reported in [9]) andCc to 1 minute for
1% pixel error (2000 pixels) based on our labeling experience on LabelMe.

Error prediction model. Figure 5(a) compares the propagation errorspredicted
by our model on LabelMe to theactual propagation errors incurred by our pixel flow
algorithm if using ground truth segmentations. Each entry in the heat map on top corre-
sponds toC(i, j) =

∑

p
P(p, i, j). It shows our error predictions are quite good, hence

our selections based on those predicted errors will reflect the true labeling errors well.
The error matrices reveal low risk around the diagonals, which means that every

frame has a small range of frames on either side of it to which it can propagate its
labels well. Importantly, however, the width of the blue band differs significantly across
the frames, confirming our claim that propagation reliability is not always uniform, as
assumed by existing techniques.

5 http://www.robots.ox.ac.uk/∼vgg/software/iseg/index.shtml
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Ground truth error matrix

(a)

0 100 200
94

96

98

100

FramesS
eg

m
en

ta
tio

n 
A

cc
ur

ac
y 

(%
)

Labelme_8126, k = 7

 

 

DP−MRF
DP−PF
Keyframe
Uniform
Uniform−f

0 100 200
94

96

98

100

FramesS
eg

m
en

ta
tio

n 
A

cc
ur

ac
y 

(%
)

Labelme_8126, k = 15

 

 

DP−MRF
DP−PF
Keyframe
Uniform
Uniform−f

0 50 100 150
80

90

100

FramesS
eg

m
en

ta
tio

n 
A

cc
ur

ac
y 

(%
)

Camseq01, k = 7

 

 

DP−MRF
DP−PF
Keyframe
Uniform
Uniform−f

0 50 100 150
85

90

95

100

FramesS
eg

m
en

ta
tio

n 
A

cc
ur

ac
y 

(%
)

Camseq01, k = 15

 

 

DP−MRF
DP−PF
Keyframe
Uniform
Uniform−f

0 50 100
0

50

100

FramesS
eg

m
en

ta
tio

n 
A

cc
ur

ac
y 

(%
)

Camvid_seq05, k = 15

 

 

DP−MRF
DP−PF
Keyframe
Uniform
Uniform−f

0 50 100
0

50

100

FramesS
eg

m
en

ta
tio

n 
A

cc
ur

ac
y 

(%
)

Camvid_seq05, k = 30

 

 

DP−MRF
DP−PF
Keyframe
Uniform
Uniform−f

(b)
Fig. 5. (a) Comparison of ground truth label propagation error with the error predicted by our
model (C) for Labelme. Our error predictions follow the actual errors fairly closely. (b) Each
method’s accuracy plotted for all frames, for two values ofk per sequence. Accuracy values are
sorted from high to low per method for clarity. Our DP approaches (darker blue curves) have
higher accuracy, esp. on frames far away from labeled frames. Best viewed on pdf.

Fixed size selections.Table 1 reports the label errors for the first three datasets
and all methods, for multiple choices ofk (number of labeled frames). As expected, for
all methods, error decreases for larger values ofk since more effort helps in general.
However, our active selection approach (top two rows) outperforms all baselines for
all values ofk and all videos. Table 2 reports the pixel error on the Segtrack dataset
when five frames are selected for annotation. Again our active approach improves over
the baselines on a majority of videos. The magnitude of errors and gains on Segtrack
are necessarily smaller, since those videos are much shorter than the other datasets and
contain only one foreground object. We focus the remaining analysis on the longer
multi-object datasets accordingly.

A difference of20 in Table 1 denotes2000 incorrect pixels, which would require1
minute per frame to fix. The last rows of the Tables 1 and 2 showsour method’s savings
relative to the best baseline per test using this conversion. This clearly shows that active
frame selection is crucial to most efficiently use annotatortime for video data.

This savings estimate assumes that the cost of correcting errors is proportional to
the number of mislabeled pixels. While a simple model of cost,we find it is realistic in
practice for these datasets. Most of the errors occur near object boundaries; thus, using
the interactive segmentation tool, after a couple initial broad strokes, most time is spent
correcting the near-boundary errors. In addition, even when refining the error metric to
count only pixels close to the segmentation boundary (up to 20 pixels away), we obtain
similar relative outcomes, with our DP-PF and DP-MRF approaches outperforming the
baselines.

Figure 5(b) reports accuracy across all frames for the driving datasets. DP-MRF
outperforms our basic pixel flow technique, showing the inclusion of an appearance
model and smoothness terms reduces propagation errors due to occlusion, drift, and in-
correct flow. Keyframe performs poorly compared to our approach, and, surprisingly, is
weaker than Uniform for largerk values. This shows that pickingrepresentativeframes
does not correctly model how well new labels may influence therest; our approach
specifically models this “trackability” and therefore makes better selections.

Uniform selection with two-way propagation is typically better than Uniform-f, in-
dicating that tracking pixels and transferring labels in both directions is valuable. How-



Active Frame Selection for Label Propagation in Videos 13

0 5 10 15
400

600

800

1000

1200

1400

Number of Selected FramesT
ot

al
 A

nn
ot

at
io

n 
T

im
e 

(m
in

s) Labelme_8126

 

 

DP−MRF
DP−PF
Keyframe
Uniform
Uniform−f
DP2−MRF

0 5 10 15
500

1000

1500

2000

2500

3000

Number of Selected FramesT
ot

al
 A

nn
ot

at
io

n 
T

im
e 

(m
in

s) Camseq01

 

 

DP−MRF
DP−PF
Keyframe
Uniform
Uniform−f
DP2−MRF

0 20 40 60

2000

3000

4000

5000

6000

Number of Selected FramesT
ot

al
 A

nn
ot

at
io

n 
T

im
e 

(m
in

s) Camvid_seq05

 

 

DP−MRF
DP−PF
Keyframe
Uniform
Uniform−f
DP2−MRF

(a)

Frame 5(101) Frame 20(101) Frame 39(101) Frame 54(101)

Frame 68(101) Frame 82(101) Frame 95(101)

(b)

Fig. 6.(a) Total human annotation time required to label each sequence, as a function of selections
made per method. Darker lines are ours. Our method reduces effortbetter than the baselines, and
can also predict the optimal number of frames to have labeled (see DP2-MRF diamonds). (b)
Frames selected by our approach.

ever, on Camvidseq05, two-way is worse. This is because the sequence is taken from a
car moving forward, and labels are sampled every30 frames, and so most points tracked
in the forward direction move out of the frame. Uniform performs better than our ap-
proaches on the monkeydog sequence in Segtrack. This particular sequence is fairly
challenging for optical flow computation due to fast movements and indistinctive, low
resolution features on the foreground object, which affects our cost matrix.

Figure 6(b) shows the frames selected by our approach fork = 7 on the Camseq01
sequence. We see our approach selects non-uniformly spacedframes so that they con-
tain high resolution information of most of the objects thatoccur in the video (the two
cars, bicyclists, pedestrians).

Minimizing total annotation cost. Figure 6(a) shows the total time (kCℓ + ECc)
each method requires to annotate each video sequence, as a function of k. As k in-
creases, error reduces (decreasingECc), but thekCℓ term increases. For all methods,
the total annotation time has a sweet spot (reflected by the dip and then slow climb
in the curves vs.k) where thecombinedeffort cost is minimized. Again, our methods
require lower total effort on all videos.

This also shows how our DP2-MRF variant can automatically predict the optimal
number of frames to get labeled (k = 8, 9, 55 for these sequences), which is close to the
actual minimum. Labeling all frames would require4175, 2525, 2475 min. for each
video, whereas our DP2-MRF’s intelligent requests brings that down to449, 633, 1880
min., respectively. This equates to saving up to 90% of annotator effort.

5 Conclusions
We introduced the active multi-frame selection problem. Our approach models expected
label propagation errors, and provides an efficient DP solution to make the optimal
choice. Results show the real impact of our method in using human time for video la-
beling most effectively. This line of work has the potentialto greatly enhance video
labeling tasks, which are increasingly of interest for activity recognition and other ap-
plications.
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