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Abstract

We present a statistical image-based “ shape + structure” model for Bayesian visual hull re-
construction and 3D structure inference. The 3D shape of a class of objectsis represented
by sets of contoursfrom silhouette views simultaneously observed from multiple calibrated
cameras. Bayesian reconstructions of new shapes are then estimated using a prior density
constructed with a mixture model and probabilistic principal components analysis. We
show how the use of a class-specific prior in a visual hull reconstruction can reduce the
effect of segmentation errors from the silhouette extraction process. The proposed method
is applied to a data set of pedestrian images, and improvements in the approximate 3D
models under various noise conditions are shown. We further augment the shape model
to incorporate structural features of interest; unknown structural parameters for anovel set
of contours are then inferred via the Bayesian reconstruction process. Model matching
and parameter inference are done entirely in the image domain and require no explicit 3D
construction. Our shape model enables accurate estimation of structure despite segmen-
tation errors or missing views in the input silhouettes, and works even with only a single
input view. Using a data set of thousands of pedestrian images generated from a synthetic
model, we can accurately infer the 3D locations of 19 joints on the body based on observed
silhouette contours from real images.
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Chapter 1

| ntroduction

Implicit representations of 3D shape can be formed using models of observed contours and
feature locations in multiple views. With sufficient training data of objects of a known
class, a statistical multi-view appearance model can represent the most likely shapesin that
class. Such amodel can be used to reduce noise in observed images, or to fill in missing
data. In thiswork we present a contour-based probabilistic shape model and use it to give
both a probabilistic version of image-based visual hull reconstruction and an image-based

method for inferring 3D structure parameters.

1.1 Motivation

1.1.1 Visual Hull Reconstruction

Reconstruction of 3D shape using the intersection of object silhouettes from multiple views
canyield asurprisingly accurate shape model, if accurate contour segmentationisavailable.
Algorithms for computing the visual hull of an object have been developed based on the
explicit geometric intersection of generalized cones[17]. More recently methods that per-
form resampling operations purely in the image planes have been developed [21], as well
as approaches using weakly calibrated or uncalibrated views[18, 32].

Visual hull algorithms have the advantage that they can be very fast to compute and

re-render, and they are also much less expensive in terms of storage requirements than
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volumetric approaches such as voxel carving or coloring [16, 26, 28]. With visual hulls
view-dependent re-texturing can be used, provided there is accurate estimation of the alpha
mask for each source view [22]. When using these techniques arelatively small number of
views (4-8) is often sufficient to recover models that appear compelling and are useful for
creating real-time virtual models of objects and people in the real world, or for rendering
new images for view-independent recognition using existing view-dependent recognition
algorithms [27].

Unfortunately most algorithms for computing visual hulls are deterministic in nature,
and they do not model any uncertainty that may be present in the observed contour shape
in each view. They can also be quite sensitive to segmentation errors. since the visual hull
is defined as the 3D shape which is the intersection of the observed silhouettes, a small
segmentation error in even a single view can have a dramatic effect on the resulting 3D
model (see Figure 1-1).

Traditional visual hull algorithms (e.g., [21]) have the advantage that they are genera
— they can reconstruct any 3D shape which can be projected to a set of silhouettes from
calibrated views. Whilethisisastrength, it isalso aweakness of the approach. Eventhough
parts of many objects cannot be accurately represented by a visua hull (e.g, concavities),
the set of objectsthat can be represented isvery large, and often larger than the set of objects
that will be physically realizable. Structures in the world often exhibit local smoothness,
which is not accounted for in deterministic visual hull algorithms®. Additionally, many
applications may have prior knowledge about the class of objects to be reconstructed, e.g.
pedestrian images as in the gait recognition system of [27]. Existing algorithms cannot

exploit this knowledge when performing reconstruction or re-rendering.

1.1.2 3D Structure Estimation

Estimating model shape or structure parameters from one or more input viewsis an impor-

tant computer vision problem that has received considerable attention in recent years [11].

In practice many implementations use preprocessing stages with morphological filters to smooth seg-
mentation masks before geometric intersection, but this may not reflect the statistics of the world and could
lead to a shape bias.

12
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Figure 1-1: Thelimitations of deterministic image-based visual hull construction. Segmen-
tation errors in the silhouettes cause dramatic effects on the approximate 3D model (b). A
probabilistic reconstruction can reduce these adverse effects (c).
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(a) Input (b) Desired output

Figure 1-2: The 3D structure estimation problem: given one or more views of an object,
infer the 3D locations of structural points of interest. For instance, given some number of
views of a human body, estimate the 3D locations of specific body parts.

The ideais to estimate 3D locations or angles between parts of an articulated object using
some number of 2D images of that object. If the class of objects is people, for instance,
the goal may be to obtain estimates of the 3D locations of different body parts in order
to describe the body’s pose (see Figure 1-2). These estimates can then be passed on to a
higher-level application that performs a task such as gesture recognition, pose estimation,
gait recognition, or character creation in a virtual environment. There is a large body of
work in the computer vision and human-computer interfaces communities devoted to these

topics alone.

Although we do not consider temporal constraints in this work, many techniques for
human body tracking require the initial pose to be given for the first video frame either
through a hand initialization step or by having the subject stand in a canonical pose. Thus
another application of our method for inferring structure is to automate that initialization

process and make it more flexible.

Additionally, for any object class where it is possible to establish feature correspon-
dences between instances of the class, estimating the 3D locations of key points on the ob-
ject would allow this correspondence to be established automatically. For instance, when
matching a novel set of images to a 3D morphable model, correspondences must be estab-
lished between multiple key points on the object and the same key points on the model. A

14



means of estimating the designated locations based on the input images would alow the
model to be matched automatically.

Classic techniques for structure estimation attempt to detect and align 3D model in-
stances within the image views, but high-dimensional models or models without well-
defined features may make this type of search computationally prohibitive. It is an expen-
sive task to iteratively align a 3D model so that its 2D projections fit the observed image
features, and the difficulty of such model-based techniques is compounded if the class of

objects lacks features that are consistently identifiable in the input image views.

1.2 Proposed Shapeand Structure M odel

In thiswork we introduce a statistical “shape + structure” model that addresses the current
limitations of both deterministic visual hull construction methods as well as classic struc-
ture estimation techniques. The model isformed using a probability density of multi-view
silhouette images augmented with known 3D structure parameters. Using this model, we
formulate both a probabilistic version of image-based visual hull reconstruction as well as

amethod for learning and inferring 3D structural parameters.

1.2.1 Shape Component of the Model

To formulate a probabilistic version of image-based visual hull reconstruction, we enforce
a class-specific prior shape model on the reconstruction. We learn a probability density of
possible 3D shapes, and model the observation uncertainty of the silhouettes seen in each
camera. From these we compute a Bayesian estimate of the visual hull given the observed
silhouettes. We use an explicit image-based algorithm, and define our prior shape model as
adensity over the set of object contoursin each view. We restrict our focusto reconstructing
a single object represented by a closed contour in each view; this simplifies certain steps
in contour processing and representation. It iswell known that the probability densities of
contour models for many object classes can be efficiently represented as linear manifolds
[1, 2, 4], which can be computed using principal component analysis (PCA) techniques. In

essence, we extend this approach to the case of multiple simultaneous views used for visual
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hull reconstruction.

1.2.2 Structure Component of the Model

Rather than fit explicit 3D models to input images, we perform parameter inference using
our image-based shape model, which can be matched directly to observed features. The
shape model composed of multi-view contours is extended to include the 3D locations of
key points on the object. We then estimate the missing 3D structure parameters for a novel
set of contours by matching them to the statistical model and inferring the 3D parameters
from the matched model.

Utilizing the same Bayesian framework described above, a reconstruction of an ob-
served object yields the multi-view contours and their 3D structure parameters simultane-
ously. To our knowledge, this is the first work to formulate an image-based multi-view
statistical shape model for the inference of 3D structure.

In our experiments, we demonstrate how our shape + structure model enables accurate
estimation of structure parameters despite large segmentation errors or even missing views
in the input silhouettes. Since parameter inference with our model succeeds even with
missing views, it is possible to match the model with fewer views than it has been trained
on. We aso show how configurations that are typically ambiguous in single views are

handled well by our multi-view model.

1.2.3 Learningthe Model

In this work we also show how the image-based model can be learned from a known 3D
shape model. Using a computer graphics model of articulated human bodies, we render
a database of views augmented with the known 3D feature locations (and optionally joint
angles, etc.) From thiswe learn ajoint shape and structure model prior, which can be used
to find the instance of the model classthat is closest to anew input image. One advantage of
asynthetic training set isthat |abeled real datais not required; the synthetic model includes
3D structure parameter labels for each example.

For applications where it is desirable to have reconstructed silhouettes that closely pre-
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serve the same underlying contours and idiosyncrasies of the input data, e.g., for visual hull
reconstructions used in recognition applications, the shape model may be trained on a set

of relatively cleanly segmented examples of real data.

1.3 Roadmap

In the following chapter we review related previous work on visual hulls, probabilistic
contour models, and image-based statistical shape models that can be directly matched
to observed shape contours. In Chapter 3 we formulate the Bayesian multi-view shape
reconstruction method which underlies our model. In Chapter 4 we present results from
our experiments applying the proposed visual hull reconstruction method to a data set of
pedestrian images. Then in Chapter 5 we formulate the extended shape model which allows
the inference of 3D structure. In Chapter 6 we describe the means of |earning such a model
from synthetic data, and we present results from our experiments applying the proposed
structure inference method to the data set of pedestrian imagesin order to locate 19 joints
of the body in 3D. Finally, we conclude in Chapter 7 and suggest several avenuesfor future

work.
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Chapter 2

Related Work

In the this chapter we review related previous work on visual hulls, probabilistic contour
models, and image-based statistical shape models that can be directly matched to observed

shape contours.

2.1 Computing a Visual Hull

A visual hull (VH) isdefined by a set of cameralocations, the cameras’ internal calibration
parameters, and silhouettes from each view. Most generaly, it is the maximal volume
whose projections onto multiple image planes result in the set of observed silhouettes of an
object. The VH is known to include the object, and to be included in the object’s convex
hull. In practice, the VH is usually computed with respect to a finite, often small, number
of silhouettes. (See Figure 2-1.) One efficient technique for generating the VH computes
the intersection of the viewing ray from each designated viewpoint with each pixel in that
viewpoint’s image [21]. A variant of this agorithm approximates the surface of the VH
with a polygonal mesh [20]. See[17, 20, 21] for the details of these methods.

While we restrict our attention to visual hullsfrom calibrated cameras, recent work has
shown that visual hulls can be computed from weakly calibrated or uncalibrated views[18,
32]. Detailed models can be constructed from visual hullswith view-dependent reflectance
or texture and accurate modeling of opacity [22].

A traditional application of visual hullsis the creation of models for populating virtual
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Figure 2-1: Schematic illustration of the geometry of visual hull construction as intersec-
tion of visual cones.

worlds, either for detailed models computed offline using many views (perhaps acquired
using a single camera and turntable), or for online acquisition of fast and approximate
models for real-time interaction. Visual hulls can also be used in recognition applications.
Recognition can be performed directly on visible 3D structures from the visual hull (espe-
cially appropriate for the case of orthogonal virtual views), or the visual hull can beusedin
conjunction with traditional 2D recognition algorithms. In [27] a system was demonstrated
that rendered virtual views of a moving pedestrian for integrated face and gait recognition

using existing 2D recognition algorithms.

2.2 Contoursand Low-Dimensional M anifolds

Theauthors of [1] devel oped asingle-view model of pedestrian contours, and showed how a
linear subspace model formed from principal components analysis (PCA) could represent

and track a wide range of motion [2]. A model appropriate for feature point locations
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sampled from a contour is also given in [2]. This single-view approach can be extended to
3D by considering multiple simultaneous views of features. The Active Shape Model of
[5] was successfully applied to model facial variation.

The use of linear manifolds estimated by PCA to represent an object class, and more
generally an appearance model, has been developed by several authors [4, 14, 30]. A
probabilistic interpretation of PCA-based manifolds has been introduced in [12, 31] as
well asin [23], where it was applied directly to face images. Snakes[15] and Condensation
(particlefiltering) [13] have also been used to exploit prior knowledge whiletracking single
contours. We rely on the mixture of probabilistic principal components analyzers (PPCA)

formulation of [29] to model the prior density as a mixture of Gaussians.

2.3 Estimating 3D Structure

There has been considerable work on the general problem of estimating structure param-
eters from images, particularly for the estimation of human body part configurations or
“pose’. See[11] for asurvey.

As described in [11], approaches to pose estimation may be generally categorized into
three groups: 2D approaches that do not use explicit shape models, 2D approaches that
do use explicit shape models, and 3D approaches that use a 3D model for estimating the
positions of articulated structures. A 2D approach without an explicit shape model will
apply either a statistical model or simple heuristic to directly observable features in the
image. In contrast, a 2D explicit shape model makes use of a priori knowledge of how
the object appears in 2D and attempts to segment and label specific parts of the object in
an input image. Finaly, 3D approaches attempt to fit a 3D model to some number of 2D
images, often utilizing a priori knowledge about the kinematic and shape properties of the
object class, and typically requiring a hand-initialized reference frame. In practice, a priori
kinematic and shape constraints may be difficult to describe efficiently and thoroughly, and
they require significant knowledge about the structure and movement patterns of the given
object class.

Our work on 3D structure inference falls into the first category: we infer structure (or
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pose) using observabl e featuresin multi-view images without constructing an explicit shape
model. We do not require that any class-specific a priori kinematic or shape constraints
be explicitly specified; the only prior information utilized is learned directly from easily
extracted features in the training set images.

Note that in thiswork we are not considering any temporal constraints, so we are inter-
ested in the related work in pose estimation to the extent which it analyzes a single frame

at atime.

2.3.1 Model Matching Directly from Observations

We consider image-based statisical shape models that can be directly matched to observed
shape contours. Models which capture the 2D distribution of feature point locations have
been shown to be able to describe a wide range of flexible shapes, and they can be directly
matched to input images [5]. A drawback of such single-view modelsis that features need
to be present, i.e., not occluded, at all times. Shape models in several views can be sepa-
rately estimated to match object appearance [6]; this approach was able to learn a mapping
between the low-dimensional shape parametersin each view. Typically these shape models
require agood initialization in order for the model matching method to converge properly.

The idea of augmenting a PCA-based appearance model with structure parameters and
using projection-based reconstruction to fill in the missing values of those parameters for
new images was first proposed in [7]. A method that used a mixture of PCA approach
to learn a model of single contour shape augmented with 3D structure parameters was
presented in [25]. They were able to estimate 3D hand and arm location just from asingle
silhouette. This system was also able to model contours observed in two simultaneous
views, but separate models were formed for each so no implicit model of 3D shape was
formed.

2.4 Contributions

While regularization or Bayesian maximum a posteriori (MAP) estimation of single-view

contours has received considerable attention, relatively little attention has been given to

22



multi-view datafrom several cameras simultaneously observing an object. With multi-view
data, a probabilistic model and MAP estimate can be computed on implicit 3D structures.
In this work we apply a PPCA-based probability model to form Bayesian estimates of
multi-view contours used for visua hull reconstruction and 3D structure inference.

The strength of our approach liesin our use of a probabilistic multi-view shape model
which restricts the object shape and its possible structural configurations to those that are
most probable given the object class and the current observation. Even when given poorly
segmented binary images of the object, the statistical model can infer more accurate sil-
houette segmentations and appropriate structure parameters. Moreover, all computation is
done within the image domain, and no model matching or search in 3D space is required.

Our model may be learned from synthetic training data when a computer graphics 3D
shape model isavailable. Aswewill discussin Chapter 6, using asynthetic training setisa
practical way to generate a large volume of data, it guarantees precise ground truth labels,
and it eliminates some dangers of segmentation bias that real training data may possess.

The experiments we present in this work show good results on a data set of pedestrian
images. However, the shape model and reconstruction method we propose have no inherent
specification for this particular object class; the methods we present are intended for use
on any class of objects for which the global shape of different instances of the object class

isroughly similar.
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Chapter 3

Bayesian M ulti-View Shape

Reconstruction

In this work, we derive a multi-view contour density model for 3D visual hull reconstruc-
tion and 3D structure inference. We represent the silhouette shapes as sampled points on
closed contours, with the shape vectors for each view concatenated to form a single vector
in the input space. Our algorithm can be extended to a fixed number of distinguishable
objects by concatenating their shape vectors, and to disconnected shapes more general than
those representable by a closed contour if we adopt the level-set approach put forthin [19].

As discussed in the previous chapter, many authors have shown that a probabilistic
contour model using PCA-based density models can be useful for tracking and recognition.
An appealingly simple technique is to approximate a shape space with a linear manifold
[5]. In practice, it is often difficult to represent complex, deformable structures using a
single linear manifold.

Following [4, 29], we construct a density model using a mixture of Gaussians PPCA
model that locally models clusters of data in the input space with probabilistic linear man-
ifolds. We model the uncertainty of a novel observation and obtain a MAP estimate for the
low-dimensional coordinates of the input vector, effectively using the class-specific shape
prior to restrict the range of probable reconstructions.

In the following section we see that if the 3D object can be described by linear bases,

then an image-based visual hull representation of the approximate 3D shape of that object
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should aso lie on alinear manifold, at |east for the case of affine cameras.

3.1 Multi-View Observation M anifolds

If the vector of observed contour points of a 3D object resides on a linear manifold, then
the affine projections of that shape also form a linear manifold. Assume we are given a
3D shape defined by the set of n points resulting from alinear combination of 3n-D basis
vectors. That is, the 3n-D shape vector

P = (pl> P2, ... pn)T
can be expressed as
M
p= Z a;b’ = Ba® (3.1
j=1

wherea = (ay, ...ay,) arethe basis coefficients for the M 3D basesb? = (b/, b, ..., b/ )7,
b{ is the vector with the 3D coordinate of point 7 in basis vector j, and B is the basis
matrix whose columns are the individual b’ vectors. A matrix whose columns are a set of
observed 3D shapes will thus have rank less than or equal to M. Note that the coefficients

a are computed for each given p.

When a 3D shape expressed asin Equation (3.1) isviewed by aset of K affine cameras
with projection matrices M, we will obtain a set of image points which can be described
as

cp = (xF, xb .. x"), 1<k<K, (3.2

“ey n

where
M

M
xf = Myp; = My Y a;b! =) a;M;bl.

j=1 j=1

Therefore, c;, itself belongsto alinear manifoldin the set of projected basesin each camera:

M
Cr = Zaquc = aqy, (3:3)

J=1
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where qi isthe projected image of 3D basisb’ in camera k:
al, = (M bl, M bl, ..M, b?)T.

A matrix whose columns are a set of observed 2D points will thus have rank less than
or equal to M. For the construction of Equations (3.1) - (3.3), we assume an ideal dense
sampling of pointson the surface. The equations hold for the projection of al pointson that
surface, as well as for any subset of the points. If some points are occluded in the imaging
process, or we only view a subset of the points (e.g., those on the occluding contour of
the object in each camera view), the resulting subset of points can till be expressed asin
Equation (3.3) with the appropriate rows deleted. The rank constraint will still hold in this
reduced matrix.

It is clear from the above discussion that if the observed points of the underlying 3D
shape lie on an M-dimensiona linear manifold, then the concatenation of the observed

pointsin each of the K views

O, = (Cb Co, ..oy CK)T

can also be expressed as a linear combination of similarly concatenated projected basis
views q].. Thus an observation matrix constructed from multiple instances of o,, will till
be at most rank M.

3.2 Contour-Based Shape Density M odels

3.2.1 Prior Density M odel

We should thus expect that when the variation in a set of 3D objects is well-approximated
by alinear manifold, their multi-view projection will aso lie on alinear manifold of equal
or lower dimension. When this is the case, we can approximate the density using PPCA
with a single Gaussian. For more general object classes, object variation may only locally

lie on alinear manifold; in these cases a mixture of manifolds can be used to represent the
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shape model [4, 29].

We construct a density model using a mixture of Gaussians PPCA model that locally
models clusters of data in the input space with probabilistic linear manifolds. An obser-
vation is the concatenated vector of sampled contour points from multiple views. Each
mixture component is a probability distribution over the observation space for the true
underlying contours in the multi-view image. Parameters for the C' components are de-
termined from the set of observed data vectorso,,, 1 < n < N, using an Expectation

Maximization (EM) algorithm to maximize asingle likelihood function

N c
L= Z log Z mip(0nlt) (3.4)
n=1 =1

where p(oli) is a single component of the mixture of Gaussians PPCA model, and r; is
the i component’s mixing proportion. A separate mean vector ;;, principal axes W,
and noise variance o; are associated with each of the C' components. Asthislikelihood is
maximized, both the appropriate partitioning of the data and the respective principal axes
are determined. We used the Netlab [24] implementation of [29] to estimate the PPCA

mixture model.

The mixture of probabilistic linear subspaces constitutes the prior density for the ob-
ject shape. All of the images in the training set are projected into each of the subspaces
associated with the mixture components, and the resulting means 1.¢ and covariances X! of
those projected coefficients are retained. The prior density is thus defined as a mixture of

Gaussians, P(P) = S m N (ut, ).

3.2.2 Observation Likelihood Density M odel

The projection y of observation o,, is defined as a weighted sum of the projections into

each mixture component’s subspace,

y = Zp(i\on)(WiT(On — i), (3.5)



where p(i|o,,) isthe posterior probability of component i given the observation. To account
for camera noise or jitter, we model the observation likelihood as a Gaussian distribution
on the manifold with mean 1, = y and covariance ,: P(o|P) = N(u,, X,), where P is
the shape.

To estimate the parameter 32, from the data, we obtain manual segmentationsfor some
set of novel images and cal cul ate the covariance of the differences between their projections
Y ;e 1NtO the subspaces and the projections Y, Of the contours obtained for those same
images by an automatic background subtraction algorithm,

D = Yiue — Yobs;

g | o | (3.6)
¥, = B(d' - B[d])(d’ - E[d’])].

3.3 Bayesian Reconstruction

Applying Bayes rule, we see that
PP =ylo) x Plo|P=y) PP =y).

Thus the posterior density is the mixture of Gaussians that results from multiplying the

Gaussian likelihood and the mixture of Gaussians prior:

C
P(P=y|0)x Y mN(ul,5). 37

=1
By distributing the single Gaussian across the mixture components of the prior, we see
that the components of the posterior have means and covariances
= (2 )
L (38)
TEROTERE
The modes of this function are then found using a fixed-point iteration algorithm as
described in [3]. The maximum of these modes, x*, corresponds to the MAP estimate, i.e.,

the most likely lower-dimensional coordinatesin the subspace for our observation given the
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priorl. It is backprojected into the multi-view image domain to generate the reconstructed
silhouettes S. The backprojection is a weighted sum of the MAP estimate multiplied by
the PCA bases from each mixture component of the prior:
C
S = pi[x")(Wi(W, W) ~'x" + ;). (3.9)
=1
By characterizing which projections into the subspace are most likely, we restrict the
range of reconstructionsto be more like that present in thetraining set (see Figure 3-1). Our
regularization parameter is 32,,, the covariance of the density representing the observation’s
PCA coefficients. It controls the extent to which the training set’s coefficients guide our

estimate.

3.4 Robust Reconstruction Using Random Sample Con-
Sensus

If a gross segmentation error causes some portion of the contour points to appear a great
distance from the true underlying contour, then the Bayesian reconstructed contour will
be heavily biased by those outlier points. Thus, to further improve the silhouette recon-
struction process, a robust contour fitting scheme may be used as a pre-processing stage
to the framework described above. We use a variant of the Random Sample Consensus
(RANSAC) agorithmin order to iteratively search for the “inlier” points from the raw in-
put contour [9]. Only these points are used to perform the Bayesian reconstruction. See

Appendix A for details on this algorithm.

INote that for a single Gaussian PPCA model with prior N (p;, ), the MAP estimate is simply

¥ = (Et_l + 251)71 (Et_lut + E;ly) .
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training example

test example, outlier shape

Figure 3-1: Illustration of prior and observed densities. Center plot shows two projection
coefficients in the subspace for training vectors (red dots) and test vectors (green stars),
al from real data. The distribution of cleanly segmented silhouettes (such as the multi-
view imagein top left) is representative of the prior shape density learned from the training
set. The test points are poorly segmented silhouettes which represent novel observations.
Shown in bottom left and on right are some test points lying far from the center of the prior
density. Due to large segmentation errors, they are unlikely samples according to the prior
shape model. MAP estimation reconstructs such contours as shapes closer to the prior.

test example, outlier shape
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Eighth and ninth dimensions are shown here; other dimensions are similar.
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Chapter 4

Visual Hull Reconstruction from

Pedestrian I mages

In this chapter we describe how our shape model is used to do probabilistic image-based
visua hull reconstruction, and we report results from our experiments with a data set of

pedestrian images.

4.1 Description of the Data Set

For the following experiments, we used an imaging model consisting of four monocular
views from cameras |located at approximately the same height about 45 degrees apart. The
working space of the system is defined as the intersection of their fields of view. Im-
ages of subjects walking through the space at various directions are captured, and asimple
statistical color background model is employed to extract the silhouette foreground from
each viewpoint. The use of a basic background subtraction method results in rough seg-
mentation; body parts are frequently truncated in the silhouettes where the background is
not highly textured, or else parts are inaccurately distended due to common segmentation
problems from shadows or other effects. (See Figure 4-1 for example images from the
experimental setup.)

The goal is to improve segmentation in the multi-view frames by reconstructing prob-

lematic test silhouettes based on MAP estimates of their projections into the mixture of
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(b) Output

(a) Input

Figure 4-1: An example of visual hull reconstruction data: (a) the input - a set of four
images and the corresponding silhouettes; (b) the output - the reconstructed 3D model,
seen here from two different viewpoints.

lower dimensionsional subspaces (see Sections 3.2 and 3.3). The subspaces are derived
from a separate, cleaner subset of the silhouettes in the data set. When segmentation im-
provements are made jointly across views, we can expect to see an improvement in the 3D

approximation constructed by the visual hull. (See Figure 4-2 for adiagram of dataflow.)

4.2 Representation

We represent each view’s silhouette as sampled points along the closed contour extracted
from the original binary images. Since the contour points will eventually comprise vec-
tors to be used with PPCA, the points extracted from each view must follow a common
ordering scheme. Thus, a list of ordered contour point locations is extracted from each
silhouette using a chain-coding technique, whereby the first pixel in the contour iscoded in
its absolute coordinates and remaining contour points are coded relative to their neighbors
[10]. The corresponding image coordinates of the chain coded pointsare retrieved from the
completed chain code. For these experiments, we have chosen to extract the contour points
starting at the top, leftmost point on the silhouette and proceeding in a clockwise direction
along the outermost closed contour.

All contour points are normalized to a common translation and scale invariant input
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Figure 4-2: Diagram of data flow: using the probabilistic shape model for visua hull
reconstruction.

coordinate system as follows. First, each image coordinate of the contour points (z,y) is
transformed to the coordinates (.., y,.), in order to make points relative to an origin placed

at that silhouette's centroid (z.., y.).

(zr, ¥r) = (& — 20, y—ye).

Next, points are normalized by d, the median distance between the centroid and all the

points on the contour:
(xna yn) - (xr/da yT/d)

Finally, each view’s vector of contour points is resampled to a common vector length
using nearest neighbor interpolation. Empirically, resample sizes around 200 points were
found to be sufficient to represent contours originating from (240 x 320) images and con-
taining on average 850 points. The concatenation of the K views' vectors forms the final

input.
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Figure 4-3: Primary modes of variation for the multi-view contours. The columns corre-
spond to the four views. The middle row shows the mean contour for each view. The top
and the bottom show the result of negative and positive variation (three standard deviations)
along (a) thefirst and (b) the second principal component for one component of the mixture
of PPCA model.

4.3 Expected Variation of the Data

With the above alignments made to the data, inputs will till vary in two key ways: the
absolute angle the pedestrian is walking across the system workspace, and the phase of
their walk cycle at that frame. Unsurprisingly, we have found experimentally that recon-
structions are poor when asingle PPCA model is used and training is done with multi-view
data from all possible walking directions and moments in gait cycle. Thus we group the
inputs according to walking direction, and then associate a mixture of Gaussians PPCA
model with each direction. In Figure 4-3 we show the first two multi-view principal com-
ponents recovered for one of the mixture components' linear subspaces. Our visual hull
system provides an estimate of the walking direction; however, without it we could still do

image-based clustering.

A novel input is then reconstructed using MAP estimation, as described in Section 3.3.
As described above, during the feature extraction stage the vectors of contour points are
resampled to a common input length, and so the set of backprojected image coordinates
corresponding to each reconstructed vector will not necessarily form a connected closed

contour. Thusin order to produce the closed contour output required to form a silhouette,
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we fit a spline to the image points corresponding to the reconstructed vector. To obtain
silhouettesfrom each reconstructed contour we simply perform aflood fill from the retained

centroid of the original input.

4.4 Results

According to the visual hull definition, missing pixels in a silhouette from one view are
interpreted as absolute evidence that all the 3D points on the ray corresponding to that
pixel are empty, irrespective of information in other views. Thus, segmentation errors may
have a dramatic impact on the quality of the 3D reconstruction. In order to examine how
well the reconstruction scheme we devised would handle thisissue and improve 3D visua
hull approximations, we tested sets of views with segmentation errors due to erroneous
foreground/background estimates. We also synthetically imposed gross errors to test how
well our method can handle dramatic undersegmentations. Visua hulls are constructed
from the input views using the algorithm in [21].

The visual hull models resulting from the reconstructed views are qualitatively better
than those resulting from the raw silhouettes (see Figures 4-5, 4-6, 4-7, 4-8, 4-9, 4-10, 4-11,
and 4-12). Parts of the body which are missing in one input view do appear in the complete
3D approximation. Such examples illustrate the utility of modeling the uncertainty of an
observed contour.

In order to quantitatively evaluate how well our algorithm eliminates segmentation er-
rors, we obtained ground truth segmentations for a set of the multi-view pedestrian silhou-
ettes by manually segmenting the foreground body in each view. We randomly selected
32 frames (128 views) from our test set to examine in this capacity. The mean squared
error per contour point for the raw silhouettes in our ground truthed test set was found to
be approximately 40 pixels, versus 17 pixelsfor the reconstructed silhouettes. Asshownin
the segmentation error distributions in Figure 4-4, the Bayesian reconstruction eliminates
the largest segmentation errors present in the raw images, and it greatly reduces the mean
error in most cases.

Using the RANSAC method described in Section 3.4, we reduced mean segmentation
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errors by an additional 5 pixelsin about half of the test cases; that is, segmentation errors

were marginally reduced even further than they were in the Bayesian reconstruction test

cases. Since the RANSAC algorithm is notably reliant on having good parameter settings,

extensive experimentation with the particular data set of interest would be necessary to

achieve its peak performance.
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Figure 4-4: Comparison of segmentation error distributions for raw images and their
Bayesian reconstructions. The histogram on the left shows the mean squared error in pix-
els for the raw segmentation via a simple statistical foreground extraction scheme. The
histogram on the right shows the mean sgquared error on the same set of images when
they have been reconstructed via the proposed Bayesian reconstruction scheme. The mean
sguared error per contour point for the raw silhouettes in our ground truthed test set is 40
pixels, versus 17 pixels for the reconstructed silhouettes. Test set size is 32 frames, or 128

views.
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(a) Traditional construction (raw) (b) Bayesian reconstruction

Figure 4-5: An example of visua hull segmentation improvement with PPCA-based
Bayesian reconstruction. The four top-left silhouettes show the multi-view input, corrupted
by segmentation noise. The four silhouettes directly to their right show the corresponding
Bayesian reconstructions. In the gray sections below each set of silhouettes are their cor-
responding visual hulls; the left VH is formed from the raw silhouettes, and the right VH
is formed from the reconstructed silhouettes. Each model has been rotated in increments
of 20 degrees so that the full 3D shape may be viewed. Finaly, virtual frontal and pro-
file views projected from the two VHs are shown at the bottom below their corresponding
VHs. Note how undersegmentationsin the raw input silhouettes cause portions of the ap-
proximate 3D volume to be missing (left, gray background), whereas the reconstructed
silhouettes produce a fuller 3D volume more representative of the true object shape (right,
gray background). 39
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(a) Traditional construction (raw) (b) Bayesian reconstruction

Figure 4-6: An example of visua hull segmentation improvement with PPCA-based
Bayesian reconstruction. See Figure 4-5 for explanation.
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(a) Traditional construction (raw) (b) Bayesian reconstruction

Figure 4-7: An example of visua hull segmentation improvement with PPCA-based
Bayesian reconstruction. This figure has the same format as Figures 4-5 and 4-6, except
only one viewpoint of the visual hull model isrendered in the gray sections. Note how the
segmentation errors in the raw input silhouettes produce a VH with holes in the shoulder
and leg regions (left, gray background), whereas the Bayesian reconstructed silhouettes
produce a VH without these holes (right, gray background).
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Figure 4-8: An example of visua hull segmentation improvement with PPCA-based
Bayesian reconstruction. This figure has the same format as Figure 4-7. Note how the
segmentation errors in the raw input silhouettes produce a VH with a large part of the
right shoulder missing (left, gray background), whereas the volume of the Bayesian recon-
structed VH doesinclude the right shoulder (right, gray background).
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(a) Traditional construction (raw) (b) Bayesian reconstruction

Figure 4-9: An example of visua hull segmentation improvement with PPCA-based
Bayesian reconstruction. This figure has the same format as the previous examples. Note
how the segmentation error in the raw input silhouettesresultsin a carved out portion of the
chest inthe VH (left, gray background); the chest is smoothly reconstructed in the Bayesian
reconstructed VH (right, gray background).
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(a) Traditional construction (raw)

(b) Bayesian reconstruction

Figure 4-10: An example of visua hull segmentation improvement with PPCA-based
Bayesian reconstruction. This figure has the same format as the previous examples. Note
how the segmentation error in the raw input silhouettes results in a carved out portion be-

low the right shoulder and on the left leg in the VH (left, gray background); these holes are
filled in the Bayesian reconstructed VH (right, gray background).
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(a) Traditional construction (raw) (b) Bayesian reconstruction

Figure 4-11: An example of visua hull segmentation improvement with PPCA-based
Bayesian reconstruction. This figure has the same format as the previous examples. Note
how the segmentation error from the top-right raw input silhouette causes the carved out
portion of the back in the raw VH (left, gray background), which is smoothly filled in for
the Bayesian reconstructed version (right, gray background). Also note how the right arm
is missing in the virtual frontal view produced by the raw VH (bottom, leftmost image),
whereas the arm is present in the Bayesian reconstructed version (bottom, image second
from right).
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(a) Traditional construction (raw) (b) Bayesian reconstruction

Figure 4-12: An example of visua hull segmentation improvement with PPCA-based
Bayesian reconstruction. This figure has the same format as the previous examples. Note
the large missing portion of the torso in the 3D volume in the raw VH (left, gray back-
ground), whichisfilled in for the Bayesian reconstructed version (right, gray background).
Also note how the right shoulder is partially missing in the virtual frontal view produced
by the raw VH (bottom, leftmost image), whereas the shoulder isintact in the reconstructed
version (bottom, image second from right).
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Chapter 5

Inferring 3D Structure

In this chapter we desribe how to extend the shape model formulated in Chapter 3 to incor-
porate additional structural features.

5.1 Extendingthe ShapeM od€

The shape model can be augmented to include information about the object’s orientation
in the image, as well as the 3D locations of key points on the object. The mixture model
now represents a density over the observation space for the true underlying contours to-
gether with their associated 3D structure parameters. Novel examples are matched to the
contour-based shape model using the same multi-view reconstruction method described in
Chapter 3 in order to infer their unknown or missing parameters. (See Figure 5-1 for a
diagram of dataflow.)

The shape model istrained on a set of vectorsthat are composed of pointsfrom multiple
contours from simultaneous views, plus a number of three-dimensional structure parame-

ters, s; = (s}, s7, 7). The observation vector o,, is then defined as

O, = (Cl,CQ,...,CK,Sl,SQ,...,Sz)T (51)

wherethere are = 3D pointsfor the structure parameters. When presented with anew multi-

view contour, we find the MAP estimate of the shape and structure parameters based on

47



contour points

PPCA
Sampled, normalized |, Reconstruction via 1 modds
probabilistic shape model

A

Reconstructed

Contour points

Silhouettes "
silhouettes
plus 3D structure
parameters

Background Inference of 3D
subtraction structure parameters —Ti

Multi-view 3D structure Synthetic
textured images parameters training images

Figure 5-1: Diagram of data flow: using the probabilistic shape model for 3D structure
inference.

only the observable contour data. Thetraining set for thisinference task may be comprised
of real or synthetic data.

5.2 Advantagesof the Model

One strength of the proposed approach for the estimation of 3D feature locations is that
the silhouettes in the novel inputs need not be cleanly segmented. Since the contours and
unknown parameters are reconstructed concurrently, the parameters are essentially inferred
from arestricted set of feasible shape reconstructions; they need not be determined by an
explicit match to the raw observed silhouettes. Therefore, the probabilistic shape model
does not require an expensive segmentation module. A fast simple foreground extraction
scheme is sufficient.

As should be expected, our parameter inference method also benefits from the use of
multi-view imagery (as opposed to single-view). Multiple views will in many cases over-
come the ambiguities that are geometrically inherent in single-view methods.

Our model allows structure to be inferred using only directly observable features in
multi-view images; no explicit shape model is constructed. Moreover, we do not require

that any class-specific a priori kinematic or shape constraints be explicitly specified. The
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only prior information utilized is learned directly from extracted contours, and structure
parameters may be learned from a synthetic training set, aswe will describe in Section 6.2.

Model matching consists of one efficient reconstruction step. No iterative search or fitting
scheme is needed.
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Chapter 6

Inferring 3D Structurein Pedestrian

| mages

We have applied our method to a data set of multi-view images of people walking. The
goal isto infer the 3D positions of joints on the body given silhouette views from different
viewpoints. For a description of the imaging model used in the experimentsin this chapter,
see Section 4.1.

6.1 Advantagesof a Synthetic Training Set

A possible weakness of any shape model defined by examples is that the ability to accu-
rately represent the space of realizable shapes will generally depend heavily on the amount
of availabletraining data. Moreover, we note that the training set on which the probabilistic
shape + structure model is learned must be “clean”; otherwise the model could fit the bias
of a particular segmentation algorithm. It must also be labeled with the true values for the
3D features. Collecting alarge data set with these properties would be costly in resources
and effort, given the state of the art in motion capture and segmentation, and at the end the
“ground truth” could still be imprecise. We chose therefore to use realistic synthetic data
for training amulti-view pedestrian shape model. We obtained alarge training set by using
POSER [8] — a commercially available animation software package — which alows us to

manipulate realistic humanoid models, position them in the smulated scene, and render
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Figure 6-1: An example of synthetically generated training data. Textured images (top)
show rendering of example human model, silhouettes and stick figure (below) show multi-
view contours and structure parameters, respectively.

textured images or silhouettes from a desired point of view. Our goal isto train the model
using this synthetic data, but then use the model for reconstruction and inference tasks with

real images.

6.2 Description of the Training Set

We generated 20,000 synthetic instances of multi-view input for our system. For each
instance, a humanoid model was created with randomly adjusted anatomical shape param-
eters, and put into a walk-simulating pose, at a random phase of the walking cycle. The
orientation of the model was drawn at random aswell in order to simulate different walk di-
rections of human subjectsin the scene. Then for each camerain thereal setup we rendered
a snapshot of the model’s silhouette from a point in the virtual scene approximately corre-
sponding to that camera. In addition to the set of silhouettes, we record the 3D locations
of 19 landmarks of the model’s skeleton, corresponding to selected anatomical joints. (See
Figure 6-1.) We used POSER’s scripting language, Python, in order to generate this large

number of examples with randomly varying parameters with minimal human interaction.
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6.3 Representation for the Extended Shape M odel

For this extended model, each silhouette is again represented as sampled points along the
closed contour of the largest connected component extracted from the original binary im-
ages. All contour pointsare normalized to atrand ation and scal e invariant input coordinate
system, and each vector of normalized pointsisresampled to acommon vector length using
nearest neighbor interpolation. The complete representation is then the vector of concate-
nated multi-view contour points plus a fixed number of 3D body part locations (see Equa-
tion (5.1)). In the input observation vector for each test example, the 3D pose parameters

are set to zero.

6.4 Description of the Synthetic Test Set

Since we do not have ground truth pose parameters for the raw test data, we have tested a
separate, large, synthetic test set with known pose parameters so that we can obtain error
measurements for a variety of experiments. In order to evaluate our system’s robustness
to mild changes in the appearance of the object, we generated test sequences in the same
manner as the synthetic training set was generated, but with different virtual characters,
i.e., different clothing, hair and body proportions. To make the synthetic test set more
representative of thereal, raw silhouette data, we added noise to the contour point locations.
Noiseis added uniformly in random directions, or in contiguous regions along the contour
in the direction of the 2D surface normal. Such alterations to the contours simulate the
real tendency for a simple background subtraction mechanism to produce holes or false

extensions along the true contour of the object. (See Figure 6-2.)
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Figure 6-2: Noisy synthetic test silhouettes. Top images show clean synthetic silhouettes.
Images below them show same silhouettes with noise added to image coordinates of con-
tour points. Left example has uniform noise; right example has nonuniform noisein patches
normal to contour.

6.5 Results

6.5.1 Error Measures

The pose error e; for each test frame is defined as the average distance in centimeters

between the estimated and true positions of the 19 joints,

1
er =19 2_leil; (6.1)

where e; istheindividual error for joint i.

As described above, test silhouettes are corrupted with noise and segmentation errors
so that they may be more representative of real, imperfect data, yet till allow us to do a
large volume of experiments with ground truth. The “true” underlying contours from the
clean silhouettes (i.e., the novel silhouettes before their contour points were corrupted) are
saved for comparison with the reconstructed silhouttes. The contour error for each frame

is then the distance between the true underlying contours and their reconstructions.
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Contour error is measured using the Chamfer distance. For all pixels with a given
feature (usually edges, contours, etc.) in thetest imageI, the Chamfer distance D measures

the average distance to the nearest feature in the template image T.

1
D(T.I) =+ > dr(f) (6-2)
fer
where N isthe number of pixelsin the template where the feature is present, and dr(f) is
the distance between feature f in T and the closest feature in I.

6.5.2 Training on OneView Versus Training on Multiple Views

Intuitively, a multi-view framework can discern 3D poses that are inherently ambiguousin
single-view images. Our experimental results validate this assumption. We performed par-
allel testsfor the same examples, in one case using our existing multi-view framework, and
in the other, using the framework outlined above, only with the model atered to be trained
and tested with single views alone. Figure 6-3 compares the overal error distributions of
the single and multi-view frameworks for atest set of 3,000 examples. Errors in both pose
and contours are measured for both types of training. Multi-view reconstructions are con-
sistently more accurate than single-view reconstructions. Training the model on multi-view
images yields on average 24% better pose inference performance and 16% better contour

reconstruction performance than training the model on single-view images.

6.5.3 Testingwith Missing Views

We have also tested the performance of our multi-view method applied to body pose esti-
mation when only a subset of views is available for reconstruction. A missing view in the
shape vector isrepresented by zerosin the elements corresponding to that view’sresampled
contour. Just as unknown 3D locations are inferred for the test images, our method recon-
structs the missing contours by inferring the shape seen in that view based on examples
where all views are known. (See Figures 6-4, 6-5, 6-6, 6-7, 6-8, 6-9, and 6-10.)

We are interested in knowing how pose estimation performance degrades with each
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Figure 6-3: Training on single view vs. training on multiple views. Charts show error dis-
tributionsfor pose (left) and contour (right). Linesin center of boxes denote median value;
top and bottom of boxes denote upper and lower quartile values, respectively. Dashed lines
extending from each end of box show extent of rest of the data. Outliers are marked with
pluses beyond these lines.

additional missing view, since this will determine how many cameras are necessary for
suitable pose estimation should we desire to use fewer cameras than are present in the
training set. Once the multi-view model has been learned, it may be used with fewer cam-
eras, assuming that the angle of inclination of the cameras with the ground plane matches
that of the cameras with which the model was trained.

Figure 6-6 shows results for 3,000 test examples that have been reconstructed using all
possible numbers of views (1,2,3,4), alternately. For a single missing view, each view is
omitted systematically one at a time, making 12,000 total tests. For two or three missing
views, omitted views are chosen at random in order to approximately represent all pos-
sible combinations of missing views equally. As the number of missing views increases,
performance degrades more gracefully for pose inference than for contour reconstruction.

To interpret the contour error results in Figure 6-6, consider that the average contour
length is 850 pixels, and the pedestrians silhouettes have an average area of 30,000 pixels.
If we estimate the normalized error to be the ratio of average pixel distance errors (number

of contour pixels multiplied by Chamfer distance) to the area of the figure, then a mean
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Figure 6-4: Inferring structure from only asingle view. Top row shows ground truth silhou-
ettes that are not in the training set. Noise is added to input contour points of second view
(middle), and this single view aone is matched to the multi-view shape model in order
to infer the 3D joint locations (bottom, solid blue) and compare to ground truth (bottom,
dotted red). Abbreviated body part names appear by each joint. Thisis an example with
average pose error of 5cm.
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Figure 6-5: Inferring structure with one missing view. Top row shows noisy input silhou-
ettes, middle row shows contour reconstructions, and bottom row shows inferred 3D joint
locations (solid blue) and ground truth pose (dotted red). This is an example with aver-
age pose error of 2.5 cm per joint and an average Chamfer distance from the true clean
silhouettes of 2.3.
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Figure 6-6: Missing view results. Charts show distribution of errors for pose (left) and
contours (right) when model istrained on four views, but only a subset of viewsis available
for reconstruction. Plotted asin Figure 6-3.

Chamfer distance of 1 represents an approximate overall error of 2.8%, distances of 4
correspond to 11%, etc. Given the large degree of segmentation errors imposed on the test
sets, these are acceptable contour errorsin the reconstructions, especially since the 3D pose

estimates (our end goal in this setting) do not suffer proportionally.

6.5.4 Testing on Real Data

Finally, we evaluated our algorithm on alarge data set of real images of pedestrians taken
from a database of 4,000 real multi-view frames. The real camera array is mounted on the
ceiling of an indoor lab environment. The external parameters of the virtual camerasin the
graphics software that were used for training are roughly the same as the parameters of this
real four-camera system. The data contains 27 different pedestrian subjects.

Sample results for the real test data set are shown in Figures 6-7, 6-8, 6-9, and 6-10.
The original textured images, the extracted silhouettes, and the inferred 3D pose are shown.
Without having point-wise ground truth for the 3D locations of the body parts, we can best

assess the accuracy of the inferred pose by comparing the 3D stick figures to the original
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textured images. To aid in inspection, the 3D stick figures are rendered from manually

selected viewpoints so that they are approximately aligned with the textured images.

6.5.5 ResultsSummary

In summary, our experiments show how the shape + structure model we have formulated
is able to infer 3D structure by matching observed image features directly to the model.
Our tests with a large set of noisy, ground-truthed synthetic images offer evidence of the
ability of our method to infer 3D parameters from contours, even when inputs have seg-
mentation errors. In the experiments shown in Figure 6-6, structure inference for body pose
estimation is accurate within 3 cm on average. Performance is good even when there are
fewer views available than were used during training; with only one input view, poseisstill
accurate within 15 cm on average, and can be as accurate as within 4 cm. Finally, we have
successfully applied our synthetically-trained model to real data and a number of different

subjects.
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Figure 6-7: Inferring structure on real data. For each example, top row shows original tex-
tured multi-view image, middle row shows extracted input silhouettes where the views that
are not used in reconstruction are omitted, and bottom row shows inferred joint locations
with stick figures rendered at different viewpoints. To aid in inspection, the 3D stick figures
are rendered from manually selected viewpoints that were chosen so that they are approxi-
mately aligned with the textured images. In general, estimation is accurate and agrees with
the perceived body configuration. An example of an error in estimation is shown in the top
left example'sleft elbow, which appears to be incorrectly estimated as bent.
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Figure 6-8: Inferring structure on real datawith two missing views. See caption of Figure 6-
7 for explanation.
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Figure 6-9: Inferring structure on real datawith two missing views. See caption of Figure 6-
7 for explanation.

63



[Zh=4

Ik Prk

It0€rtoe

Figure 6-10: Inferring structure on real data from only a single view. See caption of Fig-
ure 6-7 for explanation.



Chapter 7

Conclusions and Future Wor k

We have devel oped a Bayesian approach to visual hull reconstruction using an image-based
representation of 3D object shape, aswell as an image-based approach to infer 3D structure
parameters. We have shown how the use of a class-specific prior in visual hull reconstruc-
tion reduces the effect of segmentation errors in the silhouette extraction process. We have
also demonstrated how the use of our shape model and Bayesian reconstruction technique
enables accurate estimation of structure parameters in spite of large segmentation errors
or even missing views in the input silhouettes. Novel examples with contour information
but unknown 3D point locations are matched to the model in order to retrieve estimates
for unknown parameters. Model matching and parameter inference are done entirely in the
image domain and require no explicit 3D construction from multiple views.

Our method was applied to a data set of pedestrian sequences, and improvementsin the
approximate 3D models under various noise conditions were shown. We have al so reported
pose and contour error measures on a large set of noisy synthetic images of pedestrians.
We note again that while the experiments we present in this work deal with a data set of
pedestrian images, the shape model and reconstruction method we propose have no inherent
specification for this particular object class. The methods we present are intended for use
on any class of objectsfor which the global shapeisroughly similar across instances of the
class.

In future work we will explore non-parametric density models for inferring structure

from shape. We plan to further test our method to see if our model improves accuracy in
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applications that use a visual hull for view synthesisin recognition tasks. We also plan to
run experiments using motion capture data so that we may compare real image test results
to ground-truth joint angles. In addition, we intend to include dynamics to strengthen our
model for the pedestrian walking sequences. We are also interested in how the body pose
estimation application may be utilized in a higher-level gesture or gait recognition system.
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Appendix A

Random Sample Consensus (RANSAC)

for Multi-View Contour Reconstruction

We adapted the Random Sample Consensus (RANSAC) agorithm to make it suitable for
the robust reconstruction of multi-view contours. The algorithm iteratively seeksto remove
the outlier points present in the input contours. Only the “inlier” points are used to perform
the Bayesian reconstruction. The RANSAC variant we have devised isgivenin Figure A-1.
Random samples of contour points are drawn from each view in succession, and the points
from each view which result in the best fitting reconstruction are used in the final Bayesian

multi-view reconstruction.

67



Determine parameters:
N - the smallest number of points required to compose
a contour in one view.
W - the number of iterations required.
T - the threshold used to identify if a point fits well.
D - the number of nearby points required to assert that
model fits well.

For each of the K views:
For W iterations:

Draw a sample of N points from the raw input
contour in the current view.

Form Bayesian multi-view reconstruction using that
subset of points, using all contour points in the
other K-1 views.

Compute distance transform for the current view.

For each point from the current view’s raw input
contour that is not in the sampled subset:

If distance from that point to the reconstructed
contour is less than or equal to threshold T,
then that point is deemed close.
end
If there are D points close to the reconstructed
contour, then there is a good fit. Reconstruct
the multi-view contour replacing the current view
with the sampled N points plus the D or more
close points.
Calculate the fitting error for the new reconstruction,
defined as the Chamfer distance between the raw input
contour and the Bayesian reconstructed contour.

end

Save the points for the current view that had the
lowest fitting error.

end

Reconstruct the multi-view contour using the inlier
points saved from each view.

Figure A-1: RANSAC variant for robust reconstruction of multi-view contours.
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