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Abstract. Manually segmenting and labeling objects in video sequences is quite
tedious, yet such annotations are valuable for learning-based approaches to ob-
ject and activity recognition. While automatic label propagation can help, existing
methods simply propagate annotations from arbitrarily selected frames (e.g., the
first one) and so may fail to best leverage the human effort invested. We define
anactive frame selection problem: seléctrames for manual labeling, such that
automatic pixel-level label propagation can proceed with minimal expected er-
ror. We propose a solution that directly ties a joint frame selection criterion to
the predicted errors of a flow-based random field propagation model. It selects
the set ofk frames that together minimize the total mislabeling risk over the en-
tire sequence. We derive an efficient dynamic programming solution to optimize
the criterion. Further, we show how to automatically determine how many total
framesk should be labeled in order to minimize the total manual effort spent
labeling and correcting propagation errors. We demonstrate our method’s clear
advantages over several baselines, saving hours of human effort per video.

1 Introduction

Semantic segmentation of objects in video sequences is important for many high-level
applications, such as recognizing human actions, medical imaging, and automated ve-
hicle driving. Gathering useful labeled data appears key for methods to learn to parse
videos, but it requires considerable manual effort. In particular, labeling the boundaries
of all objects of interest in each frame is tedious and time-consuming. The cost can
be mitigated by exploiting interactive segmentation techniques [24, 15, 1, 3] or region
tracking and segmentation methods [16, 9]. Researchers have also developed methoo
to propagate manual annotations across video frames using interfaces with interpolation
tools [23, 26] or inference in space-time graphical models [14, 6, 2, 18, 8]. Typically a
user annotates some frame (e.qg., the first one), then invokes the propagation engine.
While semi-automatic methods are promising, existing techniques have two main
limitations. First, they assume that the provided labeled frame(s) are already fixed, and
focus only on how to optimize the propagation across the remaining unlabeled frames.
However, there is no guarantee an arbitrarily selected frame (or even a human-selectec
frame) provides sufficient information to optimally propagate to the rest. Second, they
assume some fixed number of initial frames, or else that a human labeler will watch
the algorithm’s intermediate outputs and decide when a new label is necessary to get
the method back on track. However, this neglects the fact that there is a direct trade-off
between the number of frames initially labeled and the amount of erroneously propa-
gated labels someone will need to fix afterwards—and that trade-off is video dependent.
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Fig. 1. Goal: actively seleckt video
frames for a human to label, so as
to ensure minimal expected error
across the entire sequence after au-
tomatic propagation. Best viewed in
color.

More importantly, requiring a human in the loop to catch mggted errors precludes
the possibility of “farming” each frame-level annotatiaijto multiple people working
in parallel, which would be desirable for large-scale aatioh efforts.

We instead propose tactivelyselect frames for label propagation. The goal is to
leverage the required human effort more purposefully, iynahg the propagation al-
gorithm’s expected errors to automatically guide whichfes are presented to a hu-
man for manual labeling The k£ most useful frames are jointly chosen according to the
expected label error, were they to be propagated via a demseéfised random field
model. Specifically, we compute the predicted mislabelatg for every frameg should
framei be labeled and propagated to it, based on the expected Idjigaerror and
model uncertainty. We then formulate the bestelection as an optimization problem
to minimize total propagation error, and provide an effitigynamic programming al-
gorithm to solve it in time polynomial in the number of totahimes. After obtaining
the selected annotations, we propagate the labels segjliewiih that same model. We
further show how to optimize over the number of frames thatrte be selected.

In this way, our method reduces total manual effort—both bgpkeg the number
of selected frames low, and by ensuring that after propagatiinimal human fixing
is required. Moreover, by reducing video annotatiorktmdependent image labeling
tasks, it has the advantage that one may elect to have théabealéd in parallel (e.g.,
on Mechanical Turk, if desired). The propagation to unlaerames is completely
automatic and done offline, so no further user intervensareduired.

While our work sharesctive learnings high-level motivation to minimize human
involvement, the active frame selection problem we defimésisnct. Traditional active
selection methods aim to choose useful instances for aatdgbeling, such that a
classifier's uncertainty on unseen instances will be redi¢esy., [21, 11]). In contrast,
the active video frame selection problem aimgdintly select those frames in light of
theirknown temporal orderinguch that the@xpected propagation errors on the current
sequencwvill be minimized. Furthermore, the fact that theselection jointly influences
many frames in either direction in time means that a naivecggh—i.e., one that
selects representative keyframes, or one that looks onlyai@l in time to detect abrupt
changes—would not meet our goal. Rather, we need to modetrdoekability” as part
of the selection criterion.

To our knowledge, we are the first to define the active videmé&aelection prob-
lem, where the system determines which subset of framesreelgibeling. The pro-

1 Throughout we assume a dense labeling, where the annotator mapisahkevel boundaries
of all objects present in the frame.
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posed approach is a novel solution to maximize annotatorteff this important, prac-
tical setting. We demonstrate its advantages on challgngiteos, as compared to a
method that uniformly samples frames for labeling and atetirsg-based keyframe
selection technique. Our results indicate that active &aelection is crucial to most
efficiently use human time for video annotation.

2 Related Work

Interactive segmentationtechniques help a user extract objects from videos [1, 24,
15, 3] or groups of related images [4]. Such methods offeehimterfaces to indicate
foreground objects in a space-time volume [24, 3], to prapagn initial foreground
region while the user corrects any mistakes along the way5[1,or to intelligently
recommend where a user should scribble [4]. In contrast tgoablem, these meth-
ods attempt binary labelings and, more importantly, assamser is closely involved
throughout to refine the segmentation at each step. Our geaguidethe user to the
frames that most require attention.

Researchers are also developimayel video annotation toolsamenable to online
data collection [26, 23]. LabelMe Video allows users to dmalygons around objects
and select a start and end frame; interpolation transferpahygons to other frames.
The crowd-sourcing study in [23] asks a worker to draw a binmndox everyl” frames,
and then interpolates the object path efficiently. Both mé@shassume the object’s mo-
tion is either static or uniform during interpolation. Asélour approach can naturally
enhance such tools, removing the burden on a user to haghirmsi which frames are
usable for propagation.

Video object segmentatiortakes an unsupervised approach [9, 16, 10, 19]. Graph-
based clustering [10], tracking [9], and random field modiets 19] have all been ex-
plored. Optionally, when labeled frames are availablehsnethods can perform label
transfer using tracks [9] or dense correspondences [12].eAkmown challenge in
tracking is “drift”, where small errors accumulate over ¢éinOur approach counters
this pitfall by requesting more labeled frames where flowerappear to accumulate,
and by using an appearance model for uniform regions withkiypoints.

A few recent methods directly addrdabel propagation in videousing probabilis-
tic models [14, 6, 2, 18]. The methods typically assume thellaeld in the first (and/or
last) frame of the sequence is given, and then automatitcaltk through the remaining
frames based on the objects’ color and motion properties.

Active learning methodsconsider how to select useful instances to refine a classi-
fier, and in particular “batch-mode” selection methods Haen explored for training
object classifiers [21, 11]. We also want to reduce manuahiention, but our setting
differs significantly: our objective is to minimize propdiga error rather than build
a classifier, and the selection criterion must account fdh ltee information overlap
between selected frames as well as the likelihood of suttddksv-based transfer to
all unlabeled frames. Very recent work considers ways tivelgttrain an “object vs.
background” classifier for a given video, iteratively resfileg a bounding box or su-
perpixel label in a selected uncertain frame [22, 8]. Like approach, these methods
aim to efficiently use annotator effort for video labelingowkver, whereas we jointly
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solve for a labeling of all objects in the video and explicithodel the “trackability”
for active selection, the previous techniques handle desiigject of interest indepen-
dently and base selection on traditional measures of Gilrssncertainty. Furthermore,
both prior methods assume an annotator remains in the lo@ati sequential request
following a classifier update, whereas our method compbiesét of frames requiring
annotation at once. This makes it uniquely amenable to atorstworking in parallel
(e.g., for crowdsourcing), and in principle enables norepiy selection.

Finally, keyframe selectionfindsrepresentativérames using clustering (e.g., [25])
or by maximizing the dissimilarity between keyframes [7]. 18hile intended for visual
summarization—not active annotation—they serve as a natasaline; we find they
underperform our approach, due to their failure to quartidyv well labels can be
transferred to the unselected frames.

3 Approach

Our goal is to annotate all objects in a video with minimal oreffort. To achieve
this, our method first selects a set of informative frameshfonan labeling, and then
propagates those labels to the rest of frames using optmaladhd appearance-based
models.

We first define the propagation algorithm (Section 3.1),eslmcdesign our selection
criterion is closely aligned with it. Then in Section 3.2, @define the optimization
problem for selection that minimizes the total predictedeon all frames, and finally
derive a dynamic programming algorithm to efficiently salve

3.1 Video Label Propagation

Let F = {f1, f2,..., [n} be the sequence df frames from a video that need to be
annotated, such that each pixel will be assigned orteatjject labels. Givelk frames
S = {fnys---, fn,}» With corresponding label§L,,,, ..., L, }, whereS C F, we
propagate their labels to the rest of the video. EAghis a matrix of labels having the
same dimensions as the image frame (height by width) indiexélde 2D pixel coordi-
natesp, and eaciL,,, (p) € {1,...,C}. Let(l;, r+) be the indices of the closest labeled
frames before and after framgerespectively (“left” and “right” oft).? We assume that
given label§ L,,, L., ), the rest of the frames do not affect the labels of frame

In this section, we devise two methods for propagation: &lflsv-based approach
and an enhanced variant that uses the flow model within a MadRemdom Field. The
simpler flow-based model is the core that ties to the selegtiocedure, while the MRF
strengthens it with motion-based data terms and usual $mes$ constraints. We test
both in experiments.

Pixel Flow Propagation Method The basic propagation method uses dense optical
flow to track every pixel inf; in both the forward and backward directions until it
reaches the closest labeled frames on either side. We ¢éstingeexpected propagation

2 Frame indiceg!l;, 7¢) might not exist if the number of labeled frames<s2, or if i < n; or
i > ny. For clarity we omit such cases, as they do not affect the methodiplisier
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Fig. 2. Relationship between flow and label transfer.

error as the pixel is being tracked, and choose its label &iheri, or r;, whichever
has the smaller error. By tracking the flow in both tempore¢ciions, we account for
the fact that object motion in a video can cause one or the tthse more reliable; for
example, if an object is moving away from the camera, thaegdrames offer higher
resolution on the object and are more reliably propagatbereas if it is approaching
the camera, the opposite is true.

Let w denote a flow field indexed by pixel positions that returns2Bdlow vector
at a given point. Given the forward flow field from frarh® ¢+ 1, w,, and the backward
field fromt¢ tot — 1, wy, each pixel positiom in framet can be tracked to the next and
previous frames:

p' =p+w(p),
P’ =p+wi(p). 1)
Defining the expected propagation err&ven with a good dense flow algorithm,
inevitably errors occur due to boundaries, occlusions,\ahen pixels change in ap-
pearance, or enter/leave the frame. Thus, we explicitly ghtite probability that a
pixel is mistracked. In the following, we define this proptga error for a later frame
t + j backto ¢, i.e., using the forward flow frorp to p’ (see Figure 2). All terms are
analogously defined for propagating from a prior framej.
The probability that pixep in framet will be mislabeled if we were to obtain its
label from framet + 1 is:

P(p, t+1, t) =1 — exp(—d(p,t)), where 2)

d(pa t) = 5 (daPP(p7 t) + dmot(p» t) + docc(p> t) + dout(pu t)) )

andg is a scaling parametd?(p, t — 1, t) is defined analogously using, p’, andt — 1.
The component distances reflect the expected forms of trgekior. Specifically,

dapp(P:t) = | fe(P) — fra1 (D) ©)

computes the color difference, and the flow differences are

d7not(p7 t) = H'wt(P) - wt—!—l(p/)H' (4)

The latter helps identify pixels that drift across objectibdaries, thus having the mo-
tion of two different objects. We detect occlusions usirg ¢bnsistency of the forward
and backward flow:

_lwi(p) + Wi (p) ||
Aoce(P-1) = Yoy @) [+ T @) ©)
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Fig. 3. Schematic for the propagation process to label frankgamed, andr, denotel’s closest
labeled frames before (“left”) and after (“right”). Dark blue frane=note thek = 3 selected
frames. Dotted arrows denote optical flow or MRF-based propagattn &djacent frames,
which propagate labels tdrom either direction to generate label matrio:eﬂé" andLE”) (shown
in gray). They combine to forni,, the final label estimate far

Essentiallyd,.. reflects that if a pixel is not occluded, we expect the two fleavbe
opposite in direction, making the numerator close to 0. Ikinae setd,,;(p,t) = 0
if p’ is within the frame, and a constaft if it has left. Large values for any(-)
term indicates a pixel may have been wrongly mapped to ardiffeobject, and hence
is likely to cause a propagation error. Note that each terniritmutes equally to the
distance since large values for any one is likely to causeran e

When there is more than one frame between labeled fra@ued current frame we
must predict errors accumulated over successive framdmilethe error recursively,
we have:

P(p, t+j,t)=P(p, t+j—1,1) (6)
+(1_P(p7t+]_1at))P(pat+Jvt+.7_1)a

for j > 1. In other words, pixep was either mislabeled along some hop fromj — 1
back tot, or else those hops were all correct and the wrong label wasapated from
the single hop from adjacent frames j andt+j — 1. We will refer to these mislabeling
probabilities again in Section 3.2 to define the selectigeaiive.

Minimization and final label maprhus, to estimate the final labé&l (p) for pixel
p in framet with the flow alone, we first compute(p, l;, t) andP(p, r;, t) recursively
using Eqgn. 6 to obtain the two corresponding label estimates(p) andL("*) (p), and
then take the best predictioh; (p) = LU") (p), wherej* = argmin;_(;, ., P(p, j, ).
See Figure 3. Tracking in both directions helps avoid mesakade if propagating only
one way. Ifl; or r, does not exist, then the labels are simply obtained fromréekéd
points in the other labeled frame.

Pixel Flow + MRF Propagation Method The previous section defined both the basic
flow-based propagation, and (more crucial to our selectppr@ach) a means to esti-
mate propagation errors. Next we explain an enhanced vdahahuses flow tracking
within a space-time Markov Random Field (MRF) model. The MRifiant helps us
(a) infer label maps that are smooth in space and time, andnftlance each pixel's
label estimate using object appearance models defined tglibled frames.
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The use of a random field for video segmentation is itself eot (e.g., see [16, 15,
18, 19] for variants); however, our formulation specifigalllows for the propagated er-
ror predictions that are central to active frame selectisnye will see in the following.

Given labels on the subsequent fratnel, we define a random field fewith nodes
at every pixel, and hidden nodes corresponding to their onvknlabels. To obtain the
backward label assignmérfor ¢, we minimize the energy:

:ZAP(Lt(p + T, (Li(p Z Vp,q Lt Li(q ))7

P,geN

where 4, is a unary potential based on an appearance model definedrgfy, T),
is a unary potential based on transferred labels ftom1, andV,, , is the pairwise
potential computed oveX, the set of neighboring pixels in&-connected grid. They
are defined as follows.

Node potentialsThe manual segmentation of framgyields object regions taking
on (perhaps a subset of) tAgossible object labels. We use its regions t6 fzaussian
mixture models, one per label. LAf (1., X.) denote the-th label’s mixture model,
defined over a featurg(p) consisting of color and entropy-based features (detailed i
Sec. 4). We define:

Ap(c) = —log P( F(p) | N (pie, Xe))- (7

We expect this color model to primarily help fill in backgralobjects at pixels oc-
cluded in the previous frame.

The other node potential reflects the cost of transferrirapallforp from the next
framet + 1. We define:

Tp(c) _ {d(p, t) if c= I./tJrl (p/) 8)

U otherwise,

whered(p, t) is defined in Eqn. 2, antl is a constant. This achieves label smoothness
in time, where we account for estimated motion by uging

Pairwise potential. The edge term is based on both the appearance and motion
similarity of neighboring pixelp andq in framet:

Viq(Lt(p), Li(q)) = 6(Le(p) # Li(q))S(p, a), 9)
whereéd denotes the delta function, and
S(p,q) = exp(—B¢l fi(p) — fe(@)|]) + exp(—Pu|lwi(p) — wi(q)])), (10)

with scaling parametersy, 3,, set as the inverse of the mean values of the correspond-
ing terms over the entire frame. This term penalizes assigdifferent labels to neigh-
boring pixels with similar color and flow.

Minimization and final label maprhe total MRF energy can be efficiently mini-
mized using the algorithm of [5] in order to transfer labetsnfi¢t + 1 and obtainZ,.

3 As above, we describe the label transfer in the backward directiom, fr¢to ¢ in order to
estimatel("*); again, analogous equations apply to map figo ¢ in order to estimaté, *+).
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Since this requires that we have already obtained labelsesaubsequent frantet 1,
we start from the nearest labeled frame to the rightand transfer labels backward
sequentially ta in order to obtainZ("*). Analogously, we transfer frorh forwards to

t to obtainL(*), Finally, to smoothly combine the two label maps, we simplgimize

a second MRF energy function using the expected propagations. See Figure 3.

3.2 Active Selection of a Set of Frames

With the label propagation and error predictions definednew explain the novel ac-
tive selection optimization problem. Recall that existmgthods sample manual labels
at fixed intervals [26, 23] or simply annotate some manudilysen frame(s) [9, 14, 3,
6, 2, 18]. The pitfall of such an arbitrary selection is thagnores correlations between
frames that can affect interpolation/propagation relighiwhich do not necessarily
vary uniformly over time. In the following we show how to aatate this selection.

Selection Criterion To get a well-segmented video, there are two sources of rhanua
effort cost: (1) the cost of fullyabelinga frame from scratch, denotéd, and (2) the
cost ofcorrectingerrors by the automatic propagation, denafédBoth are in units of
time. One can obtain realistic estimates of these condbgribserving annotators with
the label propagation tool. In our experiments we&lgt= 25 minutes (based on reports
from [9]), andC,. = 1 minute, the correction time typically needed to achig¥epixel
error. Alternatively, one could replace the constants \iridime-specific segmentation
costs when available, e.g., as predicted with a learned infji2@le

We now define an optimization problem for the best set of fimfn@m which to
propagate. Our aimis to chooSé = { f,.,, fn,-.., fn,. } t0O Minimize the total expected
effort:

S*, k* = argmin k C;, +E(S)C., where (11)
SCF.k
Z > min P(p,j1). (12)
=1 per IS Ulerd

E(S) counts the expected number of erroneous pixels, and is dechpising Egns. 6
and 2. Since choosing which frame to propagegepixeladds a factor of heightwidth
to the computation time, we modify this to select which fram@ropagateer frame
Thus we can rewrite the cost in terms of ah x N matrix C, whereC(j,t) =
Zpet P(p’ j7 t)

N

E(S) = min C(j,t). (13)
JG{’f re}

In many practical applications, our algorithm would be gie “budget” fork,
meaning the total number of frames that one is willing to pahdve labeled. In that
case, we target the fixed numberioframes that minimize total propagation error, and
the above reduces to:

S* = argmin E(95). (14)
SCF
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Selected
frame index:

Sequence
frame index:

b

OO0 (T o

1.2 i i+1 i+2 n-1n |1|n |1|n

(a) Basic |nd|ces (b) Case 1 (c) Case 2 (d) Case 3

Fig. 4. Sketch to illustrate the index notation (a) and the three cases in the DP solutipn (b

Without a specified budget, the algorithm chooses lgtand S* by solving Eqn. 14
for k = {1,..., N} and then selecting the best one. In that case, we autonhatieal
termine which frameand how many are necessary to minimize the combined labeling
and correcting effort.

Note that our approach specifically models the interactismvben work done “up
front” when a user labels frames and the work done makingections after propa-
gation. While requesting too many labeled frames overbwde® annotators, so can
requesting too few—since correction costs are likely toease in response. Impor-
tantly, our algorithm accounts for tht®mbinedradeoff when making its selection.

A naive approach for optimizing Eqn. 14 would take ti[ﬁ(e(];’)), since there are
that many subsets df. However, since the problem exhibits optimal substructwes
next present a much more efficient polynomial time dynamagmmming solution.

Dynamic Programming Solution Let 7'(i,b, n) be the optimal value oE(-) for se-
lecting b frames from the first frames, wheré denotes the index of thieth selected
frame. See Figure 4(a). Note that this value is valid onlymhe> 1, i > b,n > i;
otherwise, we set it teo. We define the following recurrences for computing all other
valid values off":

Case 1: 1-way— end.n > i
T(i,b,n) =T(i,b,n — 1) + C(i,n).

Sincei is the last labeled frame, it will propagate its labels tdr@ines to its right
(see Fig. 4(b)). Therefore, the optimal cost of propagatinthe firstn frames is
simply the sum of the optimal cost of propagating toral 1 frames, plus the cost
of propagating from frameéto framen.

Case 2: 1-way— beginning.b = 1 andn =i

T(i,b,n) ZC@]

Sincei is the first frame that is Iabeled, it propagates its labebdltirames before
it (see Fig. 4(c)).
Case 3: Both waysb > 1 andn =i

1
T(i,b,n) = min T(,b—1,n—1) Z C(j,m

i—1
+ ) min(C(j,m),C(i,m)).  (15)
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In this case, we need to consider all possible chojces{b—1,...,7 — 1} for the

index of the(b — 1)-th frame, and select the best in conjunction with fram8ee
Fig. 4(d). The last term reflects that every framdetween and; obtains its label
from the frame with the smaller error. We subtract the valiig, m) in the second
term because it was already added in Case 2.

OnceT is computed, we obtain the optimal value for a giveas:

E(S*) = ie{g’l‘l.r-{N} T(i,k,N), (16)
wherei starts at; since the minimum selected index fototal frames is:. We obtain
the selected indices by keeping track of which fraimesulted in the smallest value in
Eqn. 15 for everyi, b, and then backtracking from the minimum index.

The time complexity of the procedure @(N3k), since we need to compufék
values in Case 3, where in the worst case each value woulireeljd computations.
For N = 1000 our Matlab implementation takes about 6 seconds. We carcestthis
complexity further by keeping the matriX sparse, by computing values only within
a range of frames. In addition, for very long videos, it woblg natural to run our
algorithm on sub-clips found automatically with shot déitator event segmentation.

4 Results

We now demonstrate our approach is an effective way to sedeoes for labeling. We
considerthree baselines

— Uniform-f: samplesk frames uniformly starting with the first frame, and propa-
gates labels in the forward direction only using our pixehMflmethod.

— Uniform: sampleg: frames uniformly and transfers labels in both directiorecte
frame obtains its labels from the closest labeled frame.

— Keyframe: selects: representative frames by performihgvay spectral clustering
on global Gist features extracted for each frame. It requabels for the frame per
cluster with highest intra-cluster affinity.

We evaluate three variants of our approab®-PF: selectsk frames using our
dynamic programming (DP) algorithm and propagates lab&lsguour pixel flow ap-
proachDP-MRF: selects using our DP algorithm and propagates using our ktied
formulation.DP2-MRF: automatically selects the number of frames and their irsdice
by minimizing total annotation cost as defined in Eqn. 11.

Datasets. We use four publicly available datasétél) Camseq01: 101 frames of a
moving driving scene. (2) Camvisleq05: first 3000 frames from 0005VD sequence de-
picting a driving scene. (3) Labeln®126: (MVI_.8126 from ICCV LabelMeVideo [26])
167 frames depicting a traffic signal, and (4) Segtrack [MBjch consists of 6 videos.
All four are challenging due to camera ego-motion, colorrtagbetween fg and bg,
interframe motion, occluding objects, and deformable skap

Ground truth. Both Camseq01 and Camvgkq05 have labels for each pixel from
one of 32 object classes relevant in a driving environmeam@d seq05 has ground

4 Dataset links available &ttt p: / / vi si on. cs. ut exas. edu/ pr oj ect s/ vi deoseg.
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Labelme8126 Camseq01 Camvidseq05
k= 1 5 10 15| 1 5 10 15/ 1 15 30 45 60
DP-MRF (Ours)|| 103 43 34 25|[305 120 84 75/[1017 342 201 136 92
DP-PF (Ours) || 109 47 31 27314 129 90 81f|1137 420 283 159 107
Keyframe 119 62 41 30)[323 153 113 8§|1119 571 390 232 144
Uniform 166 58 35 31|609 132 101 83|1394 506 298 161 127
Uniform-f 166 81 51 41)|609 180 120 96|1394 463 254 163 127

Time Savings oVey || 35 ¢ 155 3 33.4 41|0.9 60.6 85.9 40504.9 599.0 262.4 123.8 173.3
best baseline (m|n=)1

Table 1.Results on Labelme, Camseq, and Camvid datasets. Values are avemagz of incor-
rect pixels (the standard metric in prior work [2, 4, 6, 8,15, 18]) aleframesin hundreds of
pixels for our method and the 3 baselines, for varyinhgalues. In all cases, our active approach
outperforms the baselines, and yields significant savings in humantegionaime (last row).

Error

birdfall2 girl cheetah parachute penguin monkeydog
DP-MRF (Ours)| 38 491 466 32 728 723 Table 2. Results on the Seg-
DP-PF(Ours) | 50 487 487 45 612 502 track dataset. Values denote
Keyframe 36 55/ 534 42 706 569 . .
Uniform 37 518 581 52 1172 472 pixel errors when selecting
Uniform-f 98 2564 802 119 967 787 k = 5 frames for annotation.
Timesavings ovef ;5 195 430 62 591  -754
best baseline (segs)

truth for only every 30 frames, so for that data we restri¢htszlection and evaluation
to the labeled frames. This also serves to illustrate howamereduce selection time for
long sequences, since we maka 100 x 100 matrix rather than its defaus00 x 3000
(selection time drops fromi50 to 0.06 secs). The Segtrack videos have ground truth for
the foreground target object, and thus allow us to demaestrar method for the case
where there is only one main object of interest.

Since LabelmeB126 lacked ground truth, we manually labeled each framesby s
menting the first frame using an interactive todlkiThis took 2-3 minuteper frame
to correct 2-3% pixel errors, which confirms that even cdimgcsegmentation errors
takes significant effort, a major motivator for this work!

Implementation details. We compute optical flow using [17]. We resize all images
to 398x530 and choose the 10 most frequent classes for ak tideos. All other
classes, which occur irt 0.1% of the pixels, are Background. We use 5 components
for the GMMs over 6-dim features per pixel, ¢, b color plus each channel’s entropy
in a9 x 9 patch surrounding the pixel). We sét= 1, R = 0.5, andU = 10; we did
not try other values. We sét, to 25 minutes (as reported in [9]) ar@. to 1 minute for
1% pixel error Q000 pixels) based on our labeling experience on LabelMe.

Error prediction model. Figure 5(a) compares the propagation erqmedicted
by our model on LabelMe to thactual propagation errors incurred by our pixel flow
algorithm if using ground truth segmentations. Each emttyé heat map on top corre-
sponds ta’ (i, j) = Zp P(p,1,j). It shows our error predictions are quite good, hence
our selections based on those predicted errors will refiectrte labeling errors well.

The error matrices reveal low risk around the diagonalschvimeans that every
frame has a small range of frames on either side of it to whidam propagate its
labels well. Importantly, however, the width of the blue Baliffers significantly across
the frames, confirming our claim that propagation reli&@pit not always uniform, as
assumed by existing techniques.

® http://www.robots.ox.ac.uk/vgg/softwarefiseg/index.shtml
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Fixed size selections.Table 1 reports the label errors for the first three datasets
and all methods, for multiple choices b{number of labeled frames). As expected, for
all methods, error decreases for larger values since more effort helps in general.
However, our active selection approach (top two rows) atidpes all baselines for
all values ofk and all videos. Table 2 reports the pixel error on the Selgtdataset
when five frames are selected for annotation. Again our eepproach improves over
the baselines on a majority of videos. The magnitude of sraod gains on Segtrack
are necessarily smaller, since those videos are much stiwatethe other datasets and
contain only one foreground object. We focus the remaininglyesis on the longer
multi-object datasets accordingly.

A difference of20 in Table 1 denote8000 incorrect pixels, which would require
minute per frame to fix. The last rows of the Tables 1 and 2 slwuwsnethod’s savings
relative to the best baseline per test using this conver3iois clearly shows that active
frame selection is crucial to most efficiently use annotttoe for video data.

This savings estimate assumes that the cost of correctingsés proportional to
the number of mislabeled pixels. While a simple model of awstfind it is realistic in
practice for these datasets. Most of the errors occur ngactdiioundaries; thus, using
the interactive segmentation tool, after a couple initraldal strokes, most time is spent
correcting the near-boundary errors. In addition, evennaeéining the error metric to
count only pixels close to the segmentation boundary (u@tpi2els away), we obtain
similar relative outcomes, with our DP-PF and DP-MRF apphea outperforming the
baselines.

Figure 5(b) reports accuracy across all frames for the mgidatasets. DP-MRF
outperforms our basic pixel flow technique, showing theusidn of an appearance
model and smoothness terms reduces propagation errors daeltision, drift, and in-
correct flow. Keyframe performs poorly compared to our apphg and, surprisingly, is
weaker than Uniform for larger values. This shows that pickingpresentativédrames
does not correctly model how well new labels may influencerdést; our approach
specifically models this “trackability” and therefore makwmetter selections.

Uniform selection with two-way propagation is typicallytter than Uniform-f, in-
dicating that tracking pixels and transferring labels ithbdirections is valuable. How-
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Frame 5(101)

Frame 20(101) Frame 39(101) Frame 54(101)

Labelme_8126

Frame 82(101) Frame 95(10.
N

(b)

Fig. 6.(a) Total human annotation time required to label each sequence,radiafof selections
made per method. Darker lines are ours. Our method reducestedfoet than the baselines, and
can also predict the optimal number of frames to have labeled (seeMB#2diamonds). (b)
Frames selected by our approach.

ever, on Camvidseq05, two-way is worse. This is because the sequence isfrake a
car moving forward, and labels are sampled ewrframes, and so most points tracked
in the forward direction move out of the frame. Uniform penfs better than our ap-
proaches on the monkeydog sequence in Segtrack. Thisarteequence is fairly
challenging for optical flow computation due to fast movetaeand indistinctive, low
resolution features on the foreground object, which affectr cost matrix.

Figure 6(b) shows the frames selected by our approach for7 on the Camseq01
sequence. We see our approach selects non-uniformly sfraceels so that they con-
tain high resolution information of most of the objects thatur in the video (the two
cars, bicyclists, pedestrians).

Minimizing total annotation cost. Figure 6(a) shows the total timé(, + EC..)
each method requires to annotate each video sequence, ast@rfuof k. As k in-
creases, error reduces (decreadidg.), but thekC, term increases. For all methods,
the total annotation time has a sweet spot (reflected by thewd then slow climb
in the curves vsk) where thecombinedeffort cost is minimized. Again, our methods
require lower total effort on all videos.

This also shows how our DP2-MRF variant can automaticalgdjmt the optimal
number of frames to get labelel £ 8,9, 55 for these sequences), which is close to the
actual minimum. Labeling all frames would requit&€75, 2525, 2475 min. for each
video, whereas our DP2-MRF’s intelligent requests britgs tlown tot49, 633, 1880
min., respectively. This equates to saving up to 90% of atnoeffort.

5 Conclusions

We introduced the active multi-frame selection problemr &pproach models expected
label propagation errors, and provides an efficient DP mwiuio make the optimal
choice. Results show the real impact of our method in usingamutime for video la-
beling most effectively. This line of work has the potentialgreatly enhance video
labeling tasks, which are increasingly of interest foratgirecognition and other ap-
plications.
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