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Abstract

Active learning strategies can be useful when manual la-

beling effort is scarce, as they select the most informative

examples to be annotated first. However, for visual cate-

gory learning, the active selection problem is particularly

complex: a single image will typically contain multiple ob-

ject labels, and an annotator could provide multiple types

of annotation (e.g., class labels, bounding boxes, segmen-

tations), any of which would incur a variable amount of

manual effort. We present an active learning framework

that predicts the tradeoff between the effort and information

gain associated with a candidate image annotation, thereby

ranking unlabeled and partially labeled images according

to their expected “net worth” to an object recognition sys-

tem. We develop a multi-label multiple-instance approach

that accommodates multi-object images and a mixture of

strong and weak labels. Since the annotation cost can vary

depending on an image’s complexity, we show how to im-

prove the active selection by directly predicting the time re-

quired to segment an unlabeled image. Given a small initial

pool of labeled data, the proposed method actively improves

the category models with minimal manual intervention.

1. Introduction

Most visual recognition methods rely on labeled train-

ing examples where each class to be learned occurs promi-

nently in the foreground, possibly with uncorrelated clutter

surrounding it. In practice, the accuracy of a recognition al-

gorithm is often strongly linked to the quantity and quality

of the annotated training data available—having access to

more examples per class means a category’s variability can

more easily be captured, and having richer annotations per

image (e.g., a segmentation of object boundaries rather than

a yes/no flag on object presence) means the learning stage

need not infer which features are relevant to which object.

Unfortunately, this is a restrictive constraint, as substan-

tial manual effort is needed to gather such datasets. Yet, not

all images are equally informative. Active learning methods

could potentially pinpoint a smaller set of uncertain exam-

ples for which labels should be requested [26, 8, 3, 14, 21],

thereby reducing supervision without sacrificing much ac-

curacy in the model.

However, in the general case, visual category learn-

ing does not fit the mold of traditional active learning ap-

proaches, which primarily aim to reduce the number of la-

beled examples required to learn a classifier, and almost al-

ways assume a binary decision task. When trying to choose

informative image data to label for recognition, there are

three important distinctions we ought to take into account.

First, most real-world images consist of multiple objects,

and so should be associated with multiple labels simulta-

neously.1 This means that an active learner must assess

the value of an image containing some unknown combina-

tion of categories. Second, whereas in conventional learn-

ing tasks the annotation process consists of simply assign-

ing a class label to an example, image annotation can be

done at different levels—by assigning class labels, drawing

a segmentation of object boundaries, or naming some re-

gion. This means an active learner must specify what type

of annotation is currently most helpful, not just which ex-

ample. Third, while previous methods implicitly assume

that all annotations cost the same amount of effort (and thus

minimize the total number of queries), the actual manual

effort required to label images varies both according to the

annotation type as well as the particular image example.

In order to handle these issues, we propose an active

learning framework where the expected informativeness of

any candidate image annotation is weighed against the pre-

dicted cost of obtaining it (see Figure 1). We devise a

multiple-instance, multi-label learning (MIML) formula-

tion that allows the system itself to choose which annota-

tions to receive, based on the expected benefit to its current

object models. After learning from a small initial set of la-

1Multi-label is thus more general than multi-class, where usually each

example is assumed to represent an item from a single class.
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(a) Labeled (and partially la-

beled) examples to build models

(b) Unlabeled and partially labeled examples to survey (c) Actively chosen queries sent to anno-

tators

Figure 1. Overview of the proposed approach. (a) We learn object categories from multi-label images, with a mixture of weak and strong labels. (b) The

active selection function surveys unlabeled and partially labeled images, and for each candidate annotation, predicts the tradeoff between its informativeness

versus the manual effort it would cost to obtain. (c) The most promising annotations are requested and used to update the current classifier.

beled images, our method surveys any available unlabeled

data to choose the most promising annotation to receive

next. After re-training, the process repeats, continually im-

proving the models with minimal manual intervention.

Critically, our active learner chooses both which image

example as well as what type of annotation to request: a

complete image segmentation, a segmentation of a single

object, or an image-level category label naming one of the

objects within it. Furthermore, since any request can require

a different amount of manual effort to fulfill, we explicitly

balance the value of a new annotation against the time it

might take to receive it. Even for the same type of annota-

tion, some images are faster to annotate than others (e.g., a

complicated scene versus an image with few objects). Hu-

mans (especially vision researchers) can easily glance at an

image and roughly gauge the difficulty. But can we pre-

dict annotation costs directly from image features? Learn-

ing with data collected from anonymous users on the Web,

we show that active selection gains actually improve when

we account for the task’s variable difficulty.

Our main contributions are a unified framework for pre-

dicting both the information content and the cost of different

types of image annotations, and an active learning strategy

designed for the MIML learning setting.

2. Related Work

A number of research threads aim at reducing the ex-

pense of obtaining well-annotated image datasets, from

methods allowing weak supervision [23], to those that mine

unlabeled images [18, 11]. Other techniques reduce train-

ing set sizes by transferring prior knowledge [5], or exploit-

ing noisy images from the Web [6, 20]. Aside from such

learning-based strategies, another approach is to encourage

users to annotate images for free/fun/money [22, 15, 19].

Active learning for visual categories has thus far received

relatively little attention. Active strategies typically try to

minimize model entropy or risk, and have been shown to ex-

pedite learning for binary object recognition tasks [8], rele-

vance feedback in video [26], dataset creation [3], and when

there are correlations between image-level labels [14].

The multiple-instance learning (MIL) scenario has been

explored for various image segmentation and classification

tasks [12, 20, 28, 27]. Multi-label variants of MIL in partic-

ular are proposed in [28, 27], with impressive results. Ac-

tive selection in the two-class MIL setting was recently ex-

plored in [16] and [21], where it is shown that a classifier

learns faster if it can request both instance-level labels and

bag-level labels. However, both previous active MIL meth-

ods are limited to learning from single-label examples and

making binary decisions. In contrast, our approach makes it

possible to actively learn multiple classes at once from im-

ages with multiple labels. This is an important distinction in

practice, since images in a naturally occurring pool of un-

labeled images will not be restricted to containing only one

prominent object per image.

Overall, in contrast to this work, previous active learning

methods for recognition only consider which examples to

obtain a class label for to reduce uncertainty [26, 8, 3, 14],

or else are limited to binary and/or single-label prob-

lems [8, 21]. None can learn from both multi-label image-

level and region-level annotations. Finally, to our knowl-

edge, no previous work has considered predicting the cost

of an unseen annotation, nor allowing such predictions to

strengthen active learning choices.

3. Approach

The goal of this work is to learn category models with

minimum supervision under the real-world setting where

each potential training image can be associated with mul-

tiple classes. Throughout, our assumption is that human ef-

fort is more scarce and expensive than machine cycles; thus

our method prefers to invest in computing the best queries

to make, rather than bother human annotators for an abun-

dance of less useful labelings.



Figure 2. In our MIML scenario, images are multi-label bags of regions

(instances). Unlabeled images are oversegmented into regions (a). For

an image with bag-level labels, we know which categories are present in

it, but we do not know in which regions (b). For an image with some

instance-level labels, we have labels on some of the segments (c). For a

fully annotated image, we have true object boundaries and labels (d).

In the following, we introduce the MIML framework and

define a discriminative kernel-based classifier that can deal

with annotations at multiple levels (Section 3.1). Then, we

develop a novel method to predict the cost of an annota-

tion (Section 3.2.1). Finally, we derive a decision-theoretic

function to select informative annotations in this multi-label

setting, leveraging the estimated costs (Section 3.2.2).

3.1. Multi­label multiple­instance learning

An arbitrary unlabeled image is likely to contain multiple

objects. At the same time, typically the easiest annotation to

obtain is a list of objects present within an image. Both as-

pects can be accommodated in the multiple-instance multi-

label learning setting, where one can provide labels at multi-

ple levels of granularity (e.g., image-level or region-level),

and the classifier learns to discriminate between multiple

classes even when they occur within the same example.

In the following, we extend SVM-based MIL to the

multi-label case. The main motivation of our design is to

satisfy both the multi-label scenario as well as the needs of

our active selection function. Specifically, we need classi-

fiers that can rapidly be incrementally updated, and which

produce probabilistic outputs to estimate how likely each

label assignment is given the input.

In MIL [4], the learner is given sets (bags) of instances

and told that at least one example from a positive bag is

positive, while none of the members in a negative bag is

positive. In the more general MIML setting, each instance

within a bag can be associated with one of C possible

class labels; therefore each bag is associated with multiple

labels—whichever labels at least one of its instances has.

Formally, let {(X1, L1), (X2, L2), ...(XN , LN )} denote

a set of training bags and their associated labels. Each bag

consists of a set of instances Xi = {xi
1, x

i
2, ...x

i
ni
}, and a

set of labels Li = {li1, l
i
2, . . . , l

i
mi

}, where ni denotes the

number of instances in Xi, and mi denotes the number of

labels in Li. Note that often a bag has fewer unique la-

bels than instances (mi ≤ ni), since multiple instances may

have the same label. Every instance xi
j is associated with

a description φ(xi
j) in some kernel embedding space and

some class label lik ∈ L = {1, . . . , C}, but with only the

bag-level labels it is ambiguous which instance(s) belongs

to which label. A bag Xi has label l if and only if it con-

tains at least one instance with label l. Note that a labeled

instance is a special case of a bag, where the bag contains

only one example (ni = 1), and there is no label ambiguity.

For our purposes, an image is a bag, and its instances

are the oversegmented regions within it found automatically

with a segmentation algorithm (see Figure 2). A bag’s la-

bels are tags naming the categories present within the im-

age; a region (instance) label names the object in the par-

ticular region. Each region has a feature vector describing

its appearance, color, shape, texture, etc. This follows the

common use of MIL for images [12, 27, 21], but in the gen-

eralized multiple-instance multi-label case.

Our MIML solution has two components: first, we de-

compose the multi-class problem into a number of binary

problems, in the spirit of standard one-vs-one classification;

second, we devise a Multi-label Set Kernel that performs a

weighting in kernel space to emphasize different instances

within a bag depending on the category under consideration.

Each one-vs-one binary problem is handled by an SVM

trained to separate bags containing label li from those con-

taining lj , for all i, j. For the single-label case, one can av-

erage a bag’s features to make a single feature vector sum-

marizing all its instances: φ(Xi) = 1
|Xi|

∑ni

j=1 φ(xi
j), and

then train an SVM with instances and bags; this is the Nor-

malized Set Kernel (NSK) approach of [7]. However, in the

multi-label case, some bags could be associated with both

labels li and lj . Simply treating the image as a positive ex-

ample when training both classes would be contradictory.

Intuitively, when training a classifier for class li, we want

a bag to be represented by its component instances that are

most likely to have the label li, and to ignore the features

of its remaining instances. Of course, with bag-level labels

only, the assignment of labels to instances is unknown.

We therefore propose a Multi-label Set Kernel that

weights the feature vectors of each instance within the bag

according to the estimated probability that the instance be-

longs to the class. That way if an instance has a high

chance of belonging to the given class, then its feature vec-

tor will dominate the representation. To this end, we design

a class-specific feature representation of bags. Let X =
{x1, . . . , xn} be a bag containing labels L = l1, . . . , lm
(where here we drop the example index i for brevity). We

define the class-specific feature vector of X for class lk as

φ
(

X(lk)
)

=

n
∑

j=1

Pr(lk|xj)φ(xj), (1)

which weights the component instances by their probabil-

ity of being associated with the class label under consider-

ation. Here Pr(lk|xj) denotes the true probability that in-

stance xj belongs to category lk, which we approximate as

Pr(lk|xj) ≈ p(lk|xj), where p(lk|xj) is the posterior prob-

ability output by the classifier using the training data seen

thus far. For a single instance (or equivalently, a single-



instance bag), there is no label ambiguity, so the instance is

simply represented by its feature vector.

For generic kernels, we may not know the feature space

mapping φ(x) needed to explicitly compute Eqn (1). In-

stead, we can apply the same feature weights via the kernel

value computation. Let X1 and X2 be bags associated with

labels l1 and l2, respectively, that are currently being used

to construct a classifier separating classes l1 and l2. Then

the kernel value between bags X1, X2 is given by

K(X
(l1)
1 , X

(l2)
2 ) =

n1
∑

i=1

n2
∑

j=1

p(l1|x
1
i ) p(l2|x

2
j) K(x1

i , x
2
j),

where K(x1
i , x

2
j ) = φ(x1

i )
T φ(x2

j ) is the kernel value com-

puted for instances x1
i and x2

j , and p(l1|x
1
i ), p(l2|x

2
j ) are

the posteriors from the current classifiers. Note that be-

cause the kernel is parameterized by the label under consid-

eration, a multi-label bag can contribute multiple different

〈feature,label〉 pairs to the training sets of a number of the

one-vs.-one classifiers.

Our Multi-label Set Kernel can be seen as a generaliza-

tion of the NSK [7], which is restricted to single-label bi-

nary classification. It is also related to the kernel in [10],

where weights are set using a Diverse Density function.

The proposed kernel is valid for both instances and bags,

and thus can be used to build SVMs for all required com-

ponent binary problems. Each SVM can accept novel in-

stances or bags: the feature for an input instance is un-

changed, while an input bag is weighted according to

Eqn (1). Given a new input Xnew, we (a) run it through

all 1
2C × (C − 1) classifiers, (b) compute the 1

2C × (C − 1)
resulting two-class posteriors using [13], and, finally, (c)

map those posteriors to the multi-class posterior probabili-

ties p(l|Xnew) for each label l ∈ {1, . . . , C}. For this last

step we use the pairwise coupling approach of [25].

3.2. Active multi­level selection of multi­label anno­
tations

Thus far we have defined the multi-label learner, the ba-

sic classifier with which we want to actively learn. Next

we describe our strategy to do active selection among can-

didate annotations. For each candidate, the selection func-

tion measures its expected informativeness and subtracts its

predicted cost. We first address how to predict cost (Sec-

tion 3.2.1), followed by informativeness (Section 3.2.2).

3.2.1 Predicting the cost of an annotation

There are three possible types of annotation request: the

classifier can ask for a label on a bag, a label on an instance

within a bag, or a label on all instances within a bag. A label

on a bag serves as a “flag” for class membership, which is

ambiguous because we do not know which of the instances

in the bag are associated with the label. A label on an in-

stance unambiguously names the class in a single image re-

gion, while labeling all instances within a bag corresponds

to fully segmenting and labeling an image (see Figure 2).

Traditional active learning methods assume equal man-

ual effort per label, and thus try to minimize the total num-

ber of queries made to the annotator. In reality annotation

costs will vary substantially from image to image, and from

type to type. Thus, the standard “flat cost” implied by tradi-

tional active learners is inadequate. To best reduce human

involvement, the active learner needs a quantitative measure

of the effort required to obtain any given annotation.

The goal is to accurately predict annotation time based

on image content alone—that is, without actually obtaining

the annotation, we need to estimate how long it will take

a typical annotator to complete it. It seems plausible that

the difficulty level could be predicted based on the image’s

features. For an extreme example, if an image contains a

single color it most likely contains only one object, and so

it should not be difficult to segment. If the image has signif-

icant responses to a large number of filters, then it may be

highly cluttered, and so it could take a long time.

Thus, we propose to use supervised learning to estimate

the difficulty of segmenting an image. It is unclear what

features will optimally reflect annotation difficulty, and ad-

mittedly high-level recognition itself plays some role. We

select candidate low-level features, and then use multiple

kernel learning [1] to select those most useful for the task.

We begin with some generic features that may be decent in-

dicators of image complexity: a histogram of oriented gra-

dients, a hierarchical grid where each cell measures edge

density, a color histogram, and a grayscale histogram.

We gather the data online, using Amazon’s Mechani-

cal Turk system, where we can pay anonymous users to

segment images of our choosing. The users are given a

polygon-drawing tool to superimpose object boundaries,

and are instructed to name and outline every major object.

The system times their responses. Thus the labels on the

training images will be the times that annotators needed to

complete a full annotation. To account for noise in the data

collection, we collect a large number of user responses per

image. Even if users generally have the same relative speeds

(faster on easy ones, slower on harder ones), their absolute

speeds may vary. Therefore, to make the values compara-

ble, we normalize each user’s times by his/her mean and use

the average time taken on an image to be its target label.

Given the image features and time labels, we train an

SVM (not to be confused with the MIML classifier above)

that, given an image, can predict the amount of manual ef-

fort it takes to annotate it. We can construct either coarse

classifiers that categorize images into a discrete range of

difficulty levels, or else regressors that can provide more

precise time estimates. We pursue both in Section 4.

From this we can build a cost function C(z) that takes

a candidate annotation z as input, and returns the predicted



time requirement (in seconds) as output. When z is a can-

didate full segmentation, we apply the learned function to

the image. When z is a request for a tag (bag-level label),

we set C(z) as the cost estimated using similar time-based

experiments. Finally, when z entails outlining a single ob-

ject, we estimate the cost as the full image’s predicted time,

divided by the number of segments in the image.

3.2.2 Predicting the informativeness of an annotation

Given this learned cost function, we can now define the

complete MIML active learning criterion. Inspired by the

classic notion of the value of information (VOI), and by pre-

vious binary single-label active learners [9, 21], we derive

a measure to gauge the relative risk reduction a new multi-

label annotation may provide. The main idea is to evalu-

ate the candidate images and annotation types, and predict

which combination (of image+type) will lead to the great-

est net decrease in risk for the current classifier, when each

choice is penalized according to its expected manual effort.

Defining the risk terms. At any stage in the learning

process the dataset can be divided into three different pools:

XU , the set of unlabeled examples (bags and instances);

XL, the set of labeled examples; and XP , the set of par-

tially labeled examples, which contains all bags for which

we have only a partial set of bag-level labels. Let rl denote

the risk associated with misclassifying an example belong-

ing to class l. The risk associated with XL is:

R(XL) =
∑

Xi∈XL

∑

l∈Li

rl (1 − p(l|Xi)) , (2)

where p(l|Xi) is the probability that Xi is classified with

label l. Here, Xi is again used to denote both instances and

bags and Li its label(s). If Xi is a training instance it has

only one label, and we can compute p(l|Xi) via the current

MIML classifier.

If Xi is a multi-label bag in the training set, we can com-

pute the probability it receives label l as follows:

p(l|Xi) = p
(

l|xi
1, . . . , x

i
ni

)

= 1 −

ni
∏

j=1

(1 − p(l|xi
j)). (3)

For a bag to not belong to a class, it must be the case that

none of its instances belong to the class. Thus the probabil-

ity of a bag not having a label is equivalent to the probability

that none of its instances have that class label.

The corresponding risk for the unlabeled data is then:

R(XU ) =
∑

Xi∈XU

C
∑

l=1

rl(1 − p(l|Xi)) Pr(l|Xi), (4)

where we compute the probabilities for bags using Eqn. 3,

and Pr(l|Xi) is the true probability that unlabeled example

Xi has label l, approximated as Pr(l|Xi) ≈ p(l|Xi).
For the partially labeled data, the risk is:

R(XP ) =
∑

Xi∈XP

∑

l∈Li

rl (1 − p(l|Xi)) (5)

+
∑

l∈Ui

rl (1 − p(l|Xi)) p(l|Xi),

where Ui = L \ Li.

The risk parameter rl should be set to reflect the dam-

age done by a single misclassification, using the same units

as the cost function in Section 3.2.1. Intuitively, it corre-

sponds to the amount of user time that might be wasted by

mislabeling an example.

Computing the value of information. The total cost

T (XL,XU ,XP ) associated with a given snapshot of the

data is the total misclassification risk, plus the cost of ob-

taining all the labeled data thus far:

T (XL,XU ,XP ) = R(XL)+R(XU )+R(XP )+
∑

Xi∈XB

∑

l∈Li

C(X l
i),

where XB = XL ∪ XP , and C(·) is defined as above.

We measure the utility of obtaining a particular annota-

tion by predicting the change in total cost that would result

from the addition of the annotation to XL. Therefore, the

value of information for an annotation z is:

V OI(z) = T (XL,XU ,XP ) − T
(

X̂L, X̂U , X̂P

)

(6)

= R(XL) + R(XU ) + R(XP )

−
(

R(X̂L) + R(X̂U ) + R(X̂P )
)

− C(z),

where X̂L, X̂U , X̂P denote the set of labeled, unlabeled and

partially labeled data after obtaining annotation z. If z is a

complete annotation, then X̂L = XL ∪ z; otherwise, X̂P =
XP ∪z, and the example associated with z is removed from

XU and XP as appropriate.

A high VOI for a given input denotes that the total cost

would be decreased by adding its annotation. So, the clas-

sifier seeks annotations that give maximal VOI values.

Estimating risk for candidate annotations. The VOI

function relies on estimates for the risk of yet-unlabeled

data, so we must predict how the classifier will change given

the candidate annotation, without actually knowing its la-

bel(s). We estimate the total risk induced by incorporating

a candidate annotation z using the expected value: R(X̂L)+
R(X̂U ) + R(X̂P ) ≈ E[R(X̂L) + R(X̂U ) + R(X̂P )].

This expected value is straightforward to compute for a

candidate instance xz ; we simply remove the unlabeled ex-

ample from XU , temporarily add it to XL with each of the

possible C labels (in turn), evaluate the risk using the up-

dated classifier, and weight each term by p(l|xz). We use

incremental updates to make this fast [2]. Similarly, if the

candidate annotation would add an image-level label to an

unlabeled bag Xz , we do the same, computing the probabil-

ities using Eqn. 3. The more complex case is for candidate



Approach Ave. AUROC (img) Ave. AUROC (region)

Ours 0.896 ± 0.00 0.91 ± 0.01

MLMIL [27] 0.902 0.863

Table 1. Five-fold cross-validation accuracies when training with

only image-level labels.

full segmentations. Each one entails CM possible label as-

signments, making a direct computation of the expectation

impractical. For these, we estimate the expected total risk

with Gibbs sampling. We presented a related sampling pro-

cedure in [21] for two-class single-label data.

3.3. Summary of the algorithm

We can now actively select multi-label, multi-level im-

age annotations so as to maximize the expected benefit rel-

ative to the manual effort expended. The MIML classifier

is initially trained using a small number of tagged images.

To get each subsequent annotation, the active learner sur-

veys all remaining unlabeled and partially labeled exam-

ples, computes their VOI, and requests the label for the ex-

ample with the maximal value. After the classifier is up-

dated with this label, the process repeats. The final classi-

fier can predict image- and region-level labels, in binary or

multi-class settings.

4. Results

To validate our method we use the publicly available

MSRC dataset, since it contains multi-label images and a

variable number of objects per image, and also allows com-

parisons with another MIML approach and other state-of-

the-art methods. The MSRC v2 contains 591 images and 21

classes, with 240 images and 14 classes in the (subset) v1.

In all experiments we use an RBF kernel with γ = 10, and

set the SVM parameters (including the sigmoid parameters

for [13]) based on cross-validation. We ignore all “void”

regions. We evaluate three aspects of our approach: (1) its

accuracy when learning from multi-label examples, (2) its

ability to accurately predict annotation costs, and (3) its ef-

fectiveness as an active learner to reduce manual effort.

Multi-label learning. We divide the MSRC v2 into 5

folds containing about an equal number of images, as in

[27]. We choose one part as the test set, one to set param-

eters, and train on the rest. We segment the images with

Normalized Cuts, and obtain texton and color histograms

for each blob, as in [17]. Each image is a bag, and each seg-

ment is an instance. To learn the MIML classifier, we use

only image-level (bag-level) labels, i.e., we withhold all the

pixel-level labels during classifier training.

Table 1 shows the average AUROC when predicting la-

bels on new images (2nd column) or new regions (3rd col-

umn). For image-level prediction our results are compara-

ble to the state-of-the-art in MIML [27], whereas for region-

level prediction we achieve a notable improvement (0.91 vs.

User Number Accuracy

of images (%)

User 1 160 68.75

User 2 188 72.34

User 3 179 70.95

User 4 151 72.85

User 5 167 59.88

User 6 164 63.41

User 7 169 67.46

User 8 179 79.33

All users 210 73.81 0 20 40 60 80 100
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Figure 3. Top Left: Accuracy of our cost function in predict-

ing “easy” vs. “hard”, both for user-specific and user-independent

classifiers. Top Right: Scatter-plot of the actual time taken by

users to segment an image vs. the value predicted by our cost func-

tion, for the 240 images in the MSRC v1. Images: The easiest and

hardest images to annotate based on actual users’ timing data (top),

and the predictions of our cost function on novel images (bottom).

0.86). This appears to be a direct consequence of our Multi-

label Set Kernel, which weighs the region descriptors so as

to represent an image by its most relevant instances for each

image-level label. As a result, we are able to directly sepa-

rate novel regions from each class within a new image, and

not just name objects that occur in it.

Next we compare against the approaches of [17]

and [24], which use pixel-level labels (full segmentations)

to train a multi-class classifier. Restricting our method to

only image-level labels, we obtain a region-based accuracy

of 64.1%±2.9 over 5 trials of approximately equal train-test

splits. In comparison, the accuracy obtained for the same

test scenario is 70.5% in [17], and 67.6% in [24]. Thus with

much less manual training effort (image tags), our method

performs quite competitively with methods trained with full

segmentations; this illustrates the advantage of the multi-

label multi-instance learner. Using the NSK [7], which es-

sentially removes our kernel weight mapping, the accuracy

for this test would only be 55.95%± 1.43.

Annotation cost prediction. To train our cost function,

we gather data with Amazon’s Mechanical Turk. Users are

required to completely segment images from the 14-class

MSRC v1 dataset while a script records the time taken per

image. We collected 25-50 annotations per image from dif-

ferent users. Users could skip images they preferred not

to segment; the fact that most users skipped certain images

(Figure 3) supports our hypothesis that segmentation diffi-

culty can be gauged by glancing at the image content.

We train both classifiers that can predict “easy” vs.

“hard”, and regressors that can predict the actual time in
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Figure 4. Learning curves when actively or randomly selecting

multi-level and single-level annotations. Left: Region-level ac-

curacy for the 21-class MSRC v2 dataset plotted against ground

truth cost. Right: Region-level accuracy when 80 random images

were added to the unlabeled pool.

seconds. To divide the training set into easy and hard ex-

amples, we simply use a threshold at the mean time taken

on all images. Using the feature pool described in Sec-

tion 3.2.1, we perform multiple-kernel learning to select

feature types for both the user-specific data and the com-

bined datasets. The edge density measure and color his-

tograms received the largest weights, with the rest near

zero. Figure 3 (left) shows the leave-one-out cross valida-

tion (loo-cv) result when classifying images as easy or hard,

for the users for whom we had the most data. For the major-

ity, accuracy is well above chance. Most of the errors may

largely be due to our arbitrary division between what is easy

or hard based on the mean.

To train a regressor we use the raw timing data and the

same set of features. Figure 3 shows examples that were

easiest and hardest to segment, as measured by the ground

truth actual time taken for at least 8 users. Alongside, we

show the examples that our regressor predicts to be easiest

and hardest (from a separate partition of the data). These

examples are intuitive, as one can imagine needing a lot

more clicks to draw polygons on the many objects in the

“hardest” set. Figure 3 also plots the actual time taken by

users on an image against the value predicted by our cost

function, as obtained with loo-cv for all 240 images in the

MSRC v1 dataset. The rms difference between the actual

and predicted times is 11.1 s, with an average prediction

error of 22%. In comparison, predicting a constant value

of 50 s (the mean of the data) yields an average prediction

error of 46%. Given that the actual times vary from 8 to 100

s, and that the average cross-annotator disagreement was 18

s, an average error of 11 s seems quite good.

Active selection from MIML data. Next we demon-

strate the impact of using our multi-label active selection

function to choose from different types of annotations.

We construct the initial training set such that each class

appears in at least 5 images, and use image-level labels. The

rest of the training set forms the unlabeled pool of data. The

active learner can request either complete segmentations or

region-level labels from among the initial training exam-

ples, or image-level labels from any unlabeled example. We

set rl = 50 for all classes, which means that each misclassi-

fication is worth 50 s of user time.2 For this experiment we

fix the costs per type using the mean times from real users:

50 s for complete segmentations, 10 s for a region outline,

and 3 s for a flag. We compare our approach to a “passive”

selection strategy, which uses the same classifier but picks

labels to receive at random, as well as a single-level active

baseline (traditional active learning) that uses our VOI func-

tion, but only selects from unlabeled regions. All methods

are given a fixed cost and allowed to make a sequence of

label requests (to an oracle) until the cost is used up.

Figure 4 shows the resulting learning curves for the

MSRC v2. Accuracy is measured as the average value of

the diagonal of the confusion matrix for region-level pre-

dictions on the test set. All results are averaged over 5

random trials. The proposed multi-level active selection

yields the steepest learning curves. Random selection lags

behind, wasting annotation effort on less informative exam-

ples. Single-level active is preferable to random selection,

yet we get best results when our active learner can choose

between multiple types of annotations, including segmen-

tations or image flags. The total gains after 1800s are sig-

nificant, given the complexity of the 21-way classification

problem with a test set containing 1129 image regions. Note

that the random selection curve is probably an over-estimate

of its quality; since we limit the unlabeled pool to only im-

ages from the MSRC, any example it requests is going to

be fairly informative. Figure 4 (right) shows results for the

same setting when 80 random images are added to the unla-

beled pool, indicating that when uninformative images are

present random selection lags even further behind.

Active selection with a learned cost function. Finally,

we show the impact of using the predicted cost while mak-

ing active choices. We train a binary multi-instance classi-

fier for each category using image labels on 4
5 -th of the data

per class, in 5 different runs. The rest is used for testing.

We compare two MIL active learners: one using cost pre-

diction, and one assigning a flat cost to annotations. At test

time, both learners are “charged” the ground truth cost of

getting the requested annotation.

Figure 5 shows representative (good and bad) learning

curves, with accuracy measured by the AUROC value. For

Tree and Airplane, using the predicted cost leads to much

better accuracies at a lower cost, whereas for Sky there is

little difference. This may be because most ‘sky’ regions

look similar and take similar amounts of time to annotate.

Figure 5 (right) shows the cost required to improve the

base classifier to different levels of accuracy. The 4th col-

umn shows the relative time savings our cost prediction en-

ables over a cost-blind active learner that uses the same

2The parameter rl should reflect the real cost of a classification mistake.

We set it to 50 since an error made by the automatic labeling would take

around 50 s to manually fix for the average image.
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% imp. Cost(secs) % Cost

CP NC saved

5 11.40 11.52 +1.07

10 24.52 31.41 +21.94

15 45.25 63.24 +28.45

20 165.85 251.10 +33.95

25 365.73 543.69 +32.73

Figure 5. Representative learning curves (left) and a summary over all 14 classes (right) when using active selection with the learned cost

predictor, as compared to a baseline that makes active selections using a flat cost value. Rightmost: Savings in cost when using cost

prediction within the active learner. CP refers to using cost prediction and NC is without cost. Overall, our active selection takes less effort

to attain the same level of accuracy as a cost-blind active learner.

selection strategy. For larger improvements, predicting the

cost leads to noticeably greater savings in manual effort—

over 30% savings to attain a 25% accuracy improvement.3

With our implementation of the incremental SVM tech-

nique of [2] it takes on average 0.5 secs to evaluate a sin-

gle region and 20 secs to evaluate a bag (image) on a 1.6

GHz PC. We are currently considering ways to alleviate the

computational cost. However, even without real-time per-

formance, a distributed framework for image labeling that

involves multiple annotators could be run efficiently.

5. Conclusions

We proposed an active learning framework that not only

chooses examples based on their information content, but

also on the predicted cost of obtaining the information. Our

framework operates in the challenging real-world domain

of multi-label images, with multiple possible types of anno-

tations. Our results demonstrate that (1) the active learner

obtains accurate models with much less manual effort than

typical passive learners, (2) we can fairly reliably estimate

how much a putative annotation will cost given the image

content alone, and (3) our multi-label, multi-level strategy

outperforms conventional active methods that are restricted

to requesting a single type of annotation.
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