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Abstract

We propose a novel mode of feedback for image search,
where a user describes which properties of exemplar images
should be adjusted in order to more closely match his/her
mental model of the image(s) sought. For example, perus-
ing image results for a query “black shoes”, the user might
state, “Show me shoe images like these, but sportier.” Of-
fline, our approach first learns a set of ranking functions,
each of which predicts the relative strength of a nameable
attribute in an image (‘sportiness’, ‘furriness’, etc.). At
query time, the system presents an initial set of reference
images, and the user selects among them to provide rela-
tive attribute feedback. Using the resulting constraints in
the multi-dimensional attribute space, our method updates
its relevance function and re-ranks the pool of images. This
procedure iterates using the accumulated constraints until
the top ranked images are acceptably close to the user’s en-
visioned target. In this way, our approach allows a user to
efficiently “whittle away” irrelevant portions of the visual
feature space, using semantic language to precisely com-
municate her preferences to the system. We demonstrate the
technique for refining image search for people, products,
and scenes, and show it outperforms traditional binary rel-
evance feedback in terms of search speed and accuracy.

1. Introduction
Image search entails retrieving those images in a collec-

tion that meet a user’s needs, whether using a keyword or an
image itself as the query. It has great potential for a range
of applications where users can envision content of inter-
est, but need the system’s help to find it: graphic designers
seeking illustrations, computer users searching for favorite
personal photos, or shoppers browsing for products online.

In spite of decades of attention, the problem remains
challenging. Keywords alone are clearly not enough; even if
all existing images were tagged to enable keyword search, it
is infeasible to pre-assign tags sufficient to satisfy any future
query a user may dream up. Indeed, vision algorithms are
necessary to further parse the content of images for many
search tasks; advances in image descriptors, learning al-
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Figure 1. Main idea: Allow users to give relative attribute feedback
on reference images to refine their image search.

gorithms, and large-scale indexing have all had impact in
recent years. Nonetheless, the well-known and frustrating
“semantic gap” between low-level visual cues and the high-
level intent of a user remains, making it difficult for people
to predict the behavior of content-based search systems.

The key to overcoming the gap appears to be interac-
tive search techniques that allow a user to iteratively refine
the results retrieved by the system [3, 14, 22, 30, 7, 29].
The basic idea is to show the user candidate results, obtain
feedback, and adapt the system’s relevance ranking func-
tion accordingly. However, existing image search meth-
ods provide only a narrow channel of feedback to the sys-
tem. Typically, a user refines the retrieved images via bi-
nary feedback on exemplars deemed “relevant” or “irrel-
evant” [14, 3, 22, 30, 7], or else attempts to tune system
parameters such as weights on a small set of low-level fea-
tures (e.g., texture, color, edges) [8, 16]. The latter is clearly
a burden for a user who likely cannot understand the inner
workings of the algorithm. The former feedback is more
natural to supply, yet it leaves the system to infer what about
those images the user found relevant or irrelevant, and there-
fore can be slow to converge on the user’s target in practice.

In light of these shortcomings, we propose a novel mode
of feedback where a user directly describes how high-level
properties of exemplar images should be adjusted in order
to more closely match his/her envisioned target images. For
example, when conducting a query on a shopping website,
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the user might state: “I want shoes like these, but more for-
mal.” When browsing images of potential dates on a dating
website, he can say: “I am interested in someone who looks
like this, but with longer hair and more smiling.” When
searching for stock photos to fit an ad, he might say: “I need
a scene similarly bright as this one and more urban than that
one.” See Fig. 1. In this way, rather than simply state which
images are (ir)relevant, the user employs semantic terms to
say how they are so. We expect such feedback will enable
the system to more closely match the user’s mental model
of the desired content, and with less total interaction effort.

Briefly, the approach works as follows. Offline, we first
learn a set of ranking functions, each of which predicts
the relative strength of a nameable attribute in an image
(e.g., the degree of ‘shininess’, ‘furriness’, etc.). At query
time, the system presents an initial set of reference im-
ages, and the user selects among them to provide relative
attribute feedback. Using the resulting constraints in the
multi-dimensional attribute space, we update the system’s
relevance function, re-rank the pool of images, and display
the top-ranked set to the user. This procedure iterates using
the accumulated constraints until the top ranked images are
acceptably close to the user’s target. We call the approach
WhittleSearch, since it allows users to “whittle away” irrel-
evant portions of the visual feature space via precise, intu-
itive statements of their attribute preferences.

We demonstrate WhittleSearch for retrieval tasks with
people, product, and scene images. We show it refines
search results more effectively than traditional binary rel-
evance feedback, and often with less total user interaction.
Furthermore, we explore the tradeoffs in learning relative
attributes using either top-down category information, abso-
lute attribute judgments, or individual image-level compar-
isons from human annotators. Our main contribution is to
widen human-machine communication for interactive im-
age search in a new and practical way by allowing users to
communicate their preferences very precisely.

2. Related Work
We review related work on attributes for image search

and recognition, interactive feedback, and using compara-
tive information for visual learning.

Human-nameable semantic concepts or attributes are of-
ten used in the multimedia community to build intermediate
representations for image retrieval [24, 21, 17, 29, 5, 27].
The idea is to learn classifiers to predict the presence of var-
ious high-level semantic concepts from a lexicon—such as
objects, locations, activity types, or properties—and then
perform retrieval in the space of those predicted concepts.
The same attributes can also be used to pose queries in se-
mantic terms [12, 23]. While it is known that attributes can
provide a richer representation than raw low-level image
features, no previous work considers attributes as a handle

for user feedback, as we propose.
Attributes have also gathered interest in the object recog-

nition community recently [15, 6, 13, 28, 2]. Since at-
tributes are often shared among object categories (e.g.,
‘made of wood’, ‘plastic’, ‘has wheels’), they are amenable
to a number of interesting tasks, such as zero-shot learn-
ing from category descriptions [15], describing unfamiliar
objects [6], or categorizing with a 20-questions game [2].
Attributes are largely assumed to be categorical properties.
However, recent work introduces the concept of relative at-
tributes as ranking functions, and shows their impact for
zero-shot learning and description [20]. We also explore
relative attributes, but in the distinct context of feedback for
image search; further, we generalize the class-based train-
ing procedure used in [20] to exploit human-generated rel-
ative comparisons between image exemplars.

Relevance feedback has long been used to improve inter-
active image search [14, 3, 22, 25, 7]; see the survey of [30]
for a broader overview than space permits here. The idea
is to tailor the system’s ranking function to the current user,
based on his (usually iterative) feedback on the relevance of
selected exemplar images. This injects subjectivity into the
model, implicitly guiding the search engine to pay atten-
tion to certain low-level visual cues more than others. To
make the most of user feedback, some methods actively se-
lect exemplars most in need of feedback (e.g., [3, 7]). Like
existing interactive methods, our approach aims to elicit a
specific user’s target visual concept. However, while prior
work restricts input to the form “A is relevant, B is not” or
“C is more relevant than D”, our approach allows users to
comment precisely on what is missing from the current set
of results. We show that this richer form of feedback can
lead to more effective refinement.

We aggregate relative constraints placed on exemplars to
improve image search. Comparative information can also
be used to train object recognition systems, by stating sim-
ilarity between object categories [26], comparing their at-
tributes [20], or explaining attributes that make them differ-
ent [4]. In this work, we empower the user to better commu-
nicate his target visual concept via comparative descriptions
to exemplar images, resulting in improved user experience
(high quality results and less user effort) during search.

3. Approach
Our approach allows a user to iteratively refine the search

using feedback on attributes. The user initializes the search
with some keywords—either the name of the general class
of interest (“shoes”) or some multi-attribute query (“black
high-heeled shoes”)—and our system’s job is to help refine
from there. If no such initialization is possible, we simply
begin with a random set of top-ranked images for feedback.
The top-ranked images are then displayed to the user, and
the feedback-refinement loop begins.



Throughout, let P = {I1, . . . , IN} refer to the pool of
N database images that are ranked by the system using its
current scoring function St : I → R, where t denotes the
iteration of refinement. The scoring function is trained us-
ing all accumulated feedback from iterations 1, . . . , t − 1,
and it supplies an ordering (possibly partial) on the images
in P . At each iteration, the top K < N ranked images
Tt = {It1, . . . , ItK} ⊆ P are displayed to the user for fur-
ther feedback, where St(It1) ≥ St(It2) ≥ · · · ≥ St(ItK).
A user then gives feedback of his choosing on any or all of
the K refined results in Tt. We refer to Tt interchangeably
as the reference set or top-ranked set.

In the following, we first describe a traditional binary
relevance feedback model (Sec. 3.1), since it will serve as a
strong baseline to which to compare our approach. Then we
introduce the proposed new mode of relative attribute feed-
back (Sec. 3.2). Finally, we extend the idea to accommodate
both forms of input in a hybrid approach (Sec. 3.3).

3.1. Background: Binary Relevance Feedback

In a binary relevance feedback model, the user identifies
a set of relevant images R and a set of irrelevant images R̄
among the current reference set Tt. In this case, the scoring
function Sb

t is a classifier (or some other statistical model),
and the binary feedback essentially supplies additional pos-
itive and negative training examples to enhance that classi-
fier. That is, the scoring function Sb

t+1 is trained with the
data that trained Sb

t plus the images inR labeled as positive
instances and the images in R̄ labeled as negative instances.

We use a binary feedback baseline that is intended to rep-
resent traditional approaches such as [3, 7, 22, 25]. While
a variety of classifiers have been explored in previous sys-
tems, we employ a support vector machine (SVM) classifier
for the binary feedback model due to its strong performance
in practice. Thus, the scoring function for binary feedback
is Sb(xj) = wbx

T
j + b, where wb, b are the SVM parame-

ters and xj denotes the visual features extracted from image
Ij , to be defined below.

3.2. Relative Attribute Feedback

Suppose we have a vocabulary of M attributes A =
{am}, which may be generic or domain-specific for the im-
age search problem of interest. For example, a domain-
specific vocabulary for shoe shopping could contain at-
tributes such as “shininess”, “heel height”, “colorfulness”,
etc., whereas for scene descriptions it could contain at-
tributes like “openness”, “naturalness”, “depth”. While we
assume this vocabulary is given, recent work suggests it
may also be discoverable automatically [1, 19].

To leverage the proposed relative attribute feedback, our
method requires attribute predictions on all images and a
means to aggregate cumulative constraints on individual at-
tributes, as we describe in the following.

Is the shoe in Image 1 more or less feminine than the shoe in Image 2? 
o The shoe in Image 1 is more feminine than the shoe in Image 2. 
o The shoe in Image 1 is less feminine than the shoe in Image 2. 
o The shoes in Image 1 and Image 2 are equally feminine.  
How obvious is the answer to the previous question? 
o Very obvious 
o Somewhat obvious 
o Subtle, not obvious 

Image 1             Image 2 

Figure 2. Interface for image-level relative attribute annotations.

3.2.1 Learning to predict relative attributes
Typically semantic visual attributes are learned as cate-
gories: a given image either exhibits the concept or it does
not, and so a classification approach to predict attribute
presence is sufficient [21, 17, 29, 15, 6, 13, 28, 5]. In con-
trast, to express feedback in the form sketched above, we
require relative attribute models that can predict the degree
to which an attribute is present. Therefore, we first learn a
ranking function for each attribute in the given vocabulary.

For each attribute am, we obtain supervision on a set
of image pairs (i, j) in the training set I. We ask human
annotators to judge whether that attribute has stronger pres-
ence in image i or j, or if it is equally strong in both. Such
judgments can be subtle, so on each pair we collect 5 re-
dundant responses from multiple annotators on Mechanical
Turk (MTurk); see Fig. 2. To distill reliable relative con-
straints for training, we use only those for which most la-
belers agree. This yields a set of ordered image pairs Om =
{(i, j)} and a set of un-ordered pairs Em = {(i, j)} such
that (i, j) ∈ Om =⇒ i � j, i.e. image i has stronger pres-
ence of attribute am than j, and (i, j) ∈ Em =⇒ i ∼ j,
i.e. i and j have equivalent strengths of am.

We stress the design for constraint collection: rather
than ask annotators to give an absolute score reflecting how
much the attribute m is present, we instead ask them to
make comparative judgements on two exemplars at a time.
This is both more natural for an individual annotator, and
also permits seamless integration of the supervision from
many annotators, each of whom may have a different inter-
nal “calibration” for the attribute strengths.

Next, to learn an attribute’s ranking function, we em-
ploy the large-margin formulation of Joachims [9], which
was originally shown for ranking web pages based on click-
through data, and recently used for relative attribute learn-
ing [20]. Suppose each image Ii is represented in Rd by a
feature vector xi (we use color and Gist, see below). We
aim to learn M ranking functions, one per attribute:

rm(x) = wT
mxi, (1)

for m = 1, . . . ,M , such that the maximum number of the
following constraints is satisfied:

∀(i, j) ∈ Om : wT
mxi > wT

mxj (2)

∀(i, j) ∈ Em : wT
mxi = wT

mxj . (3)

Joachims’ algorithm approximates this NP hard problem
by introducing (1) a regularization term that prefers a wide



margin between the ranks assigned to the closest pair of
training instances, and (2) slack variables ξij , γij on the
constraints, yielding the following objective [9]:

minimize
(

1
2
||wT

m||22 + C
(∑

ξ2ij +
∑

γ2
ij

))
(4)

s.t. wT
mxi ≥ wT

mxj + 1− ξij ; ∀(i, j) ∈ Om

|wT
mxi −wT

mxj | ≤ γij ; ∀(i, j) ∈ Em

ξij ≥ 0; γij ≥ 0,

where C is a constant penalty. The objective is reminiscent
of standard SVM training (and is solvable using similar de-
composition algorithms), except the linear constraints en-
force relative orderings rather than labels. The method is
kernelizable. We use Joachims’ SVMRank code [10].

Having trained M such functions, we are then equipped
to predict the extent to which each attribute is present in any
novel image, by applying the learned functions r1, . . . , rM
to its image descriptor x. Note that this training is a one-
time process done before any search query or feedback is
issued, and the data I used for training attribute rankers is
not to be confused with our database pool P .

Whereas Parikh and Grauman [20] propose generating
supervision for relative attributes from top-down category
comparisons (“person X is (always) more smiley than per-
son Y”), our approach extends the learning process to in-
corporate image-level relative comparisons (“image A ex-
hibits more smiling than image B”). While training from
category-level comparisons is clearly more expedient, we
find that image-level supervision is important in order to re-
liably capture those attributes that do not closely follow cat-
egory boundaries. The ‘smiling’ attribute is a good example
of this contrast, since a given person (the category) need not
be smiling to an equal degree in each of his/her photos. In
fact, our user studies on MTurk show that category-level
relationships violate 23% of the image-level relationships
specified by human subjects for the ‘smiling’ attribute. In
the results section, we detail related human studies analyz-
ing the benefits of instance-level comparisons.

3.2.2 Updating the scoring function from feedback

With the ranking functions learned above, we can now map
any image from P into an M -dimensional space, where
each dimension corresponds to the relative rank prediction
for one attribute. It is in this feature space we propose to
handle query refinement from a user’s feedback.

A user of the system has a mental model of the target
visual content he seeks. To refine the current search re-
sults, he surveys the K top-ranked images in Tt, and uses
some of them as reference images with which to better ex-
press his envisioned optimal result. These constraints are of
the form “What I want is more/less/similarly m than image
Itr

”, wherem is an attribute name, and Itr
is an image in Tt

natural 

perspective 
“I want 

something 
more natural 

than this.” “I want 
something 
less natural 
than this.” 

“I want something with 
more perspective than this.” 

Figure 3. A toy example illustrating the intersection of relative
constraints with M = 2 attributes. The images are plotted on
the axes for both attributes. The space of images that satisfy each
constraint are marked in a different color. The region satisfying all
constraints is marked with a black dashed line. In this case, there
is only one image in it (outlined in black). Best viewed in color.

(the subscript tr denotes it is a reference image at iteration
t). These relative constraints are given for some combina-
tion of image(s) and attribute(s) of the user’s choosing.

The conjunction of all such user feedback statements
gives us a set of constraints for updating the scoring func-
tion. For all statements of the form “I want images exhibit-
ing more of attribute m than reference image Itr

”, our up-
dated attribute-based scoring function Sa

t+1 should satisfy:

Sa
t+1(Ii) > Sa

t+1(Ij), ∀Ii, Ij ∈ P (5)
s.t. rm(xi) > rm(xtr

), rm(xj) ≤ rm(xtr
),

where as before xi denotes the image descriptor for image
Ii used to predict its relative attributes. This simply reflects
that images having more of the desired property m than the
displayed reference image are better than those that do not.
We stress that the relative attribute values on all images are
predicted using the learned function rm (as opposed to hav-
ing ground truth on the attribute strengths in each image).

Similarly, for all statements of the form “I want images
exhibiting less of attribute m than Itr ”, our updated scoring
function should satisfy:

Sa
t+1(Ii) > Sa

t+1(Ij), ∀Ii, Ij ∈ P (6)
s.t. rm(xi) < rm(xtr ), rm(xj) ≥ rm(xtr )

For all statements of the form, “I want images that are
similar in terms of attribute m to Itr ”, the constraints are:

Sa
t+1(Ii) > Sa

t+1(Ij), ∀Ii, Ij ∈ P (7)

s.t. (rm(xtr )− ε) ≤ rm(xi) ≤ (rm(xtr ) + ε),
rm(xj) < rm(xtr )− ε or rm(xj) > rm(xtr ) + ε,

where ε is a constant specifying the distance in relative
attribute space at which instances are considered dissimi-
lar. Note that these similarity constraints differ from binary
feedback, in that they single out an individual attribute. Our
current implementation focuses on the two relative forms of
feedback (more, less).



Each of the above carves out a relevant region of the
M -dimensional attribute feature space, whittling away im-
ages not meeting the user’s requirements. We combine all
such constraints to adapt the scoring function from Sa

t to
Sa

t+1. That is, we take the intersection of all F feedback
constraints thus far to identify the set of top ranked images,
for which Sa

t+1(Ii) = F . Those satisfying all but one con-
straint receive score F−1, and so on, until images satisfying
no constraints receive the score 0. See Fig. 3. Even if no
images satisfy all constraints, we can produce a ranking.

One could alternatively learn a ranking function for Sa
t+1

using these constraints within the large-margin objective
above; however, for the sake of determining the ordering
on the data—as is needed to refine the top ranked results—
its behavior would be equivalent. Thus we take this purely
set-logic approach, as it is less costly.

We stress that the proposed form of relative attribute
feedback refines the search in ways that a straightforward
multi-attribute query cannot. That is, if a user were to sim-
ply state the attribute labels of interest (“show me black
shoes that are shiny and high-heeled”), one can easily re-
trieve the images whose attribute predictions meet those cri-
teria. However, since the user’s description is in absolute
terms, it cannot change based on the retrieved images. In
contrast, with access to relative attributes as a mode of com-
munication, for every new set of reference images returned
by the system, the user can further refine his description.

Having completed a cycle of feedback and refinement,
the method repeats the loop, accepting any additional feed-
back from the user on the newly top-ranked images. In prac-
tice, the system can either iterate until the user’s target im-
age is found, or else until his “budget” of interaction effort
is expended.

3.3. Hybrid Feedback Approach

Thus far we have considered each form of feedback in
isolation. However, they have complementary strengths:
when reference images are nearly on target (or completely
wrong in all aspects), the user may be best served by pro-
viding a simple binary relevance label. Meanwhile, when a
reference image is lacking only in certain describable prop-
erties, he may be better served by the relative attribute feed-
back. Thus, it is natural to combine the two modalities,
allowing a mix of feedback types at any iteration.

To this end, one can consider a learned hybrid scoring
function. The basic idea is to learn a ranking function Sh

t+1

that unifies both forms of constraints. Recall that R and R̄
denote the sets of reference images for which the user has
given positive and negative binary feedback, respectively.
Let Fk ⊂ P denote the subset of images satisfying k of the
relative attribute feedback constraints, for k = 0, . . . , F .
We define a set of ordered image pairs

Os = {{R × R̄} ∪ {FF ×FF−1} ∪ · · · ∪ {F1 ×F0}},

where× denotes the Cartesian product. This set Os reflects
all the desired ranking preferences—that relevant images be
ranked higher than irrelevant ones, and that images satisfy-
ing more relative attribute preferences be ranked higher than
those satisfying fewer. As equivalence constraints, we have:

Es = {{FF ×FF } ∪ · · · ∪ {F1 ×F1}}, (8)

reflecting that images satisfying the same amount of rela-
tive feedback should be ranked equally high. Note that the
subscript s in Os and Es distinguishes the sets from those
indexed by m above, which were used to train relative at-
tribute ranking functions in Sec. 3.2.1.

Using training constraints Os and Es we can learn a
function that predicts relative image relevance for the cur-
rent user with the large-margin objective in Eqn. 4. The re-
sult is a parameter vector ws that serves as the hybrid scor-
ing function Sh

t+1. We randomly sample from pairs in Os

and Es to generate representative constraints for training.
To recap the approach section, we now have three forms

of scoring functions to be used for refining search results:
traditional binary feedback (Sb), relative attribute feedback
(Sa), and a hybrid that unifies the two (Sh).

4. Experimental Results
We analyze how the proposed relative attribute feedback

can enhance image search compared to classic binary feed-
back, and study what factors influence their behavior.

4.1. Experimental Design
Datasets We use three datasets: the Shoes from the At-
tribute Discovery Dataset [1], the Public Figures dataset of
human faces [13] (PubFig), and the Outdoor Scene Recog-
nition dataset of natural scenes [18] (OSR). They vali-
date our approach in diverse domains of interest: find-
ing products, people, and scenes. The Shoes data con-
tains 14,658 shoe images from like.com. We augment the
data with relative attributes—‘pointy-at-the-front’, ‘open’,
‘bright-in-color’, ‘covered-with-ornaments’, ‘shiny’, ‘high-
at-the-heel’, ‘long-on-the-leg’, ‘formal’, ‘sporty’, and ‘fem-
inine’. For PubFig we use the subset from [20], which con-
tains 772 images from 8 people and 11 attributes (‘young’,
‘round face’, etc.). OSR consists of 2,688 images from 8
categories and 6 attributes (‘openness’, ‘perspective’) [20].

For image features x, we use Gist [18] and color his-
tograms for Shoes and PubFig, and Gist alone for OSR.

Methodology For each query we select a random target
image and score how well the search results match that tar-
get after feedback. This target stands in for a user’s mental
model; it allows us to prompt multiple subjects for feedback
on a well-defined visual concept, and to precisely judge how
accurate results are. This part of our methodology is key to
ensure consistent data collection and formal evaluation.



We use two metrics: (1) the ultimate rank assigned to
the user’s target image and (2) the correlation between the
full ranking computed by St and a ground truth ranking that
reflects the perceived relevance of all images in P . Lower
ranks are better, since that means the target image appears
among the top-ranked search results presented to the user.
Our method often produces a partial ordering where multi-
ple images satisfy the same number of constraints; thus, we
rank all n images that satisfy all constraints as 1, then all
images in the next equivalence class as n+ 1, as so on.

The correlation metric captures not only where the tar-
get itself ranks, but also how similar to the target the other
top-ranked images are. We form the ground truth rele-
vance ranking by sorting all images in P by their distance to
the given target. To ensure this distance reflects perceived
relevance, we learn a metric based on human judgments.
Specifically, we show 750 triplets of images (i, j, k) from
each dataset to 7 MTurk human subjects, and ask whether
images i and j are more similar, or images i and k. Us-
ing their responses, we learn a linear combination of the
image and attribute feature spaces that respects these con-
straints via [9]. Our ground truth rankings thus mimic hu-
man perception of image similarity. To score correlation,
we use Normalized Discounted Cumulative Gain at top K
(NDCG@K) [11], which scores how well the predicted
ranking and the ground truth ranking agree, while empha-
sizing items ranked higher. We use K = 50, based on the
number of images visible on a page of image search results.

Feedback generation We use MTurk to gather human
feedback for our method and the binary feedback base-
line. We pair each target image with 16 reference im-
ages. For our method we ask, “Is the target image more
or less 〈attribute name〉 than the reference image?” (for
each 〈attribute name〉), while for the baseline we ask, “Is
the target image similar to or dissimilar from the reference
image?” We also request a confidence level for each an-
swer; see Fig. 2. We get each pair labeled by 5 workers and
use majority voting to reduce noise. When sampling from
these constraints to impose feedback, we take those rated
most obvious on average by the workers.

Since the human annotations are costly, for certain stud-
ies we generate feedback automatically. For relative con-
straints, we randomly sample constraints based on the pre-
dicted relative attribute values, checking how the target im-
age relates to the reference images. (For example, if the
target’s predicted ‘shininess’ is 0.5 and some reference im-
age’s ‘shininess’ is 0.6, then a valid constraint is that the
target is “less shiny” than that reference image.) For binary
feedback, we analogously sample positive/negative refer-
ence examples based on their image feature distance to the
true target; we take the top and bottom quartile, respec-
tively. When scoring rank, we add Gaussian noise to the
predicted attributes (for our method) and the SVM outputs
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Figure 4. Iteration experiments on the three datasets. Our method
often converges on the target image more rapidly.
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Figure 5. Ranking accuracy as a function of amount of feedback.
While more feedback enhances both methods, the proposed at-
tribute feedback yields faster gains per unit of feedback.

(for the baseline), to coarsely mimic human uncertainty in
constraint generation. The automatically generated feed-
back is a good proxy for human feedback since the relative
predictions are explicitly trained to represent human judg-
ments. It allows us to test performance on a larger scale.

4.2. Feedback Results
Impact of iterative feedback First we examine how the
rank of the target image improves as the methods iterate.
Both methods start with the same random set of 16 ref-
erence images, and then iteratively obtain 8 automatically
generated feedback constraints, each time re-scoring the
data to revise the top reference images (using Sa

t and Sb
t

for our method and the binary baseline, respectively).1

Fig. 4 shows the results, for 50 such queries. Our method
outperforms the binary feedback baseline for all datasets,
more rapidly converging on a top rank for the target image.
On PubFig our advantage is slight, however. We suspect
this is due to the strong category-based nature of the Pub-
Fig data, which makes it more amenable to binary feedback;
adding positive labels on exemplars of the same person as
the target image is quite effective. In contrast, on scenes
and shoes where images have more fluid category bound-
aries, our advantage is much stronger. The searches tend to
stabilize after 2-10 rounds of feedback. The run-times for
our method and the baseline are similar.

Impact of amount of feedback Next we analyze the im-
pact of the amount of feedback, using automatically gener-
ated constraints. Fig. 5 shows the rank correlation results
for 100 queries. These curves show the quality of all top-
ranked results as a function of the amount of feedback given
in a single iteration. Recall that a round of feedback con-
sists of a relative attribute constraint or a binary label on
one image, for our method or the baseline, respectively. For

1To ensure new feedback accumulates per iteration, we do not allow
either method to reuse a reference image.



Dataset-Method Near Far Near+Far Mid
Shoes-Attribute .39 .29 .40 .38
Shoes-Binary .12 .05 .27 .06

PubFig-Attributes .60 .41 .58 .52
PubFig-Binary .39 .21 .64 .15
OSR-Attributes .53 .27 .52 .40

OSR-Binary .18 .18 .32 .11
Figure 6. Ranking accuracy (NDCG@50 scores) as we vary the
type of reference images available for feedback.

all datasets, both methods clearly improve with more feed-
back. However, the precision enabled by our attribute feed-
back yields a greater “bang for the buck”—higher accuracy
for fewer feedback constraints. The result is intuitive, since
with our method users can better express what about the
reference image is (ir)relevant to them, whereas with binary
feedback they cannot.

A multi-attribute query baseline that ranks images by
how many binary attributes they share with the target im-
age achieves NDCG scores 40% weaker on average than
our method when using 40 feedback constraints. This re-
sult supports our claim that binary attribute search lacks the
expressiveness of iterative relative attribute feedback.

Impact of reference images The results thus far assume
that the initial reference images are randomly selected,
which is appropriate when the search cannot be initialized
with keyword search. We are interested in understanding
the impact of the types of reference images available for
feedback. Thus, we next control the pool of reference im-
ages to consist of one of four types: “near”, meaning im-
ages close to the target image, “far”, meaning images far
from the target, “near+far”, meaning a 50-50 mix of both,
and “mid”, meaning neither near nor far from the target.
Nearness is judged in the Gist/color feature space.

Fig. 6 shows the resulting accuracies, for all types and all
datasets using 100 queries and automatic feedback. Both
methods generally do well with “near+far” reference im-
ages, which makes sense. For attributes, we expect useful
feedback to entail statements about images that are similar
to the target overall, but lack some attribute. Meanwhile,
for binary feedback, we expect useful feedback to contain
a mix of good positives and negatives to train the classifier.
We further see that attribute feedback also does fairly well
with only “near” reference images; intuitively, it may be dif-
ficult to meaningfully constrain precise attribute differences
on an image much too dissimilar from the target.

Ranking accuracy with human-given feedback Having
analyzed in detail the key performance aspects with auto-
matically generated feedback, now we report results us-
ing human-generated feedback. Fig. 8 shows the ranking
correlation for both methods on 16 queries per dataset af-
ter one round of 8 feedback statements. Attribute feed-
back largely outperforms binary feedback, and does simi-
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Figure 7. Example iterative search result with attribute feedback.
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Figure 8. Ranking accuracy with human-generated feedback.

larly well on OSR. One possible reason for the scenes be-
ing less amenable to attribute feedback is that humans seem
to have more confusion interpreting the attribute meanings
(e.g., “amount of perspective” on a scene is less intuitive
than “shininess” on shoes).

Next, we consider initialization with keyword search.
The Shoes dataset provides a good testbed, since an online
shopper is likely to kick off his search with descriptive key-
words. Fig. 10(a) shows the ranking accuracy results for
16 queries when we restrict the reference images to those
matching a keyword query composed of 3 attribute terms.
Both methods get 4 feedback statements (we expect less to-
tal feedback to be sufficient for this setting, since the key-
words already narrow the reference images to good exem-
plars). Our method maintains its clear advantage over the
binary baseline. This result shows (1) there is indeed room
for refinement even after keyword search, and (2) the preci-
sion of attribute statements is beneficial.

Fig. 7 shows a real example search using this form of our
system. Note how the user’s mental concept is quickly met
by the returned images. Fig. 9 shows a real example using
a hybrid of both binary and attribute feedback, as described
in Sec. 3.3. This suggests how a user can specify a mix of
both forms of input, which are often complementary.

4.3. Consistency of Relative Supervision Types

Finally, we examine the impact of how human judgments
about relative attributes are collected.

Class-level vs. instance-level For all results above, we
train the relative attribute rankers using image-level judg-
ments. How well could we do if simply training with class-
based supervision, i.e., “coasts are more open than forests”?
To find out, we use the relative ordering of classes given
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Figure 10. (a) Accuracy using keyword search initialization. (b)
Errors for class- vs. instance-level training.

in [20] for PubFig and OSR, and define them for Shoes
(see project website). We train ranking functions for each
attribute using both modes of supervision. Figure 10(b)
shows the percentage of∼200 test image pair orderings that
are violated by either approach. Intuitively, instance-level
supervision outperforms class-level supervision for Shoes
and OSR, where categories are more fluid. Further, the
20 MTurkers’ inter-subject disagreement on instance-level
responses was only 6%, versus 13% on category-level re-
sponses. Both results support the proposed design for rela-
tive attribute training.

Absolute vs. relative Finally, we analyze the consistency
in human responses when asked to make absolute judg-
ments about the strength of an attribute in a single image
(on a scale of 1 to 3) as opposed to relative judgments for
pairs of images (more than, less than, or equal). In a similar
study as above, for absolute supervision, the majority vote
over half the subjects disagreed with the majority vote over
the other half 22% of the time. For relative responses, this
disagreement was somewhat lower, at 17%.

Conclusion We proposed an effective new form of feed-
back for image search using relative attributes. In con-
trast to traditional binary feedback, our approach allows
the user to precisely indicate how the results compare with
his mental model. In-depth experiments with three diverse
datasets show relative attribute feedback’s clear promise,
and suggest interesting new directions for integrating mul-
tiple forms of feedback for image search. Studying other
ways to select reference images is interesting future work.
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