
Supplementary Material: Video Summarization
with Long Short-term Memory

Ke Zhang1?, Wei-Lun Chao1?, Fei Sha2, and Kristen Grauman3

1Dept. of Computer Science, U. of Southern California, United States
2Dept. of Computer Science, U. of California, Los Angeles, United States

3Dept. of Computer Science, U. of Texas at Austin, United States
{zhang.ke, weilunc}@usc.edu, feisha@cs.ucla.edu, grauman@cs.utexas.edu

In this Supplementary Material, we provide details omitted in the main text:

– Section 1: converting between different formats of ground-truth annotations
(Section 3.1 in the main text)

– Section 2: details of the datasets (Section 4.1 in the main text)
– Section 3: details of our LSTM-based models, including the learning objec-

tive for dppLSTM and the generating process of shot-based summaries for
both vsLSTM and dppLSTM (Section 3.4 and 3.5 in the main text)

– Section 4: comparing different network structures for dppLSTM (Section 3.4
in the main text)

– Section 5: Other implementation details
– Section 6: Additional discussions on video summarization

1 Converting between different formats of ground-truth
annotations

As mentioned in Section 3.1 of the main text, existing video summarization
datasets usually provide the ground-truth annotations in (one of) the following
three formats — (a) selected keyframes, (b) interval-based keyshots, and (c)
frame-level importance scores. See Table 1 for illustration.

In order to combine multiple datasets to enlarge the training set, or to enable
any (supervised) video summarization algorithm to be trained under different
ground-truth formats, we introduce a general procedure to convert between dif-
ferent formats. Note that we perform this procedure to the ground truths only
in the training phase. In the testing phase, we directly compare with the user-
generated summaries in their original formats, unless stated otherwise (see Sec-
tion 2). Also note that certain conversions require temporal segmentation to cut
a video into disjoint time intervals, where each interval contains frames of similar
contents. Since none of the datasets involved in the experiments provides ground-
truth temporal segmentation, we apply the kernel temporal segmentation (KTS)
proposed by Potapov et al. [1]. The resulting intervals are around 5 seconds on
average.

? Equal contributions

In Proceedings of the European Conference on Computer Vision (ECCV), 2016

2 Ke Zhang, Wei-Lun Chao, Fei Sha, and Kristen Grauman

Table 1. Illustration of different formats of ground-truth annotations for video sum-
marization. We take a 6-frame sequence as an example.

Format Description

(a) keyframes {frame 2, frame 6} or [0 1 0 0 0 1]

(b) interval-based keyshots {frames 1–2, frames 5–6} or [1 1 0 0 1 1]

(c) frame-level importance scores [0.5 0.9 0.1 0.2 0.7 0.8]

1.1 keyframes → keyshots and frame-level scores

To covert keyframes into keyshots, we first temporally segment a video into dis-
joint intervals using KTS [1]. Then if an interval contains at least one keyframe,
we view such an interval as a keyshot, and mark all frames of it with score 1;
otherwise, 0.

To prevent generating too many keyshots, we rank the candidate intervals
(those with at least one keyframe) in the descending order by the number of key
frames each interval contains divided by its duration. We then select intervals
in order so that the total duration of keyshots is below a certain threshold (e.g.,
using the knapsack algorithm as in [2]).

1.2 keyshots → keyframes and frame-level scores

Given the selected keyshots, we can randomly pick a frame, or pick the middle
frame, of each keyshot to be a keyframe. We also directly mark frames contained
in keyshots with score 1. For those frames not covered by any keyshot, we set
the corresponding importance scores to be 0.

1.3 frame-level scores → keyframes and keyshots

To convert frame-level importance scores into keyshots, we first perform tem-
poral segmentation, as in Section 1.1. We then compute interval-level scores by
averaging the scores of frames within each interval. We then rank intervals in
the descending order by their scores, and select them in order so that the total
duration of keyshots is below a certain threshold (e.g., using the knapsack algo-
rithm as in [2]). We further pick the frame with the highest importance score
within each keyshot to be a keyframe.

Table 2 summarizes the conversions described above.

2 Details of the datasets

In this section, we provide more details about the four datasets — SumMe [3],
TVSum [2], OVP [4,5], and Youtube [5] — involved in the experiments. Note
that OVP and Youtube are only used to augment the training set.

Video Summarization with Long Short-term Memory 3

Table 2. Illustration of the converting procedure described in Section 1.1–1.3. We take
a 6-frame sequence as an example, and assume that the temporal segmentation gives
three intervals, {frames 1–2, frames 3–4, frames 5–6}. The threshold of duration is 5.

Conversion Description

Section 1.1 (a) [0 1 0 0 0 1] → (b) [1 1 0 0 1 1], (c) [1 1 0 0 1 1]

Section 1.2 (b) [1 1 0 0 1 1] → (a) [0 1 0 0 0 1], (c) [1 1 0 0 1 1]

Section 1.3 (c) [0.5 0.9 0.1 0.2 0.7 0.8] → (b) [1 1 0 0 1 1], (a) [0 1 0 0 0 1]

(a) keyframes (b) interval-based keyshots (c) frame-level importance scores

2.1 Training ground truths

Table 3 lists the training and testing ground truths provided in each dataset.
Note that in training, we require a single ground truth for each video, which is
directly given in SumMe and TVSum, but not in OVP and Youtube. We
thus follow [6] to create a single ground-truth set of keyframes from multiple
user-annotated ones for each video.

Table 4 summarizes the formats of training ground truths required by our
proposed methods (vsLSTM, dppLSTM) and baselines (MLP-Shot, MLP-Frame).
We perform the converting procedure described in Section 1 to obtain the re-
quired training formats if they are not provided in the dataset. We perform
KTS [1] for temporal segmentation for all datasets.

2.2 Testing ground truths for TVSum

TVSum provides for each video multiple sequence of frame-level importance
scores annotated by different users. We follow [2] to convert each sequence into
a keyshot-based summary for evaluation, which is exactly the one in Section 1.3.
We set the threshold to be 15% of the original video length, following [2].

Table 3. Training and testing ground truths provided for each video in the datasets.

Dataset Training ground truths Testing ground truths

SumMe a sequence of frame-level scores multiple sets of keyshots

TVSum a sequence of frame-level scores multiple sequences of frame-level scores†

OVP multiple sets of keyframes‡ -

Youtube multiple sets of keyframes‡ -

† following [2], we convert the frame-level scores into keyshots for evaluation.
‡ following [6], we create a single ground-truth set of keyframes for each video.

4 Ke Zhang, Wei-Lun Chao, Fei Sha, and Kristen Grauman

Table 4. The formats of training ground truths required by vsLSTM, dppLSTM, MLP-
Shot, and MLP-Frame.

Method Training ground truths

MLP-Shot shot-level importance scores†

MLP-Frame frame-level importance scores

vsLSTM frame-level importance scores

dppLSTM keyframes, frame-level importance scores‡

† The shot-level importance scores are derived as the averages of the corresponding
frame-level importance scores. We perform KTS [1] to segment a video into shots
(disjoint intervals).
‡ We pre-train the MLP fI(·) and the LSTM layers using frame-level scores.

3 Details of our LSTM-based models

In this section, we provide more details about the proposed LSTM-based models
for video summarization.

3.1 The learning objective of dppLSTM

As mentioned in Section 3.4 of the main text, we adopt a stage-wise optimization
routine to learn dppLSTM — the first stage is based on the prediction error of im-
portance scores; the second stage is based on the maximum likelihood estimation
(MLE) specified by DPPs. Denote Z as a ground set of N items (e.g, all frames of
a video), and z∗ ⊂ Z as the target subset (e.g., the subset of keyframes). Given
the N × N kernel matrix L, the probability to sample z∗ is

P (z∗ ⊂ Z;L) =
det(Lz∗)

det(L+ I)
, (1)

where Lz∗ is the principal minor indexed by z∗, and I is the N × N identity
matrix.

In dppLSTM, L is parameterized by θ, which includes all parameters in the
model. In the second stage, we learn θ using MLE [7]

θ∗ = arg maxθ
∑
i

log{P (z(i)∗ ⊂ Z(i);L(i)(θ))}, (2)

where i indexes the target subset, ground set, and L matrix of the i-th video.
We optimize θ with stochastic gradient descent.

3.2 Generating shot-based summaries for vsLSTM and dppLSTM

As mentioned in Section 3.1 and 3.5 of the main text, the outputs of both our
proposed models are on the frame level — vsLSTM predicts frame-level impor-
tance scores, while dppLSTM selects a subset of keyframes using approximate

Video Summarization with Long Short-term Memory 5

φTφ1 φ2

DPP

MLP

LSTM

LSTM

x1 x2 xT

MLP

LSTM

LSTM

MLP

LSTM

LSTM

......

......

Fig. 1. Our dppLSTM-single model. It is similar to dppLSTM (Fig. 3 in the main text)
but learns only a single MLP fS(·) and then stacks with a DPP.

MAP inference [8]. To compare with the user-annotated keyshots in SumMe
and TVSum for evaluation, we convert the outputs into keyshot-based sum-
maries.

For vsLSTM, we directly apply the conversion in Section 1.3. We set the
threshold of the total duration of keyshots to be 15% of the original video length
(for both datasets), following the protocols in [2,3,9].

For dppLSTM, we apply the conversion in Section 1.1. In practice, DPP
inference usually leads to high precision yet low recall ; i.e., the resulting total
duration of keyshots may be far below the threshold (on average, 10%). We
thus add in few more keyshots by utilizing the scalar output of the MLP fI(·),
following the procedure in Section 1.3. The MLP fI(·) is pre-trained using the
frame-level importance scores (cf. Section 3.4 of the main text) and conveys a
certain notion of importance even after fine-tuning with the DPP objective.

4 Comparing different network structures for dppLSTM

The network structure of dppLSTM (cf. Fig. 3 of the main text) involves two
MLPs — the MLP fI(·) outputting yt for frame-level importance and the MLP
fS(·) outputting φt for similarity.

In this section, we compare with another LSTM-based model that learns
only a single MLP fS(·) and then stacks with a DPP. We term this model as
dppLSTM-single. See Fig. 1 for illustration. dppLSTM-single also outputs a set of
keyframes and is likely to generate a keyshot-based summary of an insufficient
duration (similar to dppLSTM in Section 3.2). We thus add in few more keyshots
by utilizing the diagonal values of L as frame-level scores, following [10].

Table 5 compares the performance of the two network structures, and dp-
pLSTM obviously outperforms dppLSTM-single. As a well-learned DPP model

6 Ke Zhang, Wei-Lun Chao, Fei Sha, and Kristen Grauman

Table 5. Comparison between dppLSTM and dppLSTM-single on different settings.

Dataset Method Canonical Augmented Transfer

SumMe
dppLSTM 38.6±0.8 42.9±0.5 41.8±0.5

dppLSTM-single 37.5±0.9 41.4±0.8 40.3±0.9

TVSum
dppLSTM 54.7±0.7 59.6±0.4 58.7±0.4

dppLSTM-single 53.9±0.9 57.5±0.7 56.2±0.8

should capture the notions of both quality (importance) and diversity [7], we
surmise that separately modeling the two factors would benefit, especially when
the model of each factor can be pre-trained (e.g, the MLP fI(·) in dppLSTM).

5 Other implementation details

In this section, we provide the implementation details for both the proposed
models (vsLSTM, dppLSTM) and baselines (MLP-Frame, MLP-Shot).

5.1 Input signal

For vsLSTM, dppLSTM, and MLP-Frame, which all take frame features as inputs,
we uniformly subsample the videos to 2 fps1. The concatenated feature (of a 5-
frame window) to MLP-Frame is thus equivalent to taking a 2-second span into
consideration. For MLP-Shot, we perform KTS [1] to segment the video into
shots (disjoint intervals), where each shot is around 5 seconds on average.

5.2 Network structures

fI(·) and fS(·) are implemented by one-hidden-layer MLPs, while MLP-Shot and
MLP-Frame are two-hidden-layer MLPs. For all models, we set the size of each
hidden layer of MLPs, the number of hidden units of each unidirectional LSTM,
and the output dimension of the MLP fS(·) all to be 256. We apply the sigmoid
activation function to all the hidden units as well as the output layer of MLP-
Shot, MLP-Frame, and fI(·). The output layer of fS(·) are of linear units. We
run for each setting and each testing fold (cf. Section 4.2 of the main text) 5
times and report the average and standard deviation.

5.3 Learning objectives

For MLP-Frame, MLP-Shot, vsLSTM, and the first stage of dppLSTM, we use the
square loss. For dppLSTM-single and the second stage of dppLSTM, we use the
likelihood (cf. (2)).

1 For videos with slow varying contents such as SumMe/TVSum, this scheme seems
adequate. For OVP and YouTube, even 1 fps is sufficient for fairly good summariza-
tion [5,6,10].

Video Summarization with Long Short-term Memory 7

5.4 Stopping criteria

For all our models, we stop training after K consecutive epochs with descending
summarization F-score on the validation set. We set K = 5.

6 Additional discussions on video summarization

Video summarization is essentially a structured prediction problem and heavily
relies on how to model/capture the sequential (or temporal) structures under-
lying videos. In this work, we focus on modeling the structures making sequen-
tially inter-dependent decisions at three levels: (a) realizing boundaries of sub-
events/shots; (b) removing redundant nearby shots/frames; (c) retaining tempo-
rally distant events despite being visually similar (cf. the motivating example of
“leave home” in Section 1 of the main text). Essentially, any decision including
or excluding frames is dependent on other decisions made on a temporal line.

References

1. Potapov, D., Douze, M., Harchaoui, Z., Schmid, C.: Category-specific video sum-
marization. In: ECCV. (2014) 1, 2, 3, 4, 6

2. Song, Y., Vallmitjana, J., Stent, A., Jaimes, A.: Tvsum: Summarizing web videos
using titles. In: CVPR. (2015) 2, 3, 5

3. Gygli, M., Grabner, H., Riemenschneider, H., Van Gool, L.: Creating summaries
from user videos. In: ECCV. (2014) 2, 5

4. : Open video project. http://www.open-video.org/ 2
5. de Avila, S.E.F., Lopes, A.P.B., da Luz, A., de Albuquerque Araújo, A.: Vsumm:

A mechanism designed to produce static video summaries and a novel evaluation
method. Pattern Recognition Letters 32(1) (2011) 56–68 2, 6

6. Gong, B., Chao, W.L., Grauman, K., Sha, F.: Diverse sequential subset selection
for supervised video summarization. In: NIPS. (2014) 3, 6

7. Kulesza, A., Taskar, B.: Determinantal point processes for machine learning. Foun-
dations and Trends in Machine Learning 5(2–3) (2012) 4, 6

8. Buchbinder, N., Feldman, M., Seffi, J., Schwartz, R.: A tight linear time (1/2)-
approximation for unconstrained submodular maximization. SIAM Journal on
Computing 44(5) (2015) 1384–1402 5

9. Gygli, M., Grabner, H., Van Gool, L.: Video summarization by learning submod-
ular mixtures of objectives. In: CVPR. (2015) 5

10. Zhang, K., Chao, W.l., Sha, F., Grauman, K.: Summary transfer: Exemplar-based
subset selection for video summarization. In: CVPR. (2016) 5, 6

http://www.open-video.org/

