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Visual category recognition

Goal: recognize and detect categories of visually
and semantically related...

Objects

Scenes

Activities




The need for visual recognition
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Difficulty of category recognition
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~30,000 possible categories to distinguish! [Biederman 1987]



Progress charted by datasets
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Progress charted by datasets
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Progress charted by datasets

PASCAL VOC Detection challenge
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Progress charted by datasets
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Learning-based methods

Last ~10 years: impressive strides by learning
appearance models (usually discriminative).

Non-car

[Papageorgiou & Poggio 1998, Schneiderman & Kanade 2000, Viola & Jones 2001, Dalal & Triggs 2005,
Grauman & Darrell 2005, Lazebnik et al. 2006, Felzenszwalb et al. 2008, ...]



Exuberance for image data
(and their category labels)

14M images
1K+ labeled object categories
[Deng et al. 2009-2012]

80M images
53K noisily labeled object categories
[Torralba et al. 2008]

131K images

902 labeled scene categories
4K labeled object categories
[Xiao et al. 2010]




Problem

Difficulty+scale Complexity of
of data supervision
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While complexity and scale of recognition task
has escalated dramatically, our means of
“teaching” visual categories remains shallow.



Envisioning a broader channel

“This image has a
cow in it.”

More labeled images < more accurate models?



Envisioning a broader channel

Need richer means to teach system about visual world



Envisioning a broader channel
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Our goal

Teaching computers about visual categories must
be an ongoing, interactive process, with
communication that goes beyond labels.
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This talk:

1. Active visual learning
2. Learning from visual comparisons




Active learning for visual recognition

Labeled -

Active request

':\' ‘ Unlabeled
Current data
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[Mackay 1992, Cohn et al. 1996, Freund et al. 1997, Lindenbaum et al. 1999, Tong & Koller 2000,
Schohn and Cohn 2000, Campbell et al. 2000, Roy & McCallum 2001, Kapoor et al. 2007,...]



Active learning for visual recognition
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Intent: better models, faster/cheaper



Problem: Active selection and recognition
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Our idea: Cost-sensitive
multi-question active learning

« Compute decision-theoretic active selection
criterion that weighs both:

— which example to annotate, and
— what kind of annotation to request for it

as compared to
— the predicted effort the request would require

[Vijayanarasimhan & Grauman, NIPS 2008, CVPR 2009]



Decision-theoretic multi-question criterion

VALUE(O, Q) = RISK(X}, Xy) — RISK(XL, U Oy, Xy \ O) — CosT(O, Q)

Y 1 Y Y
Value of asking given  Current Estimated risk if candidate = Cost of getting
guestion about givemsclassification risk request were answered the answer
data object

Three “levels” of requests to choose from:
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1. Label a region 2. Tag an object 3. Segment the
In the image Image, name all
objects.



Predicting effort

« What manual effort cost would we expect to pay
for an unlabeled image?

Which image would you rather annotate?



Predicting effort

« What manual effort cost would we expect to pay
for an unlabeled image?

Which image would you rather annotate?



Predicting effort

We estimate labeling difficulty from visual content.
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Predicting effort

We estimate labeling difficulty from visual content.
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Other forms of effort cost: expertise required,
resolution of data, how far the robot must move,
length of video clip,...



Multi-question active learning

Current
classifiers

[Vijayanarasimhan & Grauman, NIPS 2008, CVPR 2009]
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“Completely
segment
image #32.”

e

“Does 1image
#7 contain
a cow?”




Multi-question active learning
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[Vijayanarasimhan & Grauman, NIPS 2008, CVPR 2009]



Multi-question active learning curves
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Multi-question active learning
with objects and attributes

[Kovashka et al., ICCV 2011]
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Weigh relative impact of an object label or an

attribute label, at each iteration.



Budgeted batch active learning

[Vijayanarasimhan et al., CVPR 2010]
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s.t. ZLabelCost(x) < Budget
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Select batch of examples that together improves
classifier objective and meets annotation budget.



Problem: "Sandbox” active learning

Thus far, tested only in artificial settings:

« Unlabeled data already fixed,
small scale, biased

(102 prepared images _J

A passive_.
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« Computational cost ignored

Accuracy




Our idea: Live active learning

Large-scale active learning of object detectors
with crawled data and crowdsourced labels.

How to scale active learning to massive unlabeled
pools of data?



Pool-based active learning

e.g., select point nearest to
hyperplane decision boundary
for labeling.

x* = argmin, o, |W’ x;|

[Tong & Koller, 2000; Schohn & Cohn, 2000; Campbell et al. 2000]



Sub-linear time active selection

We propose a novel hashing approach to identify
the most uncertain examples in sub-linear time.
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[Jain, Vijayanarasimhan, Grauman, NIPS 2010]



Hashing a hyperplane query

At each iteration of the learning loop, our hash
functions map the current hyperplane directly to its
nearest unlabeled points.



Hashing a hyperplane query
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Guarantee high probability of collision for
points near decision boundary:

Prihy(w) = hy(x)| = i o # (Qm‘w - g)g
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At each iteration of the learning loop, our hash
functions map the current hyperplane directly to its
nearest unlabeled points.



Sub-linear time active selection
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PASCAL Visual Object Categorization

* Closely studied object detection benchmark
* Original image data from Flickr

http://pascallin.ecs.soton.ac.uk/challenges/VOC/



http://pascallin.ecs.soton.ac.uk/challenges/VOC/

Live active learning
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Live active learning
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For 4.5 million unlabeled instances,
o 10 minutes machine time per iter,
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' vs. 60 hours for a linear scan.

[ flickr] @ e

] . ' Actively
. selected
Hash table of examples

Jumping
window :} ) _
candidates Image
windows
Unlabeled Unlabeled

images windows [Vijayanarasimhan & Grauman CVPR 2011]



Average Precision

Live active learning results

PASCAL VOC objects - Flickr test set
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Annotations added, out of 3 million examples

Outperforms status quo data collection approach



Live active learning results

What does the live learning system ask first?

Live active learning (ours)

First selections made when learning “boat”

Kristen Grauman, UT Austin



Ongoing challenges
In active visual learning

Exploration vs. exploitation
Utility tied to specific classifier or model

Joint batch selection (“non-myopic”) expensive,
remains challenging

Crowdsourcing: reliability, expertise, economics

Active annotations for objects/activity in video



Our goal

Teaching computers about visual categories must
be an ongoing, interactive process, with
communication that goes beyond labels.
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1. Active visual learning
2. Learning from visual comparisons




Visual attributes

« High-level semantic properties shared by objects
 Human-understandable and machine-detectable

has-
ornaments

Indoors

[Oliva et al. 2001, Ferrari & Zisserman 2007, Kumar et al. 2008, Farhadi et al.
2009, Lampert et al. 2009, Endres et al. 2010, Wang & Mori 2010, Berg et al.
2010, Branson et al. 2010, Parikh & Grauman 2011, ...]






Attributes

A mule...

Is furry

Has four legs

Has a tall



Binary attributes

A mule...

Is furry

Has four legs

Has a tall

[Ferrari & Zisserman 2007, Kumar et al. 2008, Farhadi et al. 2009,
Lampert et al. 2009, Endres et al. 2010, Wang & Mori 2010, Berg
et al. 2010, Branson et al. 2010, ...]



Relative attributes

A mule...

IS furry Legs shorter
than horses’
Has four legs

| Tall longer
Has a tall than donkeys’



Relative attributes

Idea: represent visual comparisons between
classes, images, and their properties.

Brighter

A, _,r than 2
4
Aoperti&
: _ Brigh
Bright Properties Properties

[Parikh & Grauman, ICCV 2011]




How to teach
relative visual concepts?

How much is the person
smiling?

1 2 3 4



How to teach
relative visual concepts?

How much is the person
smiling?

1 2 3 4



How to teach
relative visual concepts?

How much is the person
smiling?

1 2 3 4



How to teach
relative visual concepts?

Less More



Learning relative attributes

For each attribute, use ordered image pairs to

train a ranking function:

Ranking

A -
111171 function

Image features
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V(i,7) € Op,

[Parikh & Grauman, ICCV 2011; Joachims 2002]



Relating images

Rather than simply label images with their properties,

Kristen Grauman, UT Austin



Relating images

Now we can compare images by attribute’s “strength”

bright

&

smiling
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Learning with visual comparisons

Enable new modes of human-system communication

Training category models through descriptions
Rationales to explain image labels
Semantic relative feedback for image search

Analogical constraints on feature learning
4 )
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Relative zero-shot learning

Training: Images from S seen categories and
Descriptions of U unseen categories

Age: Hugh>—CI|ve>-ScarIett Jared — Miley

Smiling: L
Miley >Jared
Need not use all attributes, nor all seen categories

Testing: Categorize image into one of S+U classes



Relative zero-shot learning

Predict new classes based on their relationships
to existing classes — even without training images.

Age: Hugh>Clive-Scarlett
Jared -—Miiley

Smiling

Smiling: Miley >Jared




Relative zero-shot learning

60 -
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S 40 - M Binary attributes
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Outoorv Scenes

es

Comparative descriptions are more discriminative than
categorical descriptions.

Kristen Grauman, UT Austin



Learning with visual comparisons

Enable new modes of human-system communication

Training category models through descriptions
Rationales to explain image labels
Semantic relative feedback for image search

Analogical constraints on feature learning
4 )
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Soliciting visual rationales

~ o

Is the team winning? s it a safe route? Is her form good?

s ™
. '3

How can you tell? How can you tell? How can you tell?
Main idea:

« Ask the annotator not just what, but also why.

[Donahue and Grauman, ICCV 2011, Zaidan et al. NAACL HLT 2007]

Kristen Grauman, UT Austin



Soliciting visual rationales

Hot or Not? How can you tell?

Spatial
rationales
Not, Male Hot, Female Not, Female
Youth
| Black Hair
At.trlbulte Youth Goatee
rationales Smiling Square Face
Straight Hair Shiny Skin

Narrow Eyes High Cheekbones




Accuracy

18.5

[
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17.5
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Soliciting visual rationales

Scene categories

1 I

-

Hot or Not

60.00%

58.00%

Accuracy

56.00%

54.00% -

52.00% -

I Original labels only
BN + Rationales

Attractiveness

63.00%

60.00%

Accuracy

57.00%

54.00%

[Donahue & Grauman, ICCV 2011]



Learning with visual comparisons

Enable new modes of human-system communication

Training category models through descriptions
Rationales to explain image labels
Semantic relative feedback for image search

Analogical constraints on feature learning
4 )
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Interactive visual search

Traditional binary relevance feedback offers only
coarse communication between user and system

[Rui et al. 1998, Zhou et al. 2003, ...]



WhittleSearch: Relative attribute feedback

[Kovashka, Parikh, and Grauman, CVPR 2012]

Query: “‘white high-heeled shoes”

4

. N\ \ Initial top
g R Y \ . search results
Feedback: Feedback:

“less formal “shinier

than these” ‘ than these”
N e I e, §%‘ Refined top
\< )\;’1 = A ' T ~ search results

Whittle away irrelevant images via precise semantic feedback



Visual analogies

Beyond pairwise comparisons ...
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[Hwang, Grauman, & Sha, ICML 2013]




Learning with visual analogies

Regularize object models with analogies

planet : sun = electron : nucleus

[Hwang, Grauman, & Sha, ICML 2013]



Learning with visual analogies

Regularize object models with analogies

p:q=r:s
Input
space .
U, Semantic
o embedding

[Hwang, Grauman, & Sha, ICML 2013]



Visual analogies

GRE-like visual analogy tests

Analogy-presering |
embedding (Ours)

Semantic embedding _
[Weinberger, 2009]

Chance

0 20 40 60 80 100

[Hwang, Grauman, & Sha, ICML 2013] Analogy completion accuracy



Teaching visual recognition systems
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Important next directions

« Recognition in action:
embodied, egocentric

 Activity understanding:
objects & actions

« Scale: many classes,
fine-grained recognition
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Summary

Humans are not simply “label machines”
More data need not mean better learning
Widen access to visual knowledge through

— Large-scale interactive/active learning systems

— Representing relative visual comparisons

Visual recognition offers new Al challenges, and
progress demands that more Al ideas convene
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