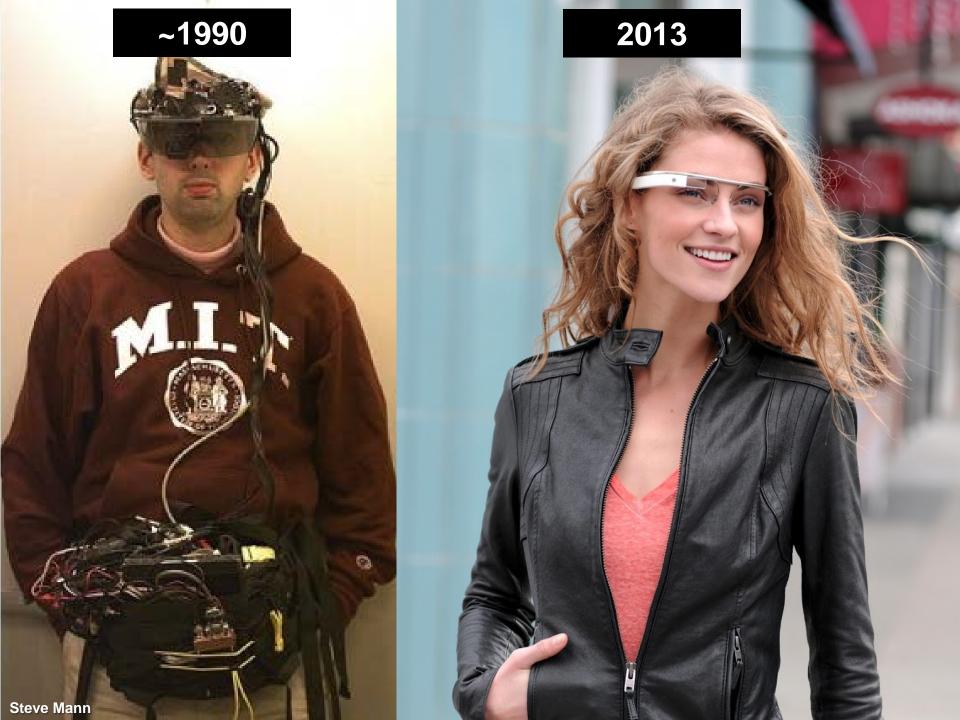
Summarizing Egocentric Video

Kristen Grauman Department of Computer Science University of Texas at Austin

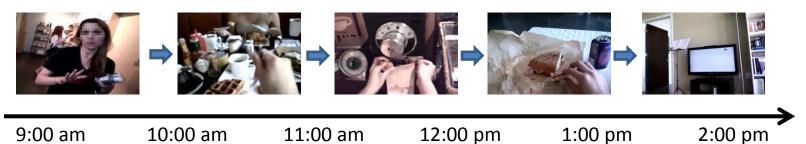
With Yong Jae Lee and Lu Zheng



Goal: Summarize egocentric video

Wearable camera

Input: Egocentric video of the camera wearer's day



Output: Storyboard (or video skim) summary

Potential applications of egocentric video summarization

Memory aid

Law enforcement

Mobile robot discovery

What makes egocentric data hard to summarize?

- Subtle event boundaries
- Subtle figure/ground
- Long streams of data

Prior work

• Egocentric recognition

[Starner et al. 1998, Doherty et al. 2008, Spriggs et al. 2009, Jojic et al. 2010, Ren & Gu 2010, Fathi et al. 2011, Aghazadeh et al. 2011, Kitani et al. 2011, Pirsiavash & Ramanan 2012, Fathi et al. 2012,...]

Video summarization

[Wolf 1996, Zhang et al. 1997, Ngo et al. 2003, Goldman et al. 2006, Caspi et al. 2006, Pritch et al. 2007, Laganiere et al. 2008, Liu et al. 2010, Nam & Tewfik 2002, Ellouze et al. 2010,...]

→ Low-level cues, stationary cameras
→ Consider summarization as a sampling problem

Our idea: Story-driven summarization

[Lu & Grauman, CVPR 2013]

Our idea: Story-driven summarization

Good summary captures the progress of the story

- 1. Segment video temporally into subshots
- 2. Select chain of *k* subshots that maximize both weakest link's influence and object importance

[Lee & Grauman, CVPR 2012; Lu & Grauman, CVPR 2013]

Egocentric subshot detection

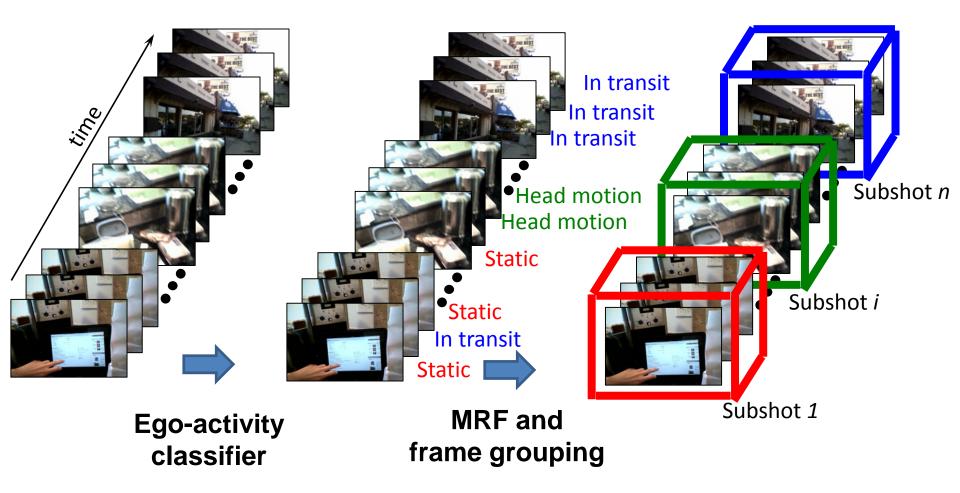
Define 3 generic ego-activities:



~Static In transit Head moving

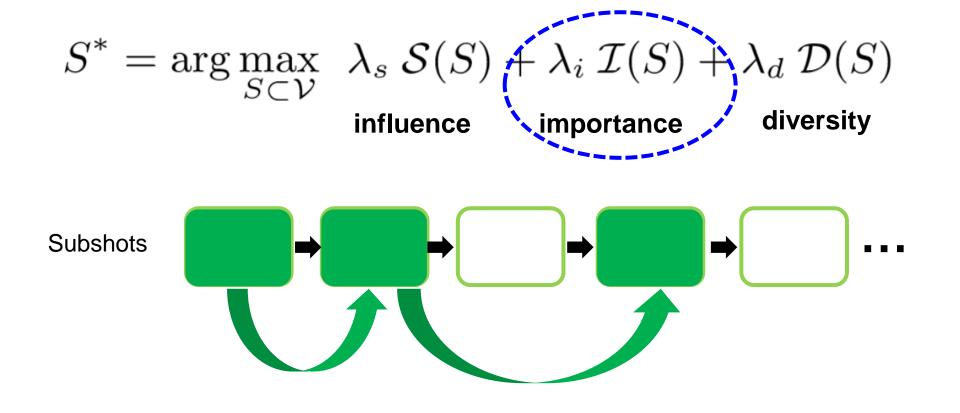
- Train classifiers to predict these activity types
- Features based on flow and motion blur

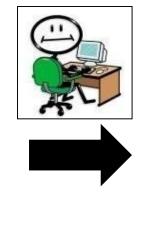
Egocentric subshot detection



Subshot selection objective

Good summary = chain of *k* selected subshots in which each influences the next via some subset of key objects





Man wearing a blue shirt and watch in coffee shop

Yellow notepad on table

Coffee mug that cameraman drinks

• First task: watch a short clip, and *describe in text* the essential people or objects necessary to create a summary

Man wearing a blue shirt and watch in coffee shop

Yellow notepad on table

Coffee mug that cameraman drinks

Iphone that the camera wearer holds

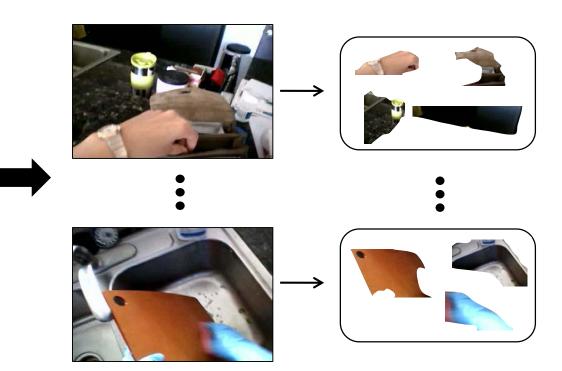


Camera wearer cleaning the plates

Soup bowl

 Second task: draw polygons around any described person or object obtained from the first task in sampled frames

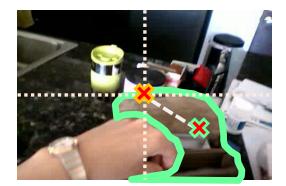
Video input



Generate candidate object regions for uniformly sampled frames

Egocentric features:

distance to hand

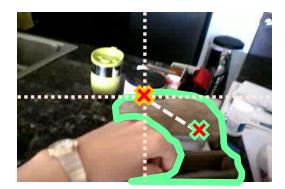


distance to frame center

frequency

Egocentric features:

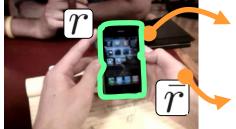
distance to hand

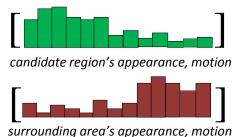


distance to frame center

frequency

Object features:

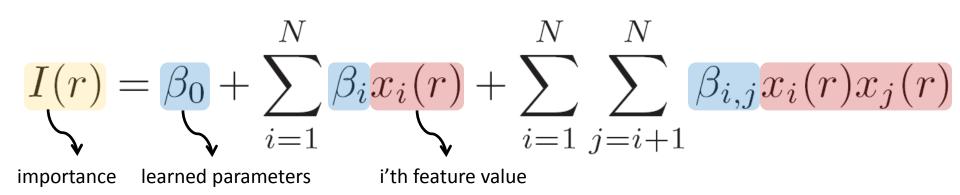




"Object-like" appearance, motion [Endres et al. ECCV 2010, Lee et al. ICCV 2011]

Region features: *size*, *width*, *height*, *centroid*

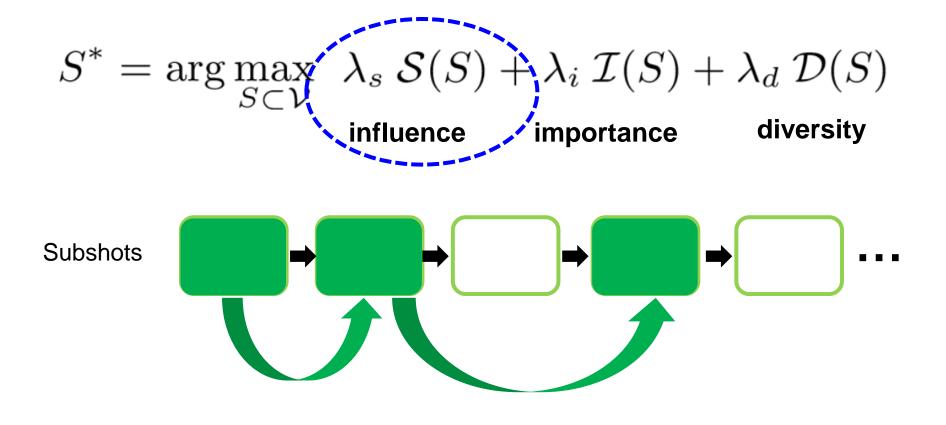
overlap w/ face detection



- Regressor to predict a region's *degree* of importance
- Expect significant interactions between the features
- For training: $I(r) = \frac{|GT \cap r|}{|GT \cup r|}$
- For testing: predict I(r) given $x_i(r)$'s

Subshot selection objective

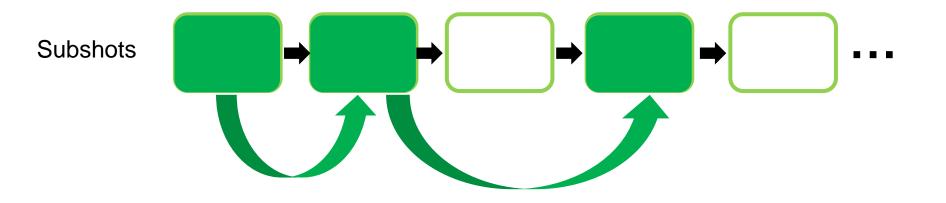
Good summary = chain of *k* selected subshots in which each influences the next via some subset of key objects



Influence criterion

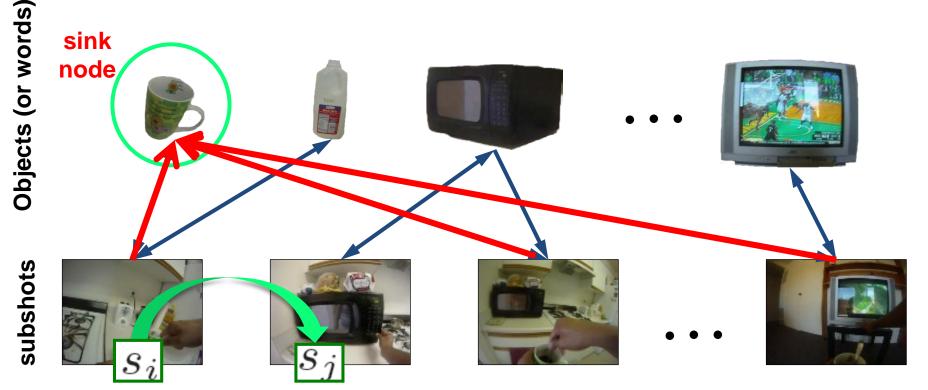
• Want the *k* subshots that maximize the weakest link's influence, subject to coherency constraints

$$\mathcal{S}(S) = \max_{a} \min_{j=1,\dots,K-1} \sum_{o_i \in O} a_{i,j} \text{Influence}(s_j, s_{j+1}|o_i)$$



Document-document influence [Shahaf & Guestrin, KDD 2010]

Estimating visual influence



INFLUENCE
$$(s_i, s_j | o) = \prod_i (s_j) - \prod_i^o (s_j)$$

Captures how reachable subshot *j* is from subshot *i*, via any object *o*

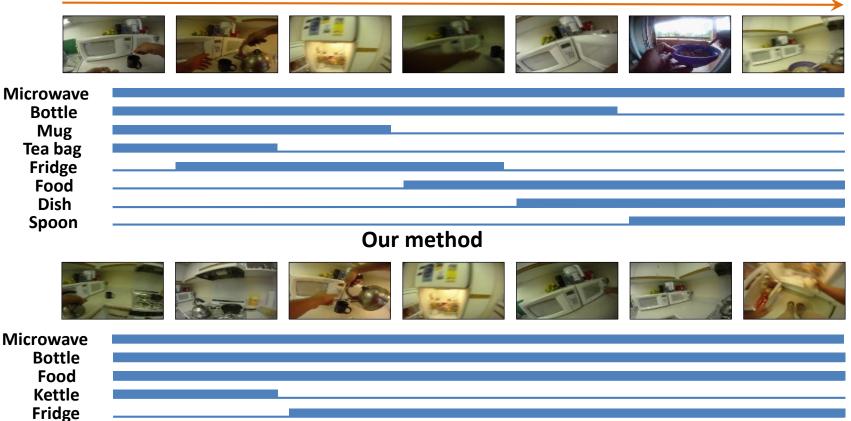
Estimating visual influence

 Prefer small number of objects at once, and coherent (smooth) entrance/exit patterns

				and the second	
Microwave Bottle					
Mug Tea bag Fridge Food					
Food Dish					
Spoon		0	method		

Estimating visual influence

 Prefer small number of objects at once, and coherent (smooth) entrance/exit patterns



Uniform sampling

Subshot selection objective

Good summary = chain of *k* selected subshots in which each influences the next via some subset of key objects

$$S^* = \arg \max_{S \subset \mathcal{V}} \lambda_s S(S) + \lambda_i \mathcal{I}(S) + \lambda_d \mathcal{D}(S)$$

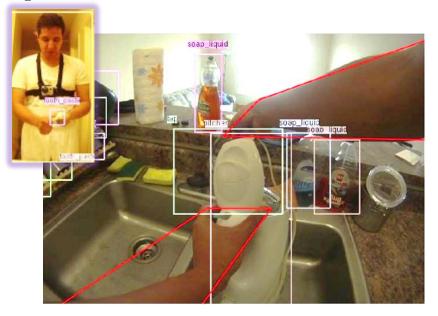
influence importance diversity
Subshots

Optimize with aid of priority queue of (sub)-chains

Datasets

UT Egocentric (UTE) [Lee et al. 2012]

Activities of Daily Living (ADL) [Pirsiavash & Ramanan 2009]



4 videos, each 3-5 hours long, uncontrolled setting.

We use visual words and subshots.

20 videos, each 20-60 minutes, daily activities in house.

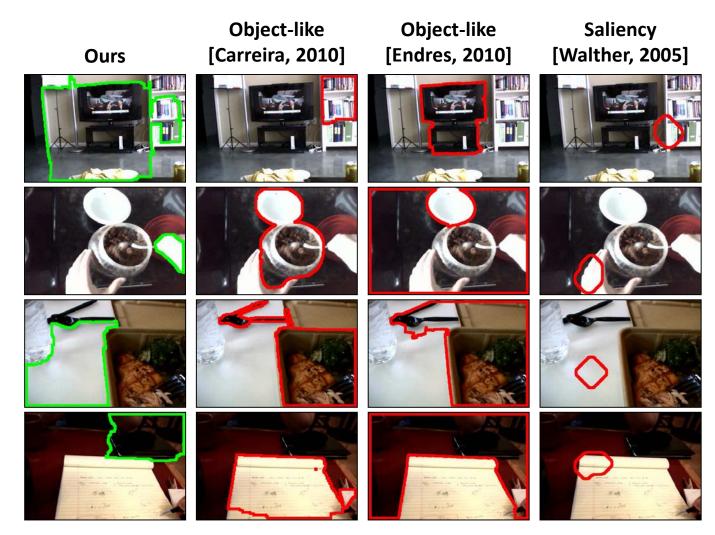
We use object bounding boxes and keyframes.

Results: Important region prediction



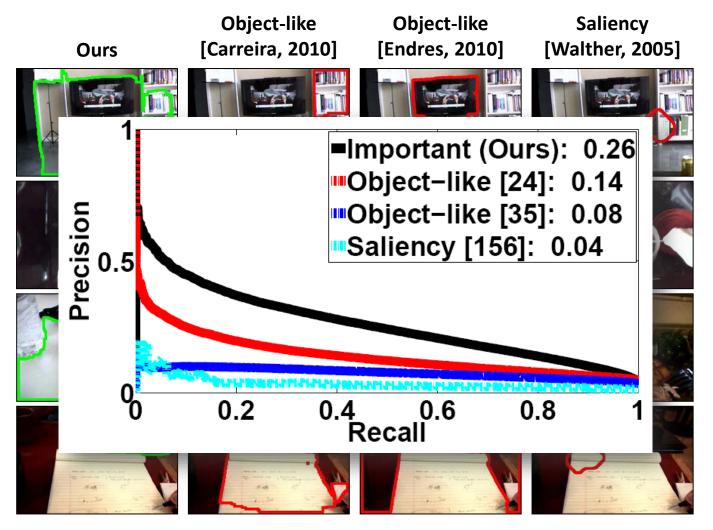
Good predictions

Results: Important region prediction



Failure cases

Results: Important region prediction



Failure cases

Example keyframe summary – UTE data

Original video (3 hours)

Our summary (12 frames)

Example keyframe summary – UTE data

Alternative methods for comparison

Uniform keyframe sampling (12 frames)

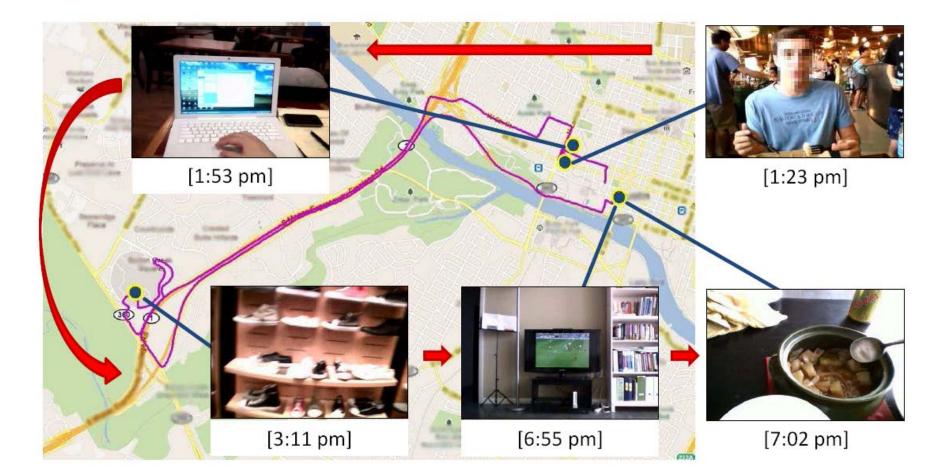
[Liu & Kender, 2002] (12 frames)

Example summary – UTE data

Ours

Baseline

Generating storyboard maps



Augment keyframe summary with geolocations

[Lee & Grauman, CVPR 2012]

How to evaluate a summary?

- Blind taste tests: which better captures...?
 - Your real-life experience (camera wearer)
 - This text description you read
 - The sped up original video you watched
- Compared methods:
 - Uniform sampling
 - Shortest path on subshots' object similarity
 - Importance-driven summaries (Lee et al. 2012)
 - Event-detection followed by sampling
 - Diversity-based objective (Liu & Kender 2002)

Human subject results: Blind taste test

How often do subjects prefer our summary?

Data	Uniform sampling	Shortest-path	Object-driven Lee et al. 2012
UTE	90.0%	90.9%	81.8%
ADL	75.7%	94.6%	N/A

34 human subjects, ages 18-6012 hours of original videoEach comparison done by 5 subjects

Total 535 tasks, 45 hours of subject time

Next steps

- Summaries while streaming
- Multiple scales of influence
- Object-centric \rightarrow activity-centric?
- Additional sensors
- Evaluation as an explicit index

Summary

• Have more video than can be watched!

\rightarrow Need summaries to access and browse

- First person story-driven video summarization
 - Egocentric temporal segmentation
 - Estimate influence between events given their objects
 - Category-independent region importance prediction

Activation pattern of influential visual words

References

- Discovering Important People and Objects for Egocentric Video Summarization. Y. J. Lee, J. Ghosh, and K. Grauman. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, June 2012.
- Story-Driven Summarization for Egocentric Video. Z. Lu and K. Grauman. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Portland, OR, June 2013.