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Visual category recognition 

 Goal: recognize and detect categories of visually 

and semantically related… 

 

 
Objects 

Scenes 

Activities 
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The need for visual recognition 

Scientific data analysis 

Augmented reality Robotics Indexing by content 

Surveillance 
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Difficulty of category recognition 

Illumination Object pose Clutter 

Viewpoint Intra-class 

appearance 
Occlusions 

~30,000 possible categories to distinguish!  [Biederman 1987] 
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Progress charted by datasets 

COIL 

Roberts 1963  

1996 1963 … 
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INRIA Pedestrians 

UIUC Cars 

MIT-CMU Faces 

2000 

Progress charted by datasets 

1996 1963 … 
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Caltech-256 

Caltech-101 

MSRC 21 Objects 

2000 2005 

Progress charted by datasets 

1996 1963 … 
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PASCAL VOC Detection challenge 

2000 2005 2007 

Progress charted by datasets 

1996 1963 … 
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Faces in the Wild 

80M Tiny Images 

Birds-200 

PASCAL VOC 

ImageNet 

2000 2005 2007 2008 2013 

Progress charted by datasets 

1996 1963 … 
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Learning-based methods 

Last ~10 years: impressive strides by learning 

appearance models (usually discriminative). 

Annotator 

Car 
Non-car 

Training images 

Novel image 

[Papageorgiou & Poggio 1998, Schneiderman & Kanade 2000, Viola & Jones 2001, Dalal & Triggs 2005, 

Grauman & Darrell 2005, Lazebnik et al. 2006, Felzenszwalb et al. 2008,…]  
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Exuberance for image data 

(and their category labels) 

80M Tiny Images 

ImageNet  

14M images 

1K+ labeled object  categories 

[Deng et al. 2009-2012] 

80M images 

53K noisily labeled object  categories 

[Torralba et al. 2008] 

131K images 

902 labeled scene categories 

4K labeled object categories 

[Xiao et al. 2010] 

 

SUN Database 
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Problem 
L
o
g
 s

c
a
le

 

Difficulty+scale 

of data 

1998 2013 

Complexity of 

supervision 

1998 2013 

While complexity and scale of recognition task 

has escalated dramatically, our means of 

“teaching” visual categories remains shallow.  
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Envisioning a broader channel  

Human 

annotator 

“This image has a 

cow in it.” 

More labeled images ↔ more accurate models? 
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Envisioning a broader channel  

Need richer means to teach system about visual world 

Human 

annotator 
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Envisioning a broader channel  

Today 

Vision Learning 

Vision 

Learning 

Human 
computation 

Language Robotics 

Multi-agent 
systems 

Knowledge 
representation 

Next 10 years 

human system human system 
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Our goal 

Teaching computers about visual categories must 

be an ongoing, interactive process, with 

communication that goes beyond labels.  

 

 

 

 

This talk: 

1. Active visual learning  

2. Learning from visual comparisons  
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Active learning for visual recognition 

Annotator 

Unlabeled 

data 

Labeled 

data 

Active request 

? 

Current 

classifiers 

Active request 

? 

[Mackay 1992, Cohn et al. 1996, Freund et al. 1997, Lindenbaum et al. 1999, Tong & Koller 2000, 

Schohn and Cohn 2000, Campbell et al. 2000,  Roy & McCallum 2001, Kapoor et al. 2007,…] 
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Active learning for visual recognition 

Annotator 

Unlabeled 

data 

Labeled 

data 

Current 

classifiers 

Num labels added 

A
c
c
u
ra

c
y
 

active 

passive 

Intent: better models, faster/cheaper 
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Problem: Active selection and recognition 

More 

expensive to 

obtain 

Less 

expensive to 

obtain 

 

• Multiple levels of 

annotation are possible 

• Variable cost depending 

on level and example 
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• Compute decision-theoretic active selection 

criterion that weighs both: 

– which example to annotate, and 

– what kind of annotation to request for it 

    as compared to  

– the predicted effort the request would require 

 

 

 

Our idea: Cost-sensitive 

multi-question active learning 

[Vijayanarasimhan & Grauman, NIPS 2008, CVPR 2009] 
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Decision-theoretic multi-question criterion 

Value of asking given 

question about given 

data object 

Current 

misclassification risk 

Estimated risk if candidate 

request were answered 

Cost of getting 

the answer 

1. Label a region 

? 
3. Segment the 

image, name all 

objects. 

Three “levels” of requests to choose from: 

2. Tag an object 

in the image 

? 
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Predicting effort 

• What manual effort cost would we expect to pay 

for an unlabeled image? 

 

Which image would you rather annotate? 
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Predicting effort 

• What manual effort cost would we expect to pay 

for an unlabeled image? 

 

 

 

Which image would you rather annotate? 
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Predicting effort 

We estimate labeling difficulty from visual content. 
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Predicting effort 

We estimate labeling difficulty from visual content. 

Other forms of effort cost: expertise required, 

resolution of data, how far the robot must move, 

length of video clip,…  
Kristen Grauman, UT Austin 



Multi-question active learning 

Annotator 

Unlabeled 

data 

Labeled 

data 

Current 

classifiers 

“Completely 
segment 

image #32.” 

“Does image 
#7 contain 
a cow?” 

[Vijayanarasimhan & Grauman, NIPS 2008, CVPR 2009] 
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Multi-question active learning 

Annotator 

Unlabeled 

data 

Labeled 

data 

Current 

classifiers 

“Completely 
segment 

image #32.” 

“Does image 
#7 contain 
a cow?” 

[Vijayanarasimhan & Grauman, NIPS 2008, CVPR 2009] 
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Multi-question active learning curves 

Annotation effort 

A
c
c
u

ra
c

y
 

Kristen Grauman, UT Austin 



What is this 
object? 

Does this object 
have spots? 

[Kovashka et al., ICCV 2011] 

Annotator 

Unlabeled 

data 

Labeled 

data 

Current 

model 

Multi-question active learning 
with objects and attributes 

Weigh relative impact of an object label or an 

attribute label, at each iteration. 
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[Vijayanarasimhan et al., CVPR 2010] 

Annotator 

Unlabeled 

data 

Labeled 

data 

Current 

model 

Budgeted batch active learning 

Select batch of examples that together improves 

classifier objective and meets annotation budget. 

$ 

$ $ 

$ 

Unlabeled data 
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Problem: “Sandbox” active learning 

Thus far, tested only in artificial settings: 
 

Actual time 

A
c
c
u

ra
c
y
 

active 

passive 

~103 prepared images 

 

• Unlabeled data already fixed, 

small scale, biased 

 

• Computational cost ignored 
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Our idea: Live active learning 

Large-scale active learning of object detectors 

with crawled data and crowdsourced labels. 

 

How to scale active learning to massive unlabeled 

pools of data? 
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Pool-based active learning 

e.g., select point nearest to 

hyperplane decision boundary 

for labeling. 
 

 

 

 

 

 

 

 

w

? 

[Tong & Koller, 2000; Schohn & Cohn, 2000; Campbell et al. 2000] 
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Current 

classifier 

Unlabeled data 

Sub-linear time active selection 

[Jain, Vijayanarasimhan, Grauman, NIPS 2010] 

110 

Hash table 

111 

101 

We propose a novel hashing approach to identify 

the most uncertain examples in sub-linear time. 

 

Actively 

selected 

examples 
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Hashing a hyperplane query 

At each iteration of the learning loop, our hash 

functions map the current hyperplane directly to its 

nearest unlabeled points. 
Kristen Grauman, UT Austin 
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Hashing a hyperplane query 

At each iteration of the learning loop, our hash 

functions map the current hyperplane directly to its 

nearest unlabeled points. 

Guarantee high probability of collision for 

points near decision boundary: 

Kristen Grauman, UT Austin 



H-Hash result on 1M Tiny Images 

Time spent 

searching for 

selection 

2 

H-Hash 

Active 

Exhaustive 

Active  

By minimizing both 

selection and labeling 

time, obtain the best 

accuracy per unit time. 

H-Hash Active 

Exhaustive Active 

Passive 

8 
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Selection + labeling time (hrs) 

Accounting for all costs 

4 1.3 

Accuracy 

improvements 

as more data 

labeled Exhaustive Active 
Passive 

H-Hash Active 

Sub-linear time active selection 
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PASCAL Visual Object Categorization 

• Closely studied object detection benchmark 

• Original image data from Flickr 

http://pascallin.ecs.soton.ac.uk/challenges/VOC/ 

Kristen Grauman, UT Austin 

http://pascallin.ecs.soton.ac.uk/challenges/VOC/


1111 

1010 

1100 

Hash table of 

image 

windows 

“bicycle”  wh

 )( iOh 

Actively 

selected 

examples 

Annotated data 

Consensus 

(Mean shift) 

Current 

hyperplane 

Unlabeled 

windows 

Jumping 

window 

candidates 

Unlabeled 

images 

Live active learning 

[Vijayanarasimhan & Grauman CVPR 2011] 



1111 

1010 

1100 

Hash table of 

image 

windows 

“bicycle”  wh

 )( iOh 

Actively 

selected 

examples 

Annotated data 

Consensus 

(Mean shift) 

Current 

hyperplane 

Unlabeled 

windows 

Jumping 

window 

candidates 

Unlabeled 

images 

Live active learning 

[Vijayanarasimhan & Grauman CVPR 2011] 

For 4.5 million unlabeled instances,  

10 minutes machine time per iter,  

vs. 60 hours for a linear scan. 



Live active learning results 

PASCAL VOC objects - Flickr test set 

Outperforms status quo data collection approach 
Kristen Grauman, UT Austin 



 First selections made when learning “boat” 

 

 

 

 

 

 

Live active learning (ours) 

Keyword+image baseline 

Live active learning results 

What does the live learning system ask first? 
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Ongoing challenges 

in active visual learning 

• Exploration vs. exploitation 

• Utility tied to specific classifier or model 

• Joint batch selection (“non-myopic”) expensive, 

remains challenging 

• Crowdsourcing: reliability, expertise, economics 

• Active annotations for objects/activity in video 
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Our goal 

Teaching computers about visual categories must 

be an ongoing, interactive process, with 

communication that goes beyond labels.  

 

 

 

 

This talk: 

1. Active visual learning  

2. Learning from visual comparisons  
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Visual attributes 

• High-level semantic properties shared by objects 

• Human-understandable and machine-detectable 

brown 

indoors 

outdoors flat 

four-legged 

high 

heel 

red 
has-

ornaments 

metallic 

[Oliva et al. 2001, Ferrari & Zisserman 2007, Kumar et al. 2008, Farhadi et al. 

2009, Lampert et al. 2009, Endres et al. 2010, Wang & Mori 2010, Berg et al. 

2010, Branson et al. 2010, Parikh & Grauman 2011, …] 
 



Horse Horse Horse Donkey Donkey Mule 



Attributes 

Is furry 

Has four legs 

Has a tail 

A mule… 
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Binary attributes 

Is furry 

Has four legs 

Has a tail 

A mule… 

[Ferrari & Zisserman 2007, Kumar et al. 2008, Farhadi et al. 2009, 

Lampert et al. 2009, Endres et al. 2010, Wang & Mori 2010, Berg 

et al. 2010, Branson et al. 2010, …] 
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Relative attributes 

Is furry 

Has four legs 

Has a tail 
Tail longer 

than donkeys’ 

Legs shorter 

than horses’ 

A mule… 
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Idea: represent visual comparisons between 

classes, images, and their properties. 

 

Relative attributes 

  

Properties 

Concept 

 

Properties 

Concept 

  

Properties 

Brighter

than 

[Parikh & Grauman, ICCV 2011] 

Bright Bright 
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How to teach 

relative visual concepts? 

1 4 2 3 1 4 2 3 1 4 2 3 1 4 2 3 

How much is the person 

smiling? 

Kristen Grauman, UT Austin 



How to teach 

relative visual concepts? 

1 4 2 3 1 4 2 3 1 4 2 3 1 4 2 3 

How much is the person 

smiling? 
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How to teach 

relative visual concepts? 

1 4 2 3 1 4 2 3 1 4 2 3 1 4 2 3 

How much is the person 

smiling? 
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How to teach 

relative visual concepts? 

Less More 


? 
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…, 

Learning relative attributes 

For each attribute, use ordered image pairs to 

train a ranking function: 

= 

[Parikh & Grauman, ICCV 2011; Joachims 2002] 

Image features 

Ranking 

function 

Kristen Grauman, UT Austin 



Relating images 

Rather than simply label images with their properties, 

Not bright 

Smiling 

Not natural 
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Relating images 

Now we can compare images by attribute’s “strength” 

bright  

smiling 

natural  

Kristen Grauman, UT Austin 



Enable new modes of human-system communication 
 

• Training category models through descriptions 

• Rationales to explain image labels  

• Semantic relative feedback for image search 

• Analogical constraints on feature learning 

 

 
 

Learning with visual comparisons 

Kristen Grauman, UT Austin 



Relative zero-shot learning 

Training: Images from S seen categories and  

      Descriptions of U unseen categories 

 

 

 

 

 

 

 
Need not use all attributes, nor all seen categories 

Testing: Categorize image into one of S+U classes  

Age: Scarlett Clive Hugh Jared Miley 

Smiling: 
Jared Miley 

Kristen Grauman, UT Austin 



Clive 

Predict new classes based on their relationships 

to existing classes – even without training images. 

Age: Scarlett Clive Hugh 

Jared Miley 

Smiling: Jared Miley 
Sm

ili
n

g 

Age 

Miley 

S 

J H 

Relative zero-shot learning 

Kristen Grauman, UT Austin 



Comparative descriptions are more discriminative than 

categorical descriptions. 

Relative zero-shot learning 

0

20

40

60

Outdoor Scenes Public Figures

Binary attributes

Relative attributes -
ranker

A
cc

u
ra

cy
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Enable new modes of human-system communication 
 

• Training category models through descriptions 

• Rationales to explain image labels  

• Semantic relative feedback for image search 

• Analogical constraints on feature learning 

 

 
 

Learning with visual comparisons 
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Soliciting visual rationales 

Main idea:  

• Ask the annotator not just what, but also why. 

Is the team winning? Is her form good? Is it a safe route?  
How can you tell? How can you tell? How can you tell? 

[Donahue and Grauman, ICCV 2011; Zaidan et al. NAACL HLT 2007] 
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Hot or Not? 

Soliciting visual rationales 

Spatial 

rationales 

Attribute 

rationales 

How can you tell? 



Soliciting visual rationales 

[Donahue & Grauman, ICCV 2011] 
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Hot or Not Attractiveness Scene categories 

Original labels only 
 

+ Rationales 
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Enable new modes of human-system communication 
 

• Training category models through descriptions 

• Rationales to explain image labels  

• Semantic relative feedback for image search 

• Analogical constraints on feature learning 

 

 
 

Learning with visual comparisons 
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Interactive visual search 

Traditional binary relevance feedback offers only 

coarse communication between user and system 

relevant 

relevant 

irrelevant 

irrelevant 

“white 

high 

heels” 

[Rui et al. 1998, Zhou et al. 2003, …] 
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WhittleSearch: Relative attribute feedback 

Whittle away irrelevant images via precise semantic feedback 

Feedback: 
“shinier  

than these” 

Feedback: 
“less formal  

than these” 

Refined top  

search results 

Initial top  

search results 

… 

[Kovashka, Parikh, and Grauman, CVPR 2012] 

… 

Query: “white high-heeled shoes” 

Kristen Grauman, UT Austin 



Beyond pairwise comparisons … 

 

Visual analogies 

[Hwang, Grauman, & Sha, ICML 2013] 

  

Properties 

Concept Concept 

  

Properties 

Concept Concept 
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Regularize object models with analogies 

 

Learning with visual analogies 

[Hwang, Grauman, & Sha, ICML 2013] 

: ? planet   :   sun  =  electron  :  ? nucleus 

Kristen Grauman, UT Austin 



Regularize object models with analogies 

 

Learning with visual analogies 

[Hwang, Grauman, & Sha, ICML 2013] 

: = : ? 

= 
= 

| 

| 

Input  
space 

p:q = r:s 

Semantic 
embedding 

p q r s 
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Visual analogies 

[Hwang, Grauman, & Sha, ICML 2013] 

: = ? : 

GRE-like visual analogy tests 

 

0 20 40 60 80 100

Chance

Semantic embedding
[Weinberger, 2009]

Analogy-preserving
embedding (Ours)

Analogy completion accuracy 



Teaching visual recognition systems 

Today 

Vision Learning 

Vision 

Learning 

Human 
computation 

Language Robotics 

Multi-agent 
systems 

Knowledge 
representation 

Next 10 years 

human system human system 
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Important next directions 

• Recognition in action: 

embodied, egocentric 

 
 

• Activity understanding: 

objects & actions 

 
 

• Scale: many classes, 

fine-grained recognition 

 

 

 

Kristen Grauman, UT Austin 
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Summary 

• Humans are not simply “label machines” 

• More data need not mean better learning 

• Widen access to visual knowledge through 

– Large-scale interactive/active learning systems 

– Representing relative visual comparisons 

• Visual recognition offers new AI challenges, and 

progress demands that more AI ideas convene 
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