WhittleSearch: Image Search with Relative Attribute Feedback

Adriana Kovashka\(^1\)
Devi Parikh\(^2\)
Kristen Grauman\(^1\)
\(^1\)The University of Texas at Austin
\(^2\)Toyota Technological Institute Chicago (TTIC)

Problem
- Existing relevance feedback methods too restrictive
- User cannot specify what is relevant or irrelevant about marked images

Our Idea
- Allow user to "whittle away" irrelevant regions of the image space through precise statements relating their envisioned target and exemplar images.

Learning to Predict Relative Attributes
1) Obtain ordered image pairs \(O_m = \{(i,j)\}\) and unordered pairs \(E_m = \{(i,j)\}\)
2) For each attribute \(m\), learn a ranking function
 \[r_m(x) = \text{scores}_m(x) \text{ such that:} \]
 \[\forall (i,j) \in O_m: \text{scores}_m(x_i) > \text{scores}_m(x_j) \]
 \[\forall (i,j) \in E_m: \text{scores}_m(x_i) = \text{scores}_m(x_j) \]
3) Rank images based on how many constraints they satisfy:
 \[\text{score} = \sum \text{constraint satisfaction} \]

Relative Attribute Feedback
1) User selects some images and marks how they differ from the desired image, thus defining constraints: "I want [objects] that are [more/less] [attribute name] than the [object] in this image."
2) Update the scores for each image in the database, using these:
 \[\text{scores} = \text{scores} + 1 \] if more natural than this
 \[\text{scores} = \text{scores} + 0 \] if less natural than this
3) Rank images based on how many constraints they satisfy:
 \[\text{score} = \sum \text{constraint satisfaction} \]

Hybrid Feedback
Integrate relative attribute and binary feedback by learning relevance ranking function.

Constraint Generation
- Is similar to or dissimilar from
- Is more or less than?
- Binary feedback baseline
- Relative attribute feedback

Results
- **Datasets**
 - Shoes: 14,658 images from Attribute Discovery; augmented with 10 attributes; features: GIST+color
 - CSR: 2,688 images from Outdoor Scene Recognition; 6 attributes; features: GIST
 - PubFig: 772 images from Public Figures; 11 attributes; features: GIST+color

- **Evaluation Metrics**
 - \(\text{NDCG@50} \) correlation between method’s ranking and ground truth ranking (high = good)
 - Ground truth ranking: images ranked by their distance to the secret image in learned feature space

- **Impact of iterative feedback**
 - More open than
 - Less ornaments than
 - Less high at heel than

- **Impact of amount of feedback**
 - More bright than with fewer constraints.

See our paper for additional results with human-given constraints, keyword search, impact of relative images, and impact of supervision type (comparing categories vs. instances).

Conclusions
- Proposed method allows user to communicate precisely how results compare with mental model
- Refines image search results more effectively, often with less human effort