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This document supplements the main paper with the following details about:

1. Filtering visual questions (supplements Section 3.2).

2. Collecting answers to visual questions (supplements Section 3.3).

3. Analyzing the VizWiz dataset (supplements Section 4).

4. Benchmarking algorithm performance (supplements Section 5).

1. Filtering Visual Questions

We first used the crowdsourcing system shown in Figure 1 to identify images showing personal-identifying information.
To err on the safe side in protecting all involved parties, we next iteratively developed a taxonomy of possible vulnerabilities
people face when working with a VQA dataset created “in the wild”. During an initial brainstorming session, we identified
the following three categories: (1) personally-identifying information, also called PII (e.g., any part of a person’s face,
financial statements, prescriptions), (2) Location (e.g., addressed mail, business locations), and (3) Adult Content (e.g.,
nudity, cuss words). We then examined the robust-ness of this taxonomy by evaluating the inter-annotator agreement between
three domain experts who reviewed 1,000 randomly-selected visual questions and labeled “vulnerable” instances. We found
exactly one person marked a visual question for removal for the majority of instances (i.e., 44) that visual questions were
tagged for removal (i.e., 64). We found most disagreements occurred on visual questions for which the researchers were
not sure, such as in poor quality images or complex scenes. We therefore added two more categories to our taxonomy that
reflected our desire to err on the safe side: (4) Questionable Complex Scenes and (5) Questionable Low Quality Images.
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Figure 1: AMT user interface for identifying images showing PII.

2. Answer Collection
2.1. Answer Post-Processing

Following prior work [2], we converted all letters to lower case, converting numbers to digits, and removing punctuation
and articles (i.e., “a”, “an”, “the”). We further post-processed the answers by fixing spelling mistakes and removing filler
words (i.e., “it’”, “is”, “its”, “and”, “&”, “with”, “there”, “are”, “of”, “or”). For spell checking, we relied on two automated
spell-checkers to reveal which words in the answers neither reflected common nor popular modern words: (1) Enchant1

provides an API to multiple libraries such as Aspell/Pspell and AppleSpell and (2) an algorithm invented by Google search
quality director Peter Norvig2, that is based on frequent words in popular Wikipedia articles and movie subtitles, and so
augments modern words such as iPhone and Gmail. Both the aforementioned tools also employ different mechanisms to
return correct word candidates. When the most probable correct word from both tools matched, we replaced the original word
with the candidate. For the remaining answers, we solicited the correct spelling of the word from trusted in-house human
reviewers. We found many of the detected “misspelled” words were valid captchas and so did not need spell-correction.

2.2. Crowdsourcing System

We show the Amazon Mechanical Turk (AMT) interface that we used to collect answers in Figure 2. We limited our users
to US citizens to minimize concerns about whether a person is familiar with the language. We also limited our users to those
who previously had 95% jobs approved for over 500 jobs to increase the likelihood of collecting high quality results. Finally,
we used the “Adult Qualification” in AMT to ensure our selected crowd was comfortable reviewing adult content. This was

1https://www.abisource.com/projects/enchant/
2http://norvig.com/spell-correct.html



Figure 2: AMT user interface for collecting answers to visual questions.

important because visual questions are gathered “from the wild” so could contain content that is not appropriate for a general
audience (e.g., nudity).

3. VQA Dataset Analysis

3.1. Question Length Distribution

We augment the statistics supplied in the main paper, with the fine-grained distribution showing the number of words in
each visual question in Figure 3. We cut the plot off at 30 words in the visual question3. This distribution highlights the
prevalence of outliers with few words or 10s of words in the question.

3.2. Average Image Excluding “Unanswerable" Visual Questions

We show a parallel image supplied in the main paper here, with the only change being that we show the average of all
images excluding those coming from visual questions labelled as unanswerable. The resulting image shown in Figure 4
resembles that shown in the main paper by also being a gray image, and so reflecting a diverse set of images that do not
conform to a particular structure.

3There is a small tail of visual questions that spread to a maximum of 62 words in the question.



Figure 3: Distribution of number of words per visual question.

Figure 4: The average image created using all images in VizWiz, excluding those that are in unanswerable visual questions.

(a)
(b)

Figure 5: Distribution of the first six words for (a) all answers in VizWiz and (b) all answers in VizWiz excluding unanswer-
able visual questions. The innermost ring represents the first word and each subsequent ring represents a subsequent word.
The arc size is proportional to the number of answers with that initial word/phrase.
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Figure 6: Cumulative number of visual questions covered by the most frequent answers in VizWiz for (a) all answers in
VizWiz and (b) all answers in VizWiz excluding unanswerable visual questions.

3.3. Answer Analysis

We show in Figure 5 sunburst diagrams which visualize the frequency that answers begin with different words/phrases.
The most common answers, following “Unsuitable Image” and “Unanswerable”, are yes, no, and colors. We observe there
is a large diversity of uncommon answers as well as answer lengths spanning up to 6 words long.

We also show in Figure 6 plots of the cumulative coverage of all answers versus the most frequent answers. The straight
line with a slope of roughly 1 further illustrates the prevalence of a long tail of unique answers.

4. VizWiz Algorithm Benchmarking
4.1. VQA

In the main paper, we report results for the algorithm proposed in [1]. We use our implementation since the authors’ code
is not yet publicly-available. In particular, the authors released their code and pre-trained faster RCNN model for the image
feature extraction, but not the code and the pre-trained model for the VQA part.

In the main paper, we also report results for fine-tuned models. We fine-tune each pre-trained model on VizWiz using
the most frequent 3,000 answers in the training set of VizWiz. For the initialization of the last layer, if the answer is in the



candidate answer set of VQA V2.0 dataset [3], we initialize the corresponding parameters from the pre-trained model, and
if not, we randomly initialize the parameters. We use Adam solver [6] with a batch size of 128 and an initial learning rate
of 0.01 that is dropped to 0.001 after the first 10 epochs. The training is stopped after another 10 epochs. We employ both
dropout [8] and batch normalization [4] during training.

In the main paper, we also report results for models trained from scratch. Each model is trained using the 3,000 most
frequent answers in the train split of VizWiz. We initialize all parameters in the model to random values.

Finally, we report fine-grained details to expand on our findings reported in the main paper about how well algorithms
trained on VizWiz predict answers for the VQA 2.0 test dataset [3]. We report results for the six models that are fine-tuned
and trained from scratch for the three models [1, 3, 5] with respect to all visual questions as well as with respect to the
four answer types in Table 1. These results highlight that VizWiz provides a domain shift to a different, difficult VQA
environment compared to existing datasets.

All Yes/No Number Other

FT [3] 0.300 0.612 0.094 0.079
FT [5] 0.318 0.601 0.163 0.110
FT [1] 0.304 0.595 0.082 0.105
VizWiz [3] 0.218 0.461 0.074 0.042
VizWiz [5] 0.228 0.465 0.131 0.049
VizWiz [1] 0.219 0.453 0.083 0.048

Table 1: Shown is the cross-dataset performance of six models trained on VizWiz and tested on the VQA 2.0 test dataset [3].

4.2. Answerability

Below is a brief description of the implementations of the models we use in the main paper:

• Q: a one-layer LSTM is used to encode the question and is input to a softmax layer.

• C: a one-layer LSTM is used to encode the caption and is input to a softmax layer.

• I: ResNet-152 is used to extract the image features from the pool5 layer and is input to a softmax layer.

• Q+C: the question and caption are encoded by two separate LSTMs and then the features of the question and caption are
concatenated and input to a softmax layer.

• Q+I the features of question and image are concatenated and input to a softmax layer.

For the fine-tuned model, we initialize the parameters using the pre-trained model. We train from scratch by randomly
initializing the parameters. For both approaches, we train for 10 epochs on the VizWiz dataset.

We augment here our findings of the average precision in the main paper with the average F1 score in Table 2. As
observed, the top-performing method remains Q+I whether using the AP score or F1 score.

We also show the top 10 most confident answerable and answerable predictions for the top-performing Q+I implementa-
tion in Figure 7. Our findings highlight how predictive cues may relate to the quality of images and specific questions (e.g.,
“What color...?”).



Model Average Precision Average F1 score

Q+C [7] 0.306 0.383
FT [7] 0.561 0.542
VizWiz [7] 0.605 0.549
VQA [3] 0.560 0.569
Q 0.490 0.233
C 0.464 0.270
I 0.640 0.518
Q+I 0.717 0.648

Table 2: Shown are the average precision scores and average F1 scores for eight models used to predict whether a visual
question is answerable.

References
[1] P. Anderson, X. He, C. Buehler, D. Teney, M. Johnson, S. Gould, and L. Zhang. Bottom-up and top-down attention for image

captioning and vqa. arXiv preprint arXiv:1707.07998, 2017. 5, 6
[2] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. L. Zitnick, and D. Parikh. VQA: Visual Question Answering. In IEEE

International Conference on Computer Vision (ICCV), pages 2425–2433, 2015. 2
[3] Y. Goyal, T. Khot, D. Summers-Stay, D. Batra, and D. Parikh. Making the V in VQA matter: Elevating the role of image understanding

in visual question answering. arXiv preprint arXiv:1612.00837, 2016. 6, 7
[4] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International

Conference on Machine Learning, pages 448–456, 2015. 6
[5] V. Kazemi and A. Elqursh. Show, ask, attend, and answer: A strong baseline for visual question answering. arXiv preprint

arXiv:1704.03162, 2017. 6
[6] D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014. 6
[7] A. Mahendru, V. Prabhu, A. Mohapatra, D. Batra, and S. Lee. The promise of premise: Harnessing question premises in visual

question answering. arXiv preprint arXiv:1705.00601, 2017. 7
[8] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple way to prevent neural networks

from overfitting. Journal of machine learning research, 15(1):1929–1958, 2014. 6



(a)

(b)

Figure 7: Top 10 most confident predictions by the top-performing Q+I model for visual questions in the VizWiz test dataset
that are (a) answerable and (b) unanswerable.


