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Abstract

We introduce a framework for actively learning visual categs from a mixture of
weakly and strongly labeled image examples. We proposddw #the category-
learner to strategically choose what annotations it reseivbased on both the
expected reduction in uncertainty as well as the relatistscof obtaining each
annotation. We construct a multiple-instance discrinieatlassifier based on the
initial training data. Then all remaining unlabeled and khgdabeled examples
are surveyed to actively determine which annotation ouglet requested next.
After each request, the current classifier is incrementgdijated. Unlike previous
work, our approach accounts for the fact that the optimabfiseanual annotation
may call for a combination of labels at multiple levels of guéarity (e.g., a full
segmentation on some images and a present/absent flag os) ofigea result, it
is possible to learn more accurate category models with arléetal expenditure
of manual annotation effort.

1 Introduction

Visual category recognition is a vital thread in computesian research. The recognition problem
remains challenging because of the wide variation in agpeara single class typically exhibits, as
well as differences in viewpoint, illumination, and clutt®ethods are usually most reliable when
good training sets are available, i.e., when labeled imageples are provided for each class, and
where those training examples are adequately representditihe distribution to be encountered at
test time. The extent of an image labeling can range from aéléigg whether the object of interest
is present or absent, to a full segmentation specifying tijeab boundary. In practice, accuracy
often improves with larger quantities of training examgdeasl/or more elaborate annotations.

Unfortunately, substantial human effort is required tohgatsuch training sets, making it unclear
how the traditional protocol for visual category learniramdruly scale. Recent work has begun to
explore ways to mitigate the burden of supervision [1-8].ilé/the results are encouraging, exist-
ing techniques fail to address two key insights about lopesuision recognition: 1) the division
of labor between the machine learner and the human labealgtst do respect any cues regarding
which annotations would be easy (or hard) for either parfyrtivide, and 2) to use a fixed amount
of manual effort most effectively may call for a combinatminannotations at multiple levels (e.qg.,
a full segmentation on some images and a present/absentflathers). Humans ought to be re-
sponsible for answering the hardest questions, while patézognition techniques ought to absorb
and propagate that information and answer the easier oresnhile, the learning algorithm must
be able to accommodate the multiple levels of granulariy thay occur in provided image annota-
tions, and to compute which iteat which of those levels appears to be most fruitful to have labeled
next (see Figure 1).
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Fig. 1. Useful image annotations can occur at multiple levels ohglarity. L eft: For example, a learner may
only know whether the image contains a particular objecoo(top row, dotted boxes denote object is present),
or it may also have segmented foregrounds (middle row) roait have detailed outlines of object parts (bottom
row). Right: In another scenario, groups of images for a given class dlected with keyword-based Web
search. The learner may only be given the noisy groups addhat each includes at least one instance of the
specified class (top), or, for some groups, the individuahgxe images may be labeled as positive or negative
(bottom). We propose an active learning paradigm that tireanual annotation effort to the most informative
examplesand levels.

To address this challenge, we propose a method that actaegts the learner’s requests for su-
pervision so as to maximize the expected benefit to the categodels. Our method constructs an
initial classifier from limited labeled data, and then coless all remaining unlabeled and weakly
labeled examples to determine what annotation seems nfoshiative to obtain. Since the varying
levels of annotation demand varying degrees of manualteffar active selection process weighs
the value of the information gain against the cost of acpuatiitaining any given annotation. After
each request, the current classifier is incrementally @atjaind the process repeats.

Our approach accounts for the fact that image annotationexdat at multiple levels of granularity:
both the classifier and active selection objectives are titatad to accommodate dual-layer labels.
To achieve this duality for the classifier, we express thédlam in themultiple instance learning
(MIL) setting [9], where training examples are specified agdof the finer granularity instances,
and positive bags may contain an arbitrary number of negmtilo achieve the duality for the active
selection, we design a decision-theoretic criterion tlaamces the variable costs associated with
each type of annotation with the expected gain in infornmatiessentially this allows the learner to
automatically predict when the extra effort of a more pre@snotation is warranted.

The main contribution of this work is a unified framework tdieely learn categories from a mixture
of weakly and strongly labeled examples. We are the first ¢émtifly and address the problem of
active visual category learning with multi-level annata. In our experiments we demonstrate
two applications of the framework for visual learning (aghiighted in Figure 1). Not only does our
active strategy learn more quickly than a random selectiseline, but for a fixed amount of manual
resources, it yields more accurate models than convehsore-layer active selection strategies.

2 Reated Work

The recognition community is well-aware of the expense gfineng well-annotated image datasets.
Recent methods have shown the possibility of learning Visatierns from unlabeled [3, 2] image
collections, while other techniques aim to share or re-usevkedge across categories [10, 4]. Sev-
eral authors have successfully leveraged the free but rimiages on the Web [5, 6, 11]. Using
weakly labeled images to learn categories was proposed,iardl several researchers have shown
that MIL can accommodate the weak or noisy supervision ditexilable for image data [11-14].
Working in the other direction, some research seeks toti@elthe manual labor of image annota-
tion, tempting users with games or nice datasets [7, 8].

However, when faced with a distribution of unlabeled imagdsost all existing methods for vi-
sual category learning are essentially passive, seleptings at random to label. Active learning
strategies introduced in the machine learning literatereegally select points so as to minimize the
model entropy or reduce classification error (e.g., [15).1B¢cision-theoretic measures for tradi-
tional (single-instance) learning have been explored h 18], where they were applied to classify
synthetic data and voicemail. Our active selection propediin part inspired by this work, as it



also seeks to balance the cost and utility tradeoff. Recerk Wwas considered active learning with
Gaussian Process classifiers [19], and relevance feedbacikléo annotations [20].

In contrast, we show how to form active multiple-instanaaiers, where constraints or labels must
be sought at multiple levels of granularity. Further, weaduce the notion of predicting when to
“invest” the labor of more expensive image annotations st adtimately yield bigger benefits to
the classifier. Unlike any previous work, our method cordihyuguides the annotation process to
the appropriate level of supervision. While an active cigte for instance-level queries is suggested
in [21] and applied within an Ml learner, it cannot activeblect positive bags or unlabeled bags,
and does not consider the cost of obtaining the labels réeglel® contrast, we formulate a gen-
eral selection function that handles the full MIL paradigndadapts according to the label costs.
Experiments show this functionality to be critical for eifiot learning from few images.

3 Approach

The goal of this work is to learn to recognize an object orgaitg with minimal human intervention.
The key idea is to actively determine which annotations a siseuld be asked to provide, and in
what order. We consider image collections consisting ofreetsaof supervisory information: some
images are labeled as containing the category of interestdt), some have both a class label
and a foreground segmentation, while others have no anmagait all. We derive an active learning
criterion function that predicts how informative furthemetation on any particular unlabeled image
or region would be, while accounting for the variable exgeassociated with different annotation
types. As long as the information expected from further &aians outweighs the cost of obtaining
them, our algorithm will request the next valuable labelreen the classifier, and repeat.

In the following we outline the MIL paradigm and discuss ipgphcability for two important image
classification scenarios. Then, we describe our decisienretic approach to actively request useful
annotations. Finally, we discuss how to attribute costsreskd for multi-level annotations.

3.1 Multiple-Instance Visual Category Learning

Traditional binary supervised classification assumesdhenkr is provided a collection of labeled
data patterns, and must learn a function to predict labelsewninstances. However, the fact that
image annotations can exist at multiple levels of grantlaltmands a learning algorithm that can
encode any known labels at the levels they occur, and so Mlis[@ore applicable. In MIL, the
learner is instead provided witkts (bags) of patterns rather than individual patterns, andlistold
that at least one member of apgsitive bag is truly positive, while every member of amggative
bag is guaranteed to be negative. The goal of MIL is to induce timetion that will accurately label
individual instances such as the ones within the trainirgsba

MIL is well-suited for the following two image classificatiGccenarios:

e Training images are labeled as to whether they contain ttegogy of interest, but they also contain other
objects and background clutter. Every image is representeaibag of regions, each of which is charac-
terized by its color, texture, shape, etc. [12, 13]. For fpasibags, at least one of the regions contains the
object of interest. The goal is to predict when new imageamgjicontain the object—that is, to learn to
label regions as foreground or background.

e The keyword associated with a category is used to downloagpgrof images from multiple search engines
in multiple languages. Each downloaded group is a bag, anéhtages within it are instances [11]. For
each positive bag, at least one image actually contains hifextoof interest, while many others may be
irrelevant. The goal is to predict the presence or absentteeafategory in new images.

In both cases, an instance-level decision is desirabldhydgHevel labels are easier to obtain. While
it has been established that MIL is valuable in such casesjqrs methods do not consider how to
determine what labels would be most beneficial to obtain.

We integrate our active selection method with the SVM-bddédapproach given in [22], which
uses a Normalized Set Kernel (NSK) to describe bags basedeoaverage representation of in-
stances within them. Following [23], we use the NSK mappirgpositive bags only; all instances
in a negative bag are treated individually as negative. Wisehhis classifier since it performs
well in practice [24] and allows incremental updates [2G}tlier, by virtue of being a kernel-based
algorithm, it gives us flexibility in our choices of featurasd kernels. However, alternative MIL
techniques that provide probabilitistic outputs couldlgdm swapped in (e.g. [26, 24, 23]).



3.2 Multi-Level Active Selection of Image Annotations

Given the current MIL classifier, our objective is to selettatvannotation should be requested next.
Whereas active selection criteria for traditional supssdi classifiers need only identify the best
instance to label next, in the MIL domain we have a more cormgitmice. There are three possible

types of request: the system can ask for a label on an instariabel on an unlabeled bag, or for

a joint labeling of all instances within a positive bag. S@ must design a selection criterion that
simultaneously determines which type of annotation to estjuand for which example to request
it. Adding to the challenge, the selection process mustadsount for the variable costs associated
with each level of annotation (e.g., it will take the annotdgess time to detect whether the class of
interest is present or not, while a full segmentation wilhbere expensive).

We extend thevalue of information (VOI) strategy proposed in [18] to enable active MIL selenti
and derive a generalized value function that can acceptihstances and bags. This allows us to
predict the information gain in a joint labeling of multiplestances at once, and thereby actively
choose when it is worthwhile to expend more or less manualteiffi the training process. Our
method continually re-evaluates the expected significafi&aowing more about any unlabeled or
partially labeled example, as quantified by the predictedicgon in misclassification risk plus the
cost of obtaining the label.

We consider a collection of unlabeled data, and labeled dat&’;, composed of a set of positive
bagsX, and a set of negative instanc&s. Recall that positively labeled bags contain instances
whose labels are unknown, since they contain an unknown frpogitive and negative instances.
Letr, denote the user-specified risk associated with misclasgify positive example as negative,
andr,, denote the risk of misclassifying a negative. The risk aissed with the labeled data is:

Risk(Xy) = Z rp(1—p(X;)) + Z TP (i), (1)

XieXp zi€X,

wherex; denotes an instance atd} denotes a bag. Hegdx) denotes the probability that a given
input is classified as positive(zr) = Pr(sgnwe(z) + b) = +1|z) for the SVM hyperplane pa-
rametersy andb. We compute these values using the mapping suggested injRich essentially
fits a sigmoid to map the SVM outputs to posterior probak#itiNote that here a positive bag is
first transformed according to the NSK before computingiitbgbility. The corresponding risk for
unlabeled data is:

Risk(Xy) = Y rp(1 = p(:)) Pr(yi = +1|z:) + rap(a:)(1 = Pr(y = +1|z:), (2
r,€Xy

wherey; is the true label for unlabeled example The value ofPr(y = +1|z) is not directly
computable for unlabeled data; following [18], we approatmit asPr(y = +1|z) ~ p(x). This
simplifies the risk for the unlabeled data ®isk(Xy) = > v, (rp+75)(1—p(x:))p(2;), where
again we transform unlabeled bags according to the NSK befmmputing the posterior.

The total cosf'(X},, Xy) associated with the data is the total misclassification phls the cost of
obtaining all labeled data thus far:

T(Xp, Xy) = Risk(Xy) + Risk(Xy) + > C(X;)+ > Cla), ®)
Xi€eXp i €Xn

where the functior®(-) returns the cost of obtaining an annotation for its inputl @l be defined
in more detail below.

To measure the expected utility of obtaining any particulew annotation, we want to predict
the change in total cost that would result from its addition ;. Thus, the value of obtaining an
annotation for input is:

VOI(z) = T(Xp, Xy) — T (XL Uz®, Xy ~ z) (4)
= Risk(Xp) + Risk(Xy) — (Rz’sk (XL U z(t)) + Risk (Xy ~ z)) —C(2),

wherez(®) denotes that the input has been merged into the labeled set with its true labahd
Xy \ z denotes that it has been removed from the set of unlabeled idahe VOI is high for a



given input, then the total cost would be decreased by adtsrannotation; similarly, low values
indicate minor gains, and negative values indicate an atinotthat costs more to obtain than it is
worth. Thus at each iteration, the active learner survdygiiaining unlabeled and weakly labeled
examples, computes their VOI, and requests the label fagtheple with the maximal value.

However, there are two important remaining technical issi&st, for this to be useful we must
be able to estimate the empirical risk for inputs beforerttadiels are known. Secondly, for active
selection to proceed at multiple levels, the VOI must actraevgerloaded function: we need to be
able to evaluate the VOI whenis an unlabeled instana® an unlabeled bagr a weakly labeled
example, i.e., a positive bag containing an unknown numbeegative instances.

To estimate the total risk induced by incorporating a newinaated example into X, be-
fore actually obtaining its true labe) we estimate the updated risk term with its expected value:
Risk(Xy, Uz®) + Risk(Xy \ z) ~ E[Risk(X, Uz") + Risk(Xy ~ z)] = E, whereE is short-
hand for the expected value expression preceding #.isfan unlabeled instance, then computing
the expectation is straightforward:

E= Z (Risk(XL Uz®) + Risk(Xy ~ z)) Pr(sgnwe(z) + b) = l|z), (5)
lell

wherellL = {+1, —1} is the set of all possible label assignmentsAoThe valuePr(sgnwa(z) +

b) = l|z) is obtained by evaluating the current classifierzeand mapping the output to the associ-
ated posterior, and risk is computed based on the (tempdnarddified classifier withe() inserted
into the labeled set. Similarly, # is an unlabeled bag, the label assignment can only be positiv
negative, and we compute the probability of either labet&NSK mapping.

If z is a positive bag containingy/ = |z| instances, however, there @&¥ possible labelingst. =
{+1,-1}M. For even moderately sized bags, this makes a direct cotigrutaf the expectation
impractical. Instead, we use Gibbs sampling to draw sangjléee label assignment from the joint

distribution over thé\/ instances’ descriptors. Let= {z1, ..., z)s } be the positive bag'’s instances,
and letz(® = {(zf“)), e (zj(\jM))} denote the label assignment we wish to sample, wjtle

{+1,—1}. To sample from the conditional distribution of one instladabel given the rest—the
basic procedure required by Gibbs sampling—we re-trairMheclassifier with the given labels
added, and then draw the remaining label according te Pr(sgnwe¢(z;) + b) = +1|z;), where
z; denotes the one instance currently under consideratiomdsitive bagz, the expected total risk
is then the average risk computed over&tienerated samples:

S
1
E = 5 Z (Risk({XL Nz} U {zga])", ey zj(\jM)k}) + Risk(Xy ~ {z1, 22, ..., ZM})) , (6)
k=1

wherek indexes theS samples. To compute the risk ¢y, for each fixed sample we simply re-
move the weakly labeled positive bagand insert its instances as labeled positives and negative
as dictated by the sample’s label assignment. Computing@iealues for all unlabeled data, espe-
cially for the positive bags, requires repeatedly solvimgtlassifier objective function with slightly
different inputs; to make this manageable we employ incréal&SVM updates [25].

To complete our active selection function, we must definecthst functionC(z), which maps an
input to the amount of effort required to annotate it. Thiadiion is problem-dependent. In the
visual categorization scenarios we have set forth, we défmeost function in terms of the type of
annotation required for the inpat we charge equal cost to label an instance or an unlabeled bag
and proportionally greater cost to label all instances irositive bag, as determined empirically
with labeling experiments with human users. This reflecas tutlining an object contour is more
expensive than naming an object, or sorting through aneeptige of Web search returns is more
work than labeling just one.

We can now actively select which examples and what type obttion to request, so as to maxi-

mize the expected benefit to the category model relativegartanual effort expended. After each
annotation is added and the classifier is revised acconditigd VOI is evaluated on the remaining

unlabeled and weakly labeled data in order to choose theamdtation. This process repeats ei-
ther until the available amount of manual resources is estiealior, alternatively, until the maximum

VOI is negative, indicating further annotations are nottivahe effort.



4 Resaults

In this section we demonstrate our approach to activelynlgaual categories. We test with two
distinct publicly available datasets that illustrate the tearning scenarios above: (1) the SIVAL
dataselt of 25 objects in cluttered backgrounds, and (2) a Googleséa(gs]) of seven categories
downloaded from the Web. In both, the classification tasloisay whether each unseen image
contains the object of interest or not. We provide compassuith single-level active learning (with
both the method of [21], and where the same VOI function isl Usé# is restricted to actively label
only instances), as well as passive learning. For the pabsiseline, we consider random selections
from amongst both single-level and multi-level annotadian order to verify that our approach does
not simply benefit from having access to more informativesjins labels?

To determine how much more labeling a positive bag costgivel#éo labeling an instance, we
performed user studies for both of the scenarios evaluktedhe first scenario, users were shown
oversegmented images and had to click on all the segmeimtsdiet to the object of interest. In the
second, users were shown a page of downloaded Web imagesadutal ¢lick on only those images
containing the object of interest. For both datasets, theseline task was to provide a present/absent
flag on the images. For segmentation, obtaining labels qroaltive segments took users on average
four times as much time as setting a flag. For the Web imagemkt6.3 times as long to identify
all positives within bags of 25 noisy images. Thus we set t&t of labeling a positive bag to 4 and
6.3 for the SIVAL and Google data, respectively. These \@agree with the average sparsity of the
two datasets: the Google set contains about 30% true positiages while the SIVAL set contains
10% positive segments per image. The users who took par iexperiment were untrained but still
produced consistent results.

4.1 Actively Learning Visual Objectsand their Foreground Regionsfrom Cluttered |mages

The SIVAL dataset [21] contains 1500 images, each labeldd avie of 25 class labels. The clut-
tered images contain objects in a variety of positionsaigons, locations, and lighting conditions.
The images have been oversegmented into about 30 regiatan@es) each, each of which is rep-
resented by a 30-d feature describing its color and texilmes each image is a bag containing both
positive and negative instances (segments). Labels onaiméng data specify whether the object of
interest is present or not, but the segments themselveskagaled (though the dataset does provide
ground truth segment labels for evaluation purposes).

The initial training set is comprised of 10 positive and 1@até&ve images per class, selected at
random. Our active learning method must choose its querdes &mong 10 positive bags (com-
plete segmentations), 300 unlabeled instances (indiVgkgaments), and about 150 unlabeled bags
(present/absent flag on the image). We use a quadratic keithel coefficient ofl0—%, and average
results over five random training partitions.

Figure 2(a) shows representative (best and worst) leartimges for our method and the three
baselines, all of which use the same MIL classifier (NSK-SVNte that the curves are plotted
against the cumulativeost of obtaining labels—as opposed to the number of queriecrtsis—
since our algorithm may choose a sequence of queries wittuniarm cost. All methods are given
a fixed amount of manual effort (40 cost units) and are allotwadake a sequence of choices until
that cost is used up. Recall that a cost of 40 could corresgonéxample, to obtaining labels on
% = 40 instances o(% = 10 positive bags, or some mixture thereof. Figure 2(b) sunzeari
the learning curves for all categories, in terms of the ayeimprovement at a fixed point midway
through the active learning phase.

All four methods steadily improve upon the initial clasgifieut at different rates with respect to the
cost. (All methods fail to do better than chance on the ‘diigve’ class, which we attribute to the
lack of distinctive texture or color on that object.) In geslea steeper learning curve indicates that
a method is learning most effectively from the supplied lab®ur multi-level approach shows the
most significant gains at a lower cost, meaning that it is beiséd for building accurate classifiers
with minimal manual effort on this dataset. As we would expsingle-level active selections are
better than random, but still fall short of our multi-levelmoach. This is because single-level active
selection can only make a sequence of greedy choices whilgpmuoach can jointly select bags of
instances to query. Interestingly, multi- and single-leeadom selections perform quite similarly

1 http://www.cs.wustl.edu/accio/
2 See [28] for further implementation details, image examypdad learning curves on all classes.
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Fig. 2. Results on the SIVAL datasdgs) Sample learning curves per class, each averaged over il fFirst
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of the annotation cost is used. For the same amount of ammotdst, our multi-level approach learns more

quickly than both traditional single-level active seleatas well as both forms of random selection.
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Fig. 3. Left: Comparison with [21] on the SIVAL data, as measured by thesmesimprovement in the AUROC
over the initial model for increasing labeling cost valugight: The cumulative number of labels acquired for
each type with increasing number of queries. Our methodstémdequest complete segmentations or image
labels early on, followed by queries on unlabeled segmaiés on.

on this dataset (see boxplots in (b)), which indicates thairty more informative labels alone does
not directly lead to better classifiers unless the rightinses are queried.

The table in Figure 3 compares our results to those repamtgili], in which the authors train an
initial classifier withmultiple-instancelogistic regression, and then use the Ml Uncertainty (MIU) to
actively choose instances to label. Following [21], we réfite average gains in the AUROC over
all categories at fixed points on the learning curve, aveggsults over 20 trials and with the same
initial training set of 20 positive and negative imagesc8ithe accuracy of the base classifiers used
by the two methods varies, it is difficult to directly compae gains in the AUROC. The NSK-
SVM we use consistently outperforms the logistic regresajgproach using only the initial training
set; even before active learning our average accuracy &68ompared to 52.21 in [21]. There-
fore, to aid in comparison, we also report the percentagergéative to random selection, for both
classifiers. The results show that our approach yields muohger relative improvements, again
illustrating the value of allowing active choices at mukipevels. For both methods, the percent
gains decrease with increasing cost; this makes sense,airatually (for enough manual effort) a
passive learner can begin to catch up to an active learner.

4.2 Actively Learning Visual Categoriesfrom Web Images

Next we evaluate the scenario where each positive bag idectioh of images, among which only

a portion are actually positive instances for the class tefr@st. Bags are formed from the Google-
downloaded images provided in [5]. This set contains onaye600 examples for each of the seven
categories. Naturally, the number of true positives fohedass are sparse: on average 30% contain
a “good” view of the class of interest, 20% are of “ok” qualibcclusions, noise, cartoons, etc.), and
50% are “junk”. Previous methods have shown how to learn fnmisy Web images, with results
rivaling state-of-the-art supervised techniques [11].3M% show how to boost accuracy with these
types of learners while leveraging minimal manual annotegiffort.

To re-use the publicly available dataset from [5], we raniyognoup Google images into bags of
size 25 to simulate multiple searches as in [11], yieldingual30 bags per category. We randomly
select 10 positive and 10 negative bags (from all other caies) to serve as the initial training data
for each class. The rest of the positive bags of a class atktasmnstruct the test sets. All results
are averaged over five random partitions. We represent ezafjei as a bag of “visual words”, and
compare examples with a linear kernel. Our method makegeagtieries among 10 positive bags
(complete labels) and about 250 unlabeled instances (ishagkere are no unlabeled bags in this
scenario, since every downloaded batch is associated Wiknaord.
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Fig. 4. Results on the Google dataset, in the same format as Fig@aranulti-level active approach outper-
forms both random selection strategies and traditiongllsitevel active selection.

Figure 4 shows the learning curves and a summary of our detivaer’s performance. Our multi-
level approach again shows more significant gains at a lowstrelative to all baselines, improving
accuracy with as few as ten labeled instances. On this dataselom selection with multi-level
annotations actually outperforms random selection onlsileyel annotations (see the boxplots).
We attribute this to the distribution of bags/instancesaeerage more positive bags were randomly
chosen, and each addition led to a larger increase in the ALIRO

Conclusions. Our approach addresses a new problem: how to actively chuamisenly which in-
stance to label, but also what type of image annotation toiee@ a cost-effective way. Our method
is general enough to accept other types of annotationsssifikxs, as long as the cost and risk func-
tions can be appropriately defined. Comparisons with passarning methods and single-level ac-
tive learning show that our multi-level method is betteitesdi for building classifiers with minimal
human intervention. In future work, we will consider lookemad scenarios with more far-sighted
choices. We are also pursuing ways to alleviate the VOI cdatjmn cost, which as implemented
involves processing all unlabeled data prior to making asitet. Finally, we hope to incorporate
our approach within an existing system with many real udiges| abelme [8].
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