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Abstract Algorithms to rapidly search massive image or video collections are crit-
ical for many vision applications, including visual search, content-based retrieval,
and non-parametric models for object recognition. Recent work shows that learned
binary projections are a powerful way to index large collections according to their
content. The basic idea is to formulate the projections so as to approximately pre-
serve a given similarity function of interest. Having done so, one can then search the
data efficiently using hash tables, or by exploring the Hamming ball volume around
a novel query. Both enable sub-linear time retrieval with respect to the database size.
Further, depending on the design of the projections, in some cases it is possible to
bound the number of database examples that must be searched in order to achieve a
given level of accuracy.

This chapter overviews data structures for fast search with binary codes, and then
describes several supervised and unsupervised strategies for generating the codes.
In particular, we review supervised methods that integrate metric learning, boost-
ing, and neural networks into the hash key construction, and unsupervised methods
based on spectral analysis or kernelized random projections that compute affinity-
preserving binary codes. Whether learning from explicit semantic supervision or ex-
ploiting the structure among unlabeled data, these methods make scalable retrieval
possible for a variety of robust visual similarity measures. We focus on defining the
algorithms, and illustrate the main points with results using millions of images.
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1 Introduction

Huge collections of images and video are increasingly available, arising in domains
as diverse as community photo collections, scientific image data of varying modal-
ities, news media, consumer catalogs, or surveillance archives. In the last decade
in particular, user-generated content is widely stored and shared on the Web. Num-
bering in to the tens or hundreds of billions, their sheer size poses a challenge for
conventional computer vision techniques. For example, every minute more than 20
hours of new video are uploaded to YouTube and 100,000 photos are uploaded to
Facebook. Clearly, even real-time methods would be incapable of coping with this
deluge of data. Consequently, researchers are exploring new representations and ap-
proaches to search large-scale datasets.

At the core of visual search is the nearest neighbor problem: given a query, which
items in the database are most like it? Despite the simplicity of this problem state-
ment, fast and accurate nearest neighbor search can enable a spectrum of important
applications. See Figure 1.

Efficient algorithms to address the basic similarity search task have received
much attention over the years, yielding a variety of tree-based and hashing-based
algorithms [22, 9, 66, 44, 47]. However, while applicable to visual data in certain
cases, traditional methods often fall short of technical demands inherent to our set-
ting:

• High-dimensional data. First of all, good descriptors for images or videos typ-
ically live in a high-dimensional space, easily numbering thousands or more di-
mensions. At the same time, the volume of data quickly strains memory, and
disk access is slow. Both aspects argue for mapping to a more compact represen-
tation, and/or developing approximate search methods whose error and storage
requirements do not blow up with the input dimensionality.

• Structured input spaces and specialized similarity functions. Secondly, visual
data need not fit neatly within a vector space representation at all. More sophisti-
cated descriptors built on graphs, sets, or trees are often appealing, as they more
more closely model the real structure at hand. For example, an image might be
described by a planar graph over its component regions, or a video clip may be
encoded as a set of loosely ordered keyframes. Alongside such structured rep-
resentations, researchers have developed specialized affinity or kernel functions
to accommodate them that are accurate, but would be prohibitively costly to ap-
ply naively in the search setting. Thus, there is a clear need for flexibility in the
similarity measures supported.

• Availability of external supervision. Finally, the complex relationships intrin-
sic to visual data can be difficult to capture with manually-defined features and
metrics. There is a well-known gap between the low-level cues one might pull
from an image or video, and the high-level semantics one would like preserved
in a content-based search. Access to external knowledge—in the form of labeled
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Fig. 1 Large-scale visual search underlies many interesting applications. Figure credits: Prod-
uct search image is courtesy of Yeh et al. [75], CBIR image is courtesy of Iqbal and Aggar-
wal [35], near duplicate detection image is courtesy of Xu et al. [74], and visual link image is
from kooaba.com.

instances or target similarity constraints—would ideally inform the comparisons.
This suggests learning should somehow be integrated into the indexing approach
or representation.

The central theme of this chapter is the construction and use of binary representa-
tions for visual search, as a means to address the above requirements. The main idea
is to compute binary projections such that a given similarity function of interest is
approximately preserved in Hamming space. Having done so, one can then search
the data efficiently using hash tables, or by exploring the Hamming ball volume
around a novel query. Depending on the design of the projections, guarantees on the
relative retrieval cost and error are sometimes possible.

Why do we explicitly target binary representations? Not only do they fit well with
hashing and Hamming-ball search strategies, but also we will see that by carefully
maximizing the information carried by each bit, we can achieve far more compact
representations for a given storage budget than using real-valued descriptors (which
effectively use groups of bits, i.e., 32 for a single-precision real). Clearly, when the
datasets are O(1011) in size, minimizing the storage overhead is vital, as discussed
above.
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The algorithms for learned binary projections that we discuss have important
ties and contrasts to previous work in dimensionality reduction and distance learn-
ing. Dimensionality reduction is a classic problem in machine learning, but the va-
riety of existing techniques are not necessarily well-suited to this domain. Many
approaches (such as Isomap [64], LLE [55], or t-SNE [67]) do not scale to large
datasets since their complexity is quadratic (or worse) in the number of data points.
Furthermore, with large datasets, the ability to project new instances is vital, since
it allows parallelization and asynchronous processing of the data. Yet many classic
approaches [64, 55, 67] lack an explicit mapping function to the low-dimensional
space, making “out-of-sample” projections problematic. In contrast, the techniques
we describe have an explicit mapping to the low-dimensional space, allowing the
binary representation to be quickly computed.

Effective retrieval requires a representation that places images of semantically
similar content close and dissimilar content far apart. Traditional approaches from
content-based image retrieval (CBIR) rely on simple representations—for example,
using color or edge histograms (see [18] for a review of such methods). However,
significant improvements over these representations have proven difficult to achieve
through hand-crafting alone. Recent efforts have therefore focused on learning good
representations using labeled training data (see text below for references). In prac-
tice, this can be viewed as a supervised form of dimensionality reduction or distance
learning. The work we describe fits into this area, but with a focus on deriving tech-
niques that produce binary embeddings instead of real-valued ones.

In the following section, we first briefly review primary data structures for fast
search with binary codes. Having established the search protocols, we then devote
the majority of the text to explaining several strategies to generate binary codes. We
organize them roughly around the degree of supervision assumed: in Section 3 we
describe supervised methods that integrate metric learning, boosting, or neural net-
works into the hash key construction, and in Section 4 we describe unsupervised
methods that use spectral analysis or kernelized random projections to compute
affinity-preserving binary codes. While the former exploit explicit supervision from
annotated training data, the latter exploit the structure among a sample of unlabeled
data to learn appropriate embeddings. We include some example empirical results
to illustrate key points.

We refer the reader to the original publications that introduced the algorithms for
more details, particularly [37, 40, 57, 60, 72, 39]. While we present the methods
in the context of visual retrieval tasks, in fact the core methods are not specific to
images in any way, and could be applied to search other forms of data as well.

2 Search Algorithms for Binary Codes

The majority of this chapter is devoted to the construction of compact binary codes,
either using label information (Section 3) or just by mimicking the neighborhood
structure of the original input space (Section 4). However, mindful of our overall
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Dataset LabelMe Web
# datapoints 2× 104 1.29× 107

Gist vector dim. 512 384

Method Time (s) Time (s)
Spill tree - Gist vector 1.05 -

Brute force - Gist vector 0.38 -
Brute force - 30 bit binary 4.3× 10− 4 0.146

” - 30 bit binary, M/T 2.7× 10− 4 0.074
Brute force - 256 bit binary 1.4× 10− 3 0.75

” - 256 bit binary, M/T 4.7× 10− 4 0.23
Sem. Hashing - 30 bit binary 6× 10− 6 6× 10− 6

Fig. 2 Performance of brute-force exhaustive search and Semantic Hashing [56] on two datasets:
LabelMe (20,000 images, 512 dimensional Gist input) and Tiny Images (12.9 million, 384 di-
mensions). The timings for a single query are shown, using a range of different approaches. A
spill tree (kd-tree variant) [44] is worse than linear search due to the high dimensionality of the
input. Reducing the Gist descriptors to binary codes (30-bit and 256-bits) makes linear search
very fast (< 1ms/query) on small datasets, but only moderately quick for the larger Tiny Images
(< 1s/query). Linear search is easily parallelized (e.g., by using multiple CPU cores—see entries
labeled M/T). Semantic hashing is extremely quick (< 1μs), regardless of dataset size, but can
only be applied to compact codes. In contrast, the query time for linear search simply scales lin-
early with the code length (and database size).

goal, we now explain how these binary codes can be used to perform the nearest-
neighbor search.

In general for large-scale retrieval, the most important property is that the search
time complexity be sub-linear in the number of database examples. Additionally,
given the distributed nature of large-scale computing, the ability to parallelize the
search is important for practical applications. In the particular context of binary
codes, as we consider here, retrieval involves finding all examples that have a zero
or small Hamming distance from the query, where the Hamming distance between
two binary vectors is the number of bits that differ between them.

To satisfy these requirements, we consider variants of hashing. Hashing is quick
and has minimal storage requirements beyond the binary data vectors themselves. It
uses all dimensions of the binary codes (bits) in parallel to perform retrieval. This is
in contrast to tree-based algorithms such as kd-trees, where each example is found
by making a series of binary decision to traverse the tree, each decision (bit) being
conditional on the choices above.

2.1 Linear Scan in Hamming Space

The most straightforward solution is a brute-force linear scan—that is, to compute
the Hamming distance between the query vector and every vector in the database.
Although this scales linearly with the size of the database, the constant is typically
very small, and thus it can be practical for surprisingly large datasets. It is also worth
noting that the memory overhead for this approach is virtually nil.
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Fig. 3 Semantic Hashing [57] treats the query vector as an address in memory. A Hamming ball is
explored by perturbing bits within the query. Nearby points will thus be found by direct memory
look-up.

Computing the Hamming distance between two vectors requires two steps: (i)
compute the XOR and (ii) count the number of 1’s in the resulting vector. Both
operations can be performed extremely quickly on modern CPUs, with parallel XOR
operations being part of the SSE instruction set. The parallelism can also be trivially
extended at the machine level, with each server in a cluster searching a different sub-
set of the database.

In Figure 2 we show timings for brute-force evaluation using 30- and 256-bit
codes on two datasets, one of 20,000 vectors, the other 12.7 million. For the 30-bit
codes, a 2.0Ghz CPU is able to compare 50 million pairs per second, while for 256-
bit codes this increases to 120 million per second. Thus, the brute-force approach
scales gracefully to longer code lengths, as we would expect. Figure 2 also shows the
use of two cores instead of one nearly doubles the speed, confirming that it is easy
parallelized. These results demonstrate that it is a viable approach for moderately
large datasets.

2.2 Semantic Hashing

Salakhutdinov and Hinton proposed a nearest-neighbors technique for binary vec-
tors called Semantic Hashing whose speed is independent of the number of data
points [57]. Each binary vector corresponds to an address in memory. Matches to a
query vector are found by taking the query vector and systematically perturbing bits
within it, so exploring a Hamming ball around the original vector. Any neighbors in
the database that fall within this ball will be returned as neighbors. See Figure 3 for
an illustration.

The approach has two main advantages: (i) provided the radius of the Hamming
ball is small, it is extremely quick (i.e. μs, see Figure 2, bottom row); and (ii) con-
structing the database is also very fast, e.g., compared to kd-tree type data structures.

However, a major drawback is that it breaks down for long code vectors, since the
mean Hamming distance between points becomes large and the volume of the Ham-
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Fig. 4 Left: Query time as a function of code length, for different radii of the Hamming ball. Right:
Mean number of returned neighbors as a function of #bits and radius of Hamming ball. Beyond
64 bits or so, the method is no longer significantly faster than brute force methods, and there is a
risk that many queries will not find any neighbors. Increasing the radius slows the method down
significantly, but does not significantly improve the number of neighbors found.

ming ball (which is nchoosek(dimension,radius)) becomes prohibitive to explore.
To be concrete, suppose we have a code length of 100 bits. The mean distance to a
query’s closest neighbor may well be quite large, e.g., differing in 7 bits or more.
However, if one can afford only a Hamming ball radius search of 3, then very often a
query will not find any neighbors within that restricted search volume (see Figure 4,
right). Another problem is that Semantic Hashing requires a contiguous block of
memory, which becomes impractical for vectors beyond l = 32 bits (corresponding
to a 4Gb block).1

This practical restriction motivates using sophisticated embedding methods to
preserve information within a very compact code. For example, neural network-
based methods that we will describe in Section 3.3.2 can be used to train a 30-bit
descriptor that yields μs retrieval times with Semantic Hashing, as shown in Figure 2
(bottom row). Alternatively, one can employ hashing algorithms that are designed
to map similar instances to the same bin, thus avoiding the need for Hamming ball
exploration or contiguous memory. We discuss such an approach next.

2.3 Locality Sensitive Hashing

While the Semantic Hashing approach is simple and extremely effective for very
compact codes, it has the practical limitations discussed above, and also lacks for-
mal guarantees on the search quality obtained. Locality Sensitive Hashing is a ran-
domized hashing framework introduced earlier by Gionis, Indyk, and Motwani that

1 This can be circumvented by introducing a second randomized hash function that maps the 2l

block of memory down to the permissible memory budget. An appropriate randomized hash func-
tion will introduce few collisions and be quick, and thus will not impact query accuracy or speed.
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Fig. 5 Locality Sensitive Hashing (LSH) uses hash keys constructed so as to guarantee collision is
more likely for more similar examples [33, 23]. Once all database items have been hashed into the
table(s), the same randomized functions are applied to novel queries. One exhaustively searches
only those examples with which the query collides.

counters some of these shortcomings, and allows a user to explicitly control the
similarity search accuracy and search time tradeoff [23].

The main idea in Locality Sensitive Hashing (LSH) is to insert database items
into a hash table such that similar things fall in the same bucket, with high proba-
bility [33, 23, 1, 12]. Intuitively, if only highly similar examples collide in the hash
table (i.e., are assigned the same hash key), then at query time, directly hashing to
a stored bucket will reveal the most similar examples, and only those need to be
searched. See Figure 5 for a visualization of the method. The hash keys generally
consist of low-dimensional binary strings; each database item is mapped to b bits,
where each bit is generated independently by a valid locality-sensitive hash func-
tion.

Assuming such projections can be appropriately formed, there are algorithms
to retrieve the approximate neighbors for a query using hash tables or related data
structures [23, 1, 12]. The neighbors are “approximate” in that they are within some
ε error of the true near neighbor, and the bounds for the search time are tied to this
approximation error. For example, the query time for retrieving (1+ ε)-near neigh-
bors can be bounded by O(n1/(1+ε)) for the Hamming distance using appropriate
hash functions [23]. This allows a trade-off between the sub-linear retrieval time
achieved and the extent to which the returns mimic an exhaustive linear scan, even
for high-dimensional input data. Thus, the hashing strategy has important advan-
tages over tree-based techniques that are known to perform poorly in practice for
high-dimensional data (e.g., kd-trees). Further, because LSH aims to have all rele-
vant instances collide in the same bucket (hash code), its query-time cost depends
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only linearly on the number of bits used, and does not require a scan of neighboring
hash codes (in contrast to Semantic Hashing above).

Note that while early definitions of LSH functions were designed to preserve
a given geometric distance, work since has explored ways to formulate learned
locality-sensitive functions amenable to a target task, or functions that are sensi-
tive to a family of kernel functions, as we will see later in the chapter in Sections 3.2
and 4.3.

More formally, suppose we have a database consisting of data points xxx1, ...,xxxn.
Given an input query qqq, we are interested in finding those items in the database that
are most similar to the query, under some defined measure of similarity or distance
(which we will discuss in more detail below). The hash keys are constructed by
applying b binary-valued hash functions h1, . . . ,hb to each of the database objects,
where each hi is a random sampling from an LSH function family H .

Nearest Neighbor-based LSH Definition One formulation of LSH [12] describes
valid locality-sensitive functions by equating collision probabilities with a similarity
score; that is, each hash function hH drawn from the distribution H must satisfy:

Pr[hH (xxxi) = hH (xxx j)] = sim(xxxi,xxx j), (1)

where sim(xxxi,xxx j) ∈ [0,1] is the similarity function of interest.
The preprocessing of the database items is as follows. After computing the pro-

jections for all n database inputs, one then forms M = 2n1/(1+ε) random permu-
tations of the bits. If we think of the database hash keys as an n× b matrix, that
means we randomly permute the vector [1,2, . . . ,b] M times, and use each permu-
tation as indices to reorder the columns of the hash key matrix. Then each list of
permuted hash keys is sorted lexicographically to form M “sorted orders”. Given a
novel query, its hash key indexes into each sorted order with a binary search, and the
2M nearest examples found contain the approximate nearest neighbors. This proce-
dure requires searching O(n1/(1+ε)) examples using the original distance function
of interest to obtain the k = 1 approximate nearest neighbor (NN). See [12] for more
details. We will return to this definition below when discussing forms of supervised
and unsupervised LSH function generation.

Radius-based LSH Definition While the above provides guarantees for approxi-
mating nearest neighbor search for a similarity function, another related formulation
of LSH provides guarantees in terms of the likelihood of collision with a query’s r-
radius neighbors (i.e., where the goal is to retrieve a database item within a given
radius of the query). Let d(·, ·) be a distance function over items from a set S, and for
any item ppp∈ S, let B(ppp,r) denote the set of examples from S within radius r from ppp.
Let hH denote a random choice of a hash function from the family H . The family
H is called (r,r(1+ ε), p1, p2)−sensitive [23] for d(·, ·) when, for any qqq, ppp ∈ S,

• if ppp ∈ B(qqq,r) then Pr[hH (qqq) = hH (ppp)] ≥ p1,
• if ppp /∈ B(qqq,r(1+ ε)) then Pr[hH (qqq) = hH (ppp)] ≤ p2.
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For a family of functions to be useful, it must satisfy p1 > p2. Note that the proba-
bility of collision for close points is thus at least pk

1, while for dissimilar points it is
at most pk

2.
During a preprocessing stage, all database points are mapped to a series of l

hash tables indexed by independently constructed g1, . . . ,gl , where each gi is a b-
bit function. Then, given a query qqq, an exhaustive search is carried out only on
those examples in the union of the l buckets to which qqq hashes. These candidates
contain the (r,ε)-nearest neighbors (NN) for qqq, meaning if qqq has a neighbor within
radius r, then with high probability some example within radius r(1+ε) is found.2.
More recent work includes an LSH formulation for data in Euclidean space, with
improved query time and data structures [1].

Additional notes on LSH Intuitively the concatenation of b bits into hash keys
decreases the false positive rate (we are more selective in what things will collide),
whereas the aggregation of search candidates from l independently generated tables
increases the recall (we are considering more randomized instances of the func-
tions).

Early work by researchers in the theory community designated LSH function
families for Hamming distance, �p norms, and the inner product [17, 12], as well
as embedding functions to map certain metrics into Hamming space (e.g., the Earth
Mover’s Distance [34]). Given the attractive guarantees of LSH and the relatively
simple implementation, vision and machine learning researchers have also explored
novel hash function families so as to accommodate fast retrieval for additional met-
rics of interest. In particular, in this chapter we highlight hash functions for learned
Mahalanobis metrics (Section 3.2) and kernel functions (Section 4.3).

2.4 Recap of Search Strategy Tradeoffs

Whereas the Semantic Hashing technique discussed above essentially takes an em-
bedding strategy, where similarity ought to fall off smoothly as one looks at more
distant codes in Hamming space, Locality Sensitive Hashing takes a direct hashing
strategy, where similar items ought to map to the same hash key (i.e., Hamming
distance = 0). LSH does not entail the bit-length restriction of Semantic Hashing.
Memory usage with LSH is typically greater, however, assuming one opts to miti-
gate the 0-threshold Hamming distance by expanding the search to multiple inde-
pendently generated hash tables.3 Furthermore, whereas a user of Semantic Hashing
specifies a radius of interest in the embedded Hamming space, a user of LSH (for

2 For example, in [23] an LSH scheme using projections onto single coordinates is shown to be
locality-sensitive for the Hamming distance over vectors. For that hash function, ρ = log p1

log p2
≤ 1

1+ε ,

and using l = nρ hash tables, a (1+ ε)-approximate solution can be retrieved in time O(n
1

(1+ε) )
3 In practice, a common implementation hack is to simply look at nearby bins according to Ham-
ming distance, similar to Semantic Hashing, even if not necessarily using addresses as the bin
index.
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the radius-based search variant) specifies the radius of interest in the original feature
space.

Perhaps the main distinction between the methods, however, is the degree to
which the search and embedding procedures are integrated. In Semantic Hashing,
the procedure to construct the binary embedding is performed independently (with-
out knowledge of) the ultimate search data structure, whereas in LSH, the binary
projections and search structure are always intertwined. This distinction can be
viewed as a pro or con for either hashing implementation. The elegance and bounds
of LSH are a potential advantage, but the restriction of designating appropriate LSH
functions limits its flexibility. On the other hand, Semantic Hashing has the flexi-
bility of choosing various learning algorithms to form the binary projections, but its
behavior is less predictable with respect to an exhaustive linear scan.

While we will discuss the hash code construction techniques below in the context
of one hashing implementation or the other, in practice a user could incorporate
either one (or the linear scan), simply keeping the above tradeoffs in mind.

3 Supervised Methods for Learning Binary Projections

The quality of retrieval results clearly will depend on the chosen image represen-
tation as well as the distance metric used to compare examples. Ideally, these two
components would together accurately reflect the instances’ true relationships, such
that relevant database items have a small distance to the query, and irrelevant items
have a large distance. While a generic distance function (such as an Lp norm) may be
more manageable computationally for large-scale search, it may or may not nicely
match the desired relationships for a given application. Instead, if we have access to
some form of supervision on a subset of examples, then we can attempt to learn how
to compare them. General supervised classification methods as well as advances in
metric learning over the last several years make it possible to fine-tune parametric
distance functions [73, 5, 26, 59, 30, 71, 24, 19, 31, 16, 4].

Furthermore, we can attempt to simultaneously learn binary projections that re-
flect those specialized comparisons, thereby enabling fast Hamming space compar-
isons. Addressing both aspects generally entails optimizing the metric parameters
according to data labeled by their classes or known distance relationships, while
also balancing a preference for compact projections.

In this section, we describe two such approaches in detail. The first approach
generates randomized hash functions that are locality-sensitive for learned Maha-
lanobis metrics, exploiting a sparse set of similarity constraints on tuples of points
(Section 3.2). The second approach learns a Hamming embedding from a set of
labeled training images (Section 3.3). Both map similar examples to be close-by
in a binary space, while keeping dissimilar examples far apart. They differ primar-
ily in the types of learning algorithms integrated to preserve those constraints, and
secondarily in the hashing implementation employed alongside.
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Fig. 6 Supervision about which instances should be near or far from one another could come from
a variety of sources.

3.1 Forms of Supervision to Define Semantic Similarity

In the various supervised methods for code construction we discuss, the external
supervision can take a variety of forms: labels or feedback on instances can specify
those which ought to cluster together, relative judgments on triples of instances can
specify their ideal relationships, or the desired nearest neighbor lists for a sample
of points can specify those that need to remain close. As such, the techniques are
suitable for enhancing nearest neighbor categorization as well as similarity search
for content-based retrieval. Figure 6 highlights some possible sources of similarity
constraints in the visual search domain.

When similarity constraints are non-exhaustive across a set of training data, we
will represent them as sets of pairs: a set S containing pairs that should remain
close (similar), and a set D containing pairs that should remain far (dissimilar).
Alternatively, if we have complete pairwise information on all N training instances,
we can think of the semantic information stored in an N ×N matrix. To represent
binary similarity constraints, the i, j-th entry in that matrix is 1 if two instances are
meant to be close, 0 if far (e.g., with a discrete set of class labels, the entry is 1 for
any same-class pairs of points).

However, the desired relationships need not be discrete; work in this area also
derives continuous semantic distance functions from class information or other an-
notations, specifying a richer set of constraints that ought to be preserved by the
binary codes. For example, Fergus et al. explore using the distance between classes
in WordNet to quantify their semantic distance [20]. Or, rather than enforce similar-
ity only between pairs of classes, one can incorporate a desired similarity between
individual images (e.g., by collecting image-level constraints from online annota-
tors).
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Fig. 7 Left: Where dense annotations are available, they can be used to define a semantic similarity
metric between images. In this pair of images from LabelMe, users have labeled pixels as belonging
to different objects like cars, roads, tree, sky and so on. Right: The semantic similarity between
training images is obtained by computing the intersection of the spatial pyramid histogram built
on the object category label maps of the two images. The same objects in the same positions
produce the highest similarity, and the score degrades smoothly as the locations of the objects
differ. See [65] for details.

Additionally, if pixel-level labels exist, as opposed to image-level ones, then
more fine-grained measures can be used. Torralba et al. [65] define ground truth
semantic similarity based a spatial pyramid matching [27, 41] scheme on the object
label maps, as illustrated in Figure 7. This results in a simple similarity measure that
takes into account the objects present in the image as well as their spatial organiza-
tion: two images that have the same object labels in similar spatial locations are rated
as closer than two images with the same objects but in different spatial locations,
and either case is rated closer than two images with different object classes.

3.2 Hash Functions for Learned Mahalanobis Kernels

Having defined possible sources of supervision, we now describe how those seman-
tics are integrated into binary code learning. We first review a hashing-based algo-
rithm for learned Mahalanobis metrics introduced by Jain and colleagues in [37, 40].
The main idea is to learn a parameterization of a Mahalanobis metric (or kernel)
based on provided labels or paired constraints for some training examples, while
simultaneously encoding the learned information into randomized hash functions.
These functions will guarantee that the more similar inputs are under the learned
metric, the more likely they are to collide in a hash table. After indexing all of the
database examples with their learned hash keys, those examples similar to a new
instance are found in sub-linear time via hashing.

Learned Mahalanobis Metrics and Kernels The majority of work in metric
learning focuses on learning Mahalanobis metrics (e.g., [73, 71, 26, 5, 19]). Given
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N points {xxx1, . . . ,xxxN}, with all xxxi ∈ ℜd , the idea is to compute a positive-definite
(p.d.) d×d matrix A to parameterize the squared Mahalanobis distance:

dA(xxxi,xxx j) = (xxxi − xxx j)T A(xxxi − xxx j), (2)

for all i, j = 1, . . . ,N. Note that a generalized inner product (kernel) measures the
pairwise similarity associated with that distance:

sA(xxxi,xxx j) = xxxT
i Axxx j. (3)

The Mahalanobis distance is often used with A as the inverse of the sample covari-
ance when data is assumed to be Gaussian, or with A as the identity matrix if the
squared Euclidean distance is suitable.

Let S and D denote sets containing pairs of points constrained to be similar and
dissimilar, respectively. Given these similarity constraints, one can learn the matrix
A to yield a measure that is more accurate for a given problem.

For example, Xing et al. learn a Mahalanobis metric by using semidefinite pro-
gramming to minimize the sum of squared distances between similarly labeled
examples, while requiring a certain lower bound on the distances between exam-
ples with different labels [73]. In related techniques, Globerson and Roweis [24]
constrain within-class distances to be zero and maximize between-class distances,
Weinberger et al. formulate the problem in a large-margin k-nearest-neighbors set-
ting [71], while Goldberger et al. maximize a stochastic variant of leave-one-out
KNN score on the training set [26]. In addition to using labeled data, research has
shown how metric learning can proceed with weaker supervisory information, such
as equivalence constraints or relative constraints. For example, equivalence con-
straints are exploited in the Relevant Component Analysis method of Bar-Hillel et
al. [5]; the method of Hadsell et al. [29] learns a global non-linear mapping of the in-
put data; the Support Vector Machine-based approach of Schultz and Joachims [59]
incorporates relative constraints over triples of examples. Davis et al. develop an
information-theoretic approach that accommodates any linear constraints on pairs
of examples, and provide an efficient optimization solution that forgoes eigenvalue
decomposition [19].

Main Idea To use a learned Mahalanobis metric for search, we want to retrieve
examples xxxi for an input xxxq for which the value dA(xxxi,xxxq) resulting from Eqn. (2) is
small—or, in terms of the kernel form, for which the value of sA(xxxi,xxxq) = xxxT

q Axxxi is
high. We next describe how to generate hash functions for the Mahalanobis similar-
ity (1) in the explicit case, where the dimensionality of the data is low enough that
the d×d matrix A can be handled in memory, and (2) in the implicit case, where A
cannot be accessed directly and we want to use a kernelized form of metric learning.

Explicit Formulation In [12], Charikar proposes a hash function family that is
locality-sensitive for the normalized inner product (cosine similarity):

sim(xxxi,xxx j) =
xxxT

i xxx j

‖xxxi‖2‖xxx j‖2
. (4)
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Fig. 8 Whereas traditional unsupervised LSH functions would generate a hyperplane uniformly at
random to separate instances, randomized hash functions for a learned kernel are biased so as to
ensure similar things become more likely to collide, while dissimilar things become less likely to
collide. The hourglass-shaped regions denote that the hash function will be more likely to drawn
as such. In the left example, even though the measured angle between xi and x j is somewhat wide,
the learned hash functions are unlikely to split them into different buckets since the constraints
indicate that they (and pairs like them) should be treated as similar.

Each hash function simply rounds the output of a product with a random hyperplane:

hrrr(xxx) =
{

1, if rrrT xxx ≥ 0
0, otherwise

, (5)

where rrr is sampled from a zero-mean multivariate Gaussian N (0, I) of the same
dimensionality as the input xxx. The fact that this hash function satisfies the LSH
requirement Pr[h(xxxi) = h(xxx j)] = sim(xxxi,xxx j) relies on a result from Goemans and
Williamson [25], who showed that

Pr[sign(xxxT
i rrr) = sign(xxxT

j rrr)] = 1− 1
π

cos−1
(

xxxT
i xxx j

‖xxxi‖‖xxx j‖
)

, (6)

for vectors on the unit sphere. This relationship is quite intuitive: the wider the angle
between two vectors xxxi and xxx j, the more likely a randomly selected hyperplane will
fall between them, and vice versa.

As shown by Jain et al. [37], this is easily extended to accommodate learned
Mahalanobis distances. Given the p.d. matrix A, with A = GT G, we generate the
following randomized hash functions hrrr,A, which accept an input point and return a
single hash key bit:

hrrr,A(xxx) =
{

1, if rrrT Gxxx ≥ 0
0, otherwise

, (7)
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where the vector rrr is again chosen at random from a d-dimensional Gaussian distri-
bution with zero mean and unit variance.4 By parameterizing the hash functions by
not only rrr but also A, we obtain the following relationship:

Pr [hrrr,A(xxxi) = hrrr,A(xxx j)] = 1− 1
π

cos−1
(

xxxT
i Axxx j√|Gxxxi||Gxxx j|

)
,

which fulfills the LSH requirement of Eqn. (1) for a metric obtained with any of the
Mahalanobis metric learning algorithms. Essentially we have biased the selection
of the random hyperplane according to the learned parameters, and by factoring it
by G we allow the random hash function itself to “carry” the information about the
learned metric. See Figure 8. The denominator in the cosine term normalizes the
learned kernel values.

Implicit Formulation Beyond the explicit formulation given above, we are also
interested in the case where the dimensionality d may be very high—say on the
order of 104 to 106—but the examples are sparse and therefore can be stored effi-
ciently. For example, bag of visual word descriptors or histogram pyramids often
require millions of dimensions [63, 27, 51]. Even though the examples are them-
selves sparse and therefore compactly represented, the matrix A can be dense.

In this case, we turn to a particular information-theoretic metric learning (ITML)
algorithm developed by Davis et al. [19]. In contrast to most other Mahalanobis
metric learning approaches, it is kernelizable. It takes an initial “base” parameteri-
zation A0 as input, and then during the learning process it computes implicit updates
to those parameters, using weighted kernel evaluations between pairs of points in-
volved in the similarity constraints (as opposed to explicit multiplication with A).
We briefly summarize the relevant portions of the ITML approach; see [19] for
more details.

Information-Theoretic Metric Learning Given an initial d×d p.d. matrix A0 spec-
ifying prior knowledge about inter-point distances, the learning task is posed as an
optimization problem that minimizes the LogDet loss between A0 and the ultimate
learned parameters A, subject to a set of constraints specifying pairs of examples
that are similar or dissimilar (listed in the sets S and D):

min
A�0

D�d(A,A0)

s. t. dA(xxxi,xxx j) ≤ u (i, j) ∈ S ,

dA(xxxi,xxx j) ≥ � (i, j) ∈ D ,

(8)

where D�d(A,A0) = tr(AA−1
0 )− logdet(AA−1

0 )− d, d is the dimensionality of the
data points, dA(xxxi,xxx j) is the Mahalanobis distance between xxxi and xxx j as defined

4 In this case—where A can be explicitly handled in memory—we could equivalently transform all
the data according to A prior to hashing; however, the choice of presentation here helps set up the
formulation presented next.
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in Eqn. (2), and � and u are large and small values, respectively.5 The objective
is “information-theoretic” in that it corresponds to minimizing the relative entropy
between the associated Gaussians whose covariance matrices are parameterized by
A and A0.

The LogDet loss leads to an efficient algorithm for optimizing Eqn. (8), which
involves repeatedly projecting the current solution onto a single constraint, via the
explicit update [19]:

At+1 = At +βtAt(xxxit − xxx jt )(xxxit − xxx jt )
T At , (9)

where xxxit and xxx jt are the constrained data points for iteration t, and βt is a projection
parameter computed (in closed form) by the algorithm.

However, when the dimensionality of the data is very high, one cannot explicitly
work with A, and so the update in Eqn. (9) is impractical. Instead, it is replaced
with updates in kernel space for an equivalent kernel learning problem in which
K = XT AX for X = [xxx1, . . . ,xxxc], for a small set of c of the points involved in similarity
constraints (see [40]). If K0 is the input kernel matrix for the data (K0 = XT A0X),
then the appropriate update is:

Kt+1 = Kt +βtKt(eeeit − eee jt )(eeeit − eee jt )
T Kt , (10)

where the vectors eeeit and eee jt refer to the it-th and jt-th standard basis vectors, re-
spectively. This update is derived by multiplying Eqn. (9) on the left by XT and on
the right by X . If A0 = I, then the initial kernel matrix is K0 = XT X ; this matrix may
be formed using any valid kernel function, and the result of the algorithm is to learn
a distance metric on top of this input kernel. By performing the updates in kernel
space, the storage requirements change from O(d2) to O(c2).

Simultaneous Metric and Hash Function Updates In order to permit large-scale
search with such metrics, the goal is to use the same hash functions as defined above
in Eqn. (7), but to express them in a form that is amenable to computing the hash bit
with high-dimensional input data. In other words, we want to insert the learned pa-
rameters into the hash function and compute rrrT Gxxx, but now we must do so without
working directly with G. To this end, we describe next how to simultaneously make
implicit updates to both the hash functions and the metric.

In [37], Jain et al. show how to express G in terms of the initially chosen c data
points. Let X = [xxx1, . . . ,xxxc] be the d×c matrix of an initial c data points participating
in (dis)similarity constraints, and let xxxT

i xxx j be the initial (non-learned) Mahalanobis
similarity value between example xxxi and the input xxx j. Recall the update rule for A
from Eqn. (9): At+1 = At + βtAtvvvtvvvT

t At , where vvvt = yyyt − zzzt , if points yyyt and zzzt are
involved in the constraint under consideration at iteration t. Just as this update must
be implemented implicitly via Eqn. (10), so too we must derive an implicit update
for the Gt matrix required by our hash functions. Since At is p.d., we can factorize

5 Note that alternatively the constraints may also be specified in terms of relative distances, i.e.,
dA(xxxi,xxx j) < dA(xxxi,xxxk). To guarantee the existence of a feasible A, slack variables are also included,
but omitted here for brevity.
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it as At = GT
t Gt , which allows us to rewrite the update as:

At+1 = GT
t (I +βtGtvvvtvvv

T
t GT

t )Gt .

As a result, factorizing I +βtGtvvvtvvvT
t GT

t , we can derive an update for Gt+1:

Gt+1 = (I +βtGtvvvtvvv
T
t GT

t )1/2Gt

= (I +αtGtvvvtvvv
T
t GT

t )Gt , (11)

where the second equality follows from Lemma 1 in [40] using yyy = Gtvvvt , and αt is
defined accordingly.

Using Eqn. (11) and Lemma 2 in [40], Gt can be expressed as Gt = I +XStXT ,
where St is a c× c matrix of coefficients that determines the contribution of each of
the c points to G. Initially, S0 is set to be the zero matrix, and from there every St+1

is iteratively updated in O(c2) time via

St+1 = St +αt(I +StK0)(eeeit − eee jt )(eeeit − eee jt )
T (I +K0S

T
t )(I +K0St).

Using this result, at convergence of the metric learning algorithm we can compute
Gxxx in terms of the c2 input pairs (xxxi,xxx j) as follows:

Gxxx = xxx+XSXT xxx

= xxx+
c

∑
i=1

c

∑
j=1

Si jxxx jxxx
T
i xxx.

Therefore, we have

rrrT Gxxx = rrrT xxx+
c

∑
i=1

c

∑
j=1

Si jrrr
T xxx jxxx

T
i xxx, (12)

and the final implicit hash function hrrr,A for an input xxx can be defined as:

hrrr,A(xxx) =
{

1, if rrrT xxx+∑c
i=1 γr

i xxx
T
i xxx ≥ 0

0, otherwise
, (13)

where each γr
i = ∑ j Si jrrrT xxx j.

There are several important things to notice about the ultimate hash function
definition. First, we see that the values of each γr

i rely only on the basis points, and
thus can be efficiently computed in the training phase, prior to hashing anything
into the database. Second, the summation consists of as many terms as there are
basis constrained points c—not the total number of constraints used during metric
learning, nor the number of total database points. This is particularly important at
query time, when we want the overhead of computing the query’s hash key to be
low (certainly, it must not require comparing to each database point!) Third, we
emphasize that while G is dense and therefore rrrT G is not manageable, this method
does assume that computing rrrT xxx is manageable; for sparse data, only the entries of
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Fig. 9 Hashing error relative to an exhaustive linear scan as a function of ε , which controls the
search time required. The error rate of exhaustive search decreases substantially once the similarity
constraints on labeled data are used to learn a matching kernel (compare flat dotted black line to
flat solid pink line). When these constraints are integrated into the hash function selection, we can
obtain similar results to the linear scan, but searching just a fraction of the data (compare ML+PDK
Hashing curve to ML+PDK Linear Scan line). Result is from [40].

rrr corresponding to non-zero entries in xxx need to be generated. 6 Finally, in practice,
it is a strength of the ITML metric learning formulation that one may provide an
initial parameterization A0 based on any a priori knowledge, refining it with the
external similarity constraints. For example, one could initialize with a pyramid
match kernel, and refine it with the similarity constraints.

Figure 9 shows an example result using these supervised LSH functions to index
Flickr images of 18 different tourist sites, where the images are represented with
sets of local SIFT [45] features. Using a base matching kernel [43] as input, the
algorithm learns a Mahalanobis kernel on top of it, and simultaneously updates the
LSH function parameterization. Then a nearest-neighbor scene classification task
is posed. The results illustrate the nice control one has on the balance between (i)
the search time required and (ii) the accuracy guaranteed relative to a linear scan,
as determined by the LSH parameter ε (discussed above in Section 2.3). Searching
only about 2% of the database, we see error levels similar to that of an exhaustive
linear scan with the learned metric.

Interestingly, this plot also reveals that the learning stage has a dimensionality
reduction effect. While both hashing curves use the same number of hash bits b, the
learned hash functions more closely approximate the associated linear scan result.
(Compare the relative gaps between the top two curves and the bottom two curves,
respectively.) We can attribute this to the fact that the learned hash functions usefully
focus the partitions’ placement in the original feature space, requiring fewer bits for
the same representational power.

6 Thus it is particularly efficient when the inputs are sparse. If they are high-dimensional but dense,
the implicit form is still valuable, as it bypasses computing O(d2) products with G and requires
only O(d) inner products for rrrT xxx.
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3.3 Learned Binary Embeddings for Semantic Similarity

The previous section reviewed methods for hashing with learned Mahalanobis met-
rics, where the similarity constraints are used to establish a linear transformation of
the original input space (possibly implicitly computed). In this section we consider
other more general types of transformations that can be constructed using labeled
training examples. The main idea is to exploit supervised learning algorithms to ag-
gregate a set of functions that jointly preserve the desired neighborhood structure.
Whereas the learned kernel technique above generates locality-sensitive hash func-
tions, these techniques generate Hamming embeddings (refer back to Section 2 for
contrasts).

Specifically, the methods in this section address the following learning problem:
given a database of images {xxxi} and a distance function d(xxxi,xxx j) we seek a binary
feature vector yyyi = f (xxxi) that preserves the nearest neighbor relationships using a
Hamming distance. Formally, for a point xxxi, denote by N100(xxxi) the indices of the
100 nearest neighbors of xxxi according to a semantic distance function d(xxxi,xxx j) de-
rived using one of the supervision forms described in Section 3.1. Similarly, define
N100(yyyi) to be the set of indices of the 100 descriptors yyy j that are closest to yyyi
in terms of Hamming distance. Ideally, we would like N100(xxxi) = N100(yyyi) for all
examples in our training set.

We discuss two general approaches to learning the explicit mapping functions.
The first is a variant of the Parameter Sensitive Hashing (PSH) algorithm of
Shakhnarovich et al., which uses boosting and a rounding-based LSH function to
select feature dimensions that are most indicative of similarity in some parameter
space of interest (e.g., human pose joint angles in their application) [61, 60]. The
second is a neural network-based approach explored by Salakhutdinov and Hin-
ton [57] and Torralba et al. [65], the former being used for document retrieval. These
models utilize a form of unsupervised pre-training using a stack of restricted Boltz-
mann machines (RBMs).

3.3.1 Boosting-based Embedding

In Shakhnarovich et al. [61], each image is represented by a binary vector with b
bits yyyi = [h1(xxxi),h2(xxxi), ...,hb(xxxi)], so that the distance between two images is given
by a weighted Hamming distance d(xxxi,xxx j) = ∑b

l=1αl |hl(xxxi)− hl(xxx j)|. The weights
αi and the functions hl(xxxi) are binary regression stumps that map the input vector xxxi

into binary features and are learned using Boosting.
For the learning stage, positive examples are pairs of images xxxi,xxx j so that xxx j is

one of the nearest neighbors of xxxi, j∈N (xxxi). Negative examples are pairs of images
that are not neighbors. In our implementation we use GentleBoost with regression
stumps to minimize the exponential loss. In PSH, each regression stump has the
form:

fl(xxxi,xxx j) = αl
[
(eT

l xxxi > Tl) = (eT
l xxx j > Tl)

]
+βl . (14)
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At each iteration l, we select the parameters of fl , the regression coefficients (αl , βl),
the stump parameters (where el is a unit vector, so that eT

l xxx returns the lth component
of xxx, and Tl is a threshold), to minimize the square loss:

N

∑
n=1

wn
l (zn − fl(xxxn

i ,xxx
n
j))

2, (15)

where N is the number of training pairs, zn is the neighborhood label (zn = 1 if the
two images are neighbors and zn = −1 otherwise), and wn

l is the weight for each
training pair at iteration l given by wn

l = exp(−zn∑l−1
t=1 fl(xxxn

i ,xxx
n
j)).

In Torralba et al. [65] the authors constrain the metric to be a Hamming distance,
restricting the class of weak learners so that all the weights are the same for all
the features αl = α . (The values of βl do not need to be constrained as they only
contribute to final distance as a constant offset, independent of the input pair.) This
small modification is important as it permits standard Hashing techniques to be used.
The parameter α has an effect in the generalization of the final function.

Once the learning stage is finished, every image can be compressed into b bits,
where each bit is computed as hl(xxxi) = eT

l xxxi > Tl . The algorithm is simple to code,
and relatively fast to train.

3.3.2 Restricted Boltzmann Machines-based Embedding

The second approach uses the dimensionality reduction framework of Salakhutdi-
nov and Hinton [32, 57], based on multiple layers of restricted Boltzmann machines
(RBMs). We first give a brief overview of RBM’s, before describing their use in
Torralba et al. [65] where they are applied to images.

An RBM models an ensemble of binary vectors with a network of stochastic
binary units arranged in two layers, one visible, one hidden. Units v in the visible
layers are connected via a set of symmetric weights W to units h in the hidden layer.
The joint configuration of visible and hidden units has an energy:

E(v,h) = − ∑
i∈visible

bivi − ∑
j∈hidden

b jh j −∑
i, j

vihiwi j, (16)

where vi and h j are the binary states of visible and hidden units i and j. The weights
are denoted by wi j, and bi and b j are bias terms, also model parameters. Using this
energy function, a probability can be assigned to a binary vector at the visible units:

p(v) =∑
h

e−E(v,h)

∑u,g e−E(u,g) . (17)

RBMs lack connections between units within a layer, hence the conditional dis-
tributions p(h|v) and p(v|h) have a convenient form, being products of Bernoulli
distributions:
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p(h j = 1|v) = σ(b j +∑
i

wi jvi)

p(vi = 1|h) = σ(bi +∑
j

wi jh j), (18)

where σ(u)= 1/(1+e−u), the logistic function. Using Eqn. 18, parameters wi j,bi,b j

can be updated via a contrastive divergence sampling scheme (see [32] for details).
This ensures that the training samples have a lower energy than nearby hallucina-
tions, samples generated synthetically to act as negative examples.

Hinton and colleagues have demonstrated methods for stacking RBMs into mul-
tiple layers, creating “deep” networks which can capture high order correlations be-
tween the visible units at the bottom layer of the network. By choosing an architec-
ture that progressively reduces the number of units in each layer, a high-dimensional
binary input vector can be mapped to a far smaller binary vector at the output. Thus
each bit at the output maps through multiple layers of non-linearities to model the
complicated subspace of the input data.

Since the input descriptors will typically be real-valued, rather than binary
(e.g. Gist or SIFT descriptors), the first layer of visible units are modified to have a
Gaussian distribution.7

The deep network is trained into two stages: first, an unsupervised pre-training
phase which sets the network weights to approximately the right neighborhood;
second, a fine-tuning phase where the network has its weights moved to the local
optimum by back-propagation on labeled data.

In pre-training, the network is trained from the visible input layer up to the output
layer in a greedy fashion. Once the parameters of the first layer have converged using
contrastive divergence, the activation probabilities (given in Eqn. 18) of the hidden
layer are fixed and used as data for the layer above—the hidden units becoming the
visible ones for the next layer up, and so on up to the top of the network.

In fine-tuning, the units are made deterministic, retaining the weights and biases
from pre-training and performing gradient descent on them using back-propagation.
One possible objective function is Neighborhood Components Analysis (NCA) [26,
56]. This attempts to preserve the semantic neighborhood structure by maximizing
the number of neighbors around each query that have the same class labels. Given
N labeled training cases (xn,cn), denote the probability that point n is assigned the
class of point m as pnm. The objective ONCA attempts to maximize the expected
number of correctly classified points on the training data:

ONCA =
N

∑
n=1

∑
l:cn=cl

pnm, pnm =
e−|| f (xn|W )− f (xl |W )||2

∑m�=l e−|| f (xm|W )− f (xl |W )||2 ,

where f (x|W ) is the projection of the data point x by the multi-layered network with
parameters W . This function can be minimized by taking derivatives of ONCA with

7 In Eqn. 18, p(vi = u|h) is modified to be a Gaussian with a mean determined by the hidden units;
see [56].
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Ground truth neighbors L2−Pixels Gist 8−RBM16−RBM32−RBMInput image

Fig. 10 Each row shows the input image and the 12 nearest neighbors using, a) ground truth
distance using the histograms of objects present on each image (see text), b) L2 distance using
RGB values, c) L2 distance using Gist descriptors, d) Gist features compressed to 8 bits using an
RBM and Hamming distance, e) 16 bits RBM and f) 32 bits RBM.

respect to W and using conjugate gradient descent. Alternative objective functions
include the DrLIM objective introduced by Hadsell et al. [29].

Figure 10 shows representative retrieval results on a 20,000 LabelMe dataset.
Gist descriptors [50] are used as the high-dimensional input representation for each
image (single descriptor per image). Figure 11 provides a quantitative analysis of
the retrieval performance on 2,000 test images. Figure 11(a) displays the percent-
age of the first true 50 nearest neighbors that are included in the retrieved set as a
function of the number of the images retrieved (M). Figure 11(b) shows a section of
Figure 11(a) for 500 retrieved images. The figures compare LSH (with no learning),
PSH and RBMs. Figure 11(b) shows the effect of increasing the number of bits.
Top performance is reached with around 30 bits for RBMs, with the other meth-
ods requiring more bits. However, given enough bits, all the approaches converge to
similar retrieval performance. The matching speed using the binary codes and the
Gist descriptors is shown in Figure 2, where the compact codes facilitate extremely
fast retrieval.

Figure 11(a) also shows a comparison with the more conventional kd-tree based
methods. Here the FLANN [47] kd-tree implementation was applied to the Gist
descriptors (converted to uint8), both with (black) and without (cyan) a preliminary
PCA projection down to 128 dimensions. To give a fair comparison, the kd-tree
parameters were adjusted to give a comparable retrieval time to the other methods.
The performance can be seen to be considerably worse than the approaches using
binary codes. This is due to the poor performance of kd-tree type approaches in high
dimensional spaces.
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Fig. 11 (a): For a fixed number of true neighbors (|N |= 50), we plot the percentage of true near-
est neighbors that are retrieved as a function of the total number of images retrieved. True neighbors
are defined in terms of object label histograms (see Figure 7). The original Gist descriptors (blue)
perform well but a slow to match due to high dimensionality. LSH (magenta), which does not use
learning, performs less well than Boosting (red) and the RBM-based (green) methods. The Boost-
ing and RBM-based embeddings, despite using only 32-bits per descriptor match the performance
of the original Gist. (b): Varying the number of bits for 500 retrieved images.

3.4 Other Supervised Methods

Building on the ideas presented thus far, recent work has explored alternative meth-
ods to learn hash functions. Wang et al. propose a supervised form of PCA, where
pairwise binary labels act as constraints on the projection [70]. Projecting new ex-
amples with this approach requires a Nystrom-based out-of-sample projection. Mu
and colleagues develop a kernel-based maximum margin approach to select hash
functions [46], and a semi-supervised approach that minimizes empirical error on
a labeled constraint set while promoting independence between bits and balanced
partitions is described in [69]. The SPEC hashing approach [42] uses a conditional
entropy measure to add binary functions in a way that matches a desired similarity
function, but approximately so as to ensure linear run-time.

Jain and colleagues develop a dynamic hashing idea to accommodate metrics
learned in an online manner, where similarity constraints are accumulated over time
rather than made available at once in batch [36]. Bronstein and colleagues extend
the idea of learning binary similarity functions with boosting to the cross-modal
case, where data comes from two different input spaces (e.g., we want to judge the
similarity between a CT and a PET image) [11].

Whereas the technique in Section 3.2 above connects Mahalanobis and ITML-
learned kernels to LSH, the Kernelized LSH approach developed by Kulis & Grau-
man provides a connection for arbitrary kernel functions [39], which includes ker-
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nels learned with ITML or otherwise. We will review this method in Section 4.3,
since it can be applied in both supervised and unsupervised settings.

4 Unsupervised Methods for Defining Binary Projections

In the previous section, we reviewed supervised algorithms that require some form
of label information to define which points should be close by and which should be
far apart in the binary space. We now look at unsupervised techniques that simply
try to preserve the neighborhood structure between points in the input space, and
thus require no labels.

The goal is to compute a binary representation of the original representation for
each image, so that similar instances have similar binary codes. Typically the orig-
inal feature space and distance are Euclidean, but alternatives are possible, as dis-
cussed in Sections 4.1 and 4.3 below. Additionally, we want the code to be easily
computed for a novel input and to be compact in length, thus enabling efficient
methods such as Semantic Hashing (see Section 2.2) to be used.

We first briefly summarize several methods for specific similarity functions (Sec-
tion 4.1), then discuss a spectral approach for coding the Euclidean distance on real-
valued vector data (Section 4.2), and finally review an approach to generate codes
for kernel functions, including those over non-vector data (Section 4.3).

4.1 Binary Codes for Specific Similarity Functions

Several embedding functions that map a specialized distance into a generic space
(e.g., Euclidean) have been developed to exploit either hashing or Hamming space
search for particular metrics of interest. In order to exploit known LSH func-
tions [17], Indyk and Thaper design a low-distortion L1 embedding for the bijec-
tive match distance between two sets of feature vectors [34]. Grauman and Darrell
construct a related embedding for the normalized partial match, showing that an im-
plicit unary encoding with a linear kernel is equivalent to the pyramid match kernel
on feature sets [28], thereby allowing hashing with the function in Eqn. (5). A re-
lated embedding is given in [40] for the proximity distribution kernel [43], which
is an image matching kernel that accounts for both the correspondence between
features and their relative spatial layout.

The Min-Hash technique introduced by Broder [10] is a randomized embedding
designed to capture the normalized set overlap: sim(S1,S2) = |S1

⋂
S2|

|S1
⋃

S2| , for sets S1

and S2. Assuming we have a discrete set (vocabulary) of tokens that may appear
in any set, we generate a random permutation of those unique tokens. Then, given
any input set, its Min-Hash key is the token present in the set that has the minimum
value (appears first) in the permutation. The probability that two sets receive the
same Min-Hash value is equal to the overlap similarity. Intuitively, the permutations
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correspond to picking some token from the sets’ union at random, and checking
whether both contain it. The higher the overlap between two sets, the more likely we
draw a token they share. Similar to the hash table construction process described in
Section 2.3, one concatenates multiple such hash values to generate a hash key, and
aggregates results over multiple independently generated functions. The set over-
lap is meaningful for gauging document similarity, and Min-Hash was initially used
for efficient near-duplicate detection among Web pages. Chum and colleagues have
shown its suitability for near-duplicate detection for bag of words image represen-
tations as well, and adapt the idea to include the effective tf-idf weighting [14], and
to integrate spatial layout of features into the hash selection [13].

Notably, all of the above projection techniques cater to sets of features, where
each instance is comprised of some variable number of descriptors, and the desired
distance computes some matching or overlap between them. Such techniques’ suc-
cess for image search applications is a result of the strong local feature representa-
tions used widely in the recognition and CBIR communities in the last decade.

Aside from set-based metrics, Rahimi and Recht design embeddings for a par-
ticular form of shift-invariant kernel. They propose randomized mappings into a
real-valued low-dimensional feature space such that an inner product approximates
a given shift-invariant kernel, such as the Gaussian or Laplacian kernel [53]. Note
that while the intent in that work is to exploit linear machine learning algorithms that
permit fast training with large-scale data (as opposed to search), one could take such
an embedding and again use the randomized hyperplane hash functions (Eqn. (5)).
Raginsky and Lazebnik also show how to convert those real-valued mappings to
binary outputs so that Hamming space search is applicable, with bounds on the ex-
pected normalized Hamming distance relative to the original shift-invariant kernel
value [52].

4.2 Spectral Hashing

Whereas the above section addresses unsupervised codes developed for particular
similarity functions of interest, we now examine a technique that not only aims to
preserve the given similarities, but also attempts to satisfy generic properties that
make compact binary codes effective. This is the Spectral Hashing framework de-
veloped by Weiss et al. [72].

In formalizing the requirements for a good code, we see that they are equiva-
lent to a particular form of graph partitioning. This means that even for a single
bit, the problem of finding optimal codes is NP hard. On the other hand, the anal-
ogy to graph partitioning suggests a relaxed version of the problem that leads to
very efficient eigenvector solutions. These eigenvectors are exactly the eigenvec-
tors used in many spectral algorithms including spectral clustering and Laplacian
eigenmaps [6, 49], hence the name “Spectral Hashing” [72].

We have already discussed several basic requirements of a good binary code:
it should (1) be easily computed for a novel input; (2) require a small number of
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bits to code the full dataset and (3) map similar items to similar binary codewords.
Beyond these basic requirements, however, the Spectral Hashing approach also aims
to form codes that more efficiently utilize each bit. Specifically, we require that each
bit have a 50% chance of being one or zero, and that different bits be independent
of each other. Among all codes that have this property, we will seek the ones where
the average Hamming distance between similar points is minimal.

Let {yyyi}N
i=1 be the list of codewords (binary vectors of length b) for N data

points and WN×N be the affinity matrix. Assuming the inputs are embedded in Rd

so that Euclidean distance correlates with similarity, a suitable affinity is W (i, j) =
exp(−‖xxxi − xxx j‖2/ε2). Thus the parameter ε defines the distance in Rd which corre-
sponds to similar items. Using this notation, the average Hamming distance between
similar neighbors can be written: ∑i jWi j‖yyyi − yyy j‖2. By relaxing the independence
assumption and requiring the bits to be uncorrelated the following problem is ob-
tained:

minimize :∑
i j

Wi j‖yyyi − yyy j‖2 (19)

sub ject to : yyyi ∈ {−1,1}b

∑
i

yyyi = 0

1
N ∑i

yyyiyyy
T
i = I,

where the constraint ∑i yyyi = 0 requires each bit to fire 50% of the time, and the
constraint 1

N ∑i yyyiyyy
T
i = I requires the bits to be uncorrelated. For a single bit, solving

problem 19 is equivalent to balanced graph partitioning and is NP hard (see [72] for
proof), thus the problem must be relaxed in some way to make it tractable.

Spectral Relaxation By introducing an N×b matrix Y whose jth row is yyyT
j and a

diagonal N×N matrix D(i, i) = ∑ jW (i, j), the problem can be rewritten as:

minimize : trace(YT (D−W )Y ) (20)

sub ject to : Y (i, j) ∈ {−1,1}
YT 1 = 0

YTY = I

This is of course still a hard problem, but by removing the constraint thatY (i, j)∈
{−1,1} an easier problem is obtained whose solutions are simply the b eigenvectors
of D−W with minimal eigenvalue (after excluding the trivial eigenvector 1 which
has eigenvalue 0).

Out-of-Sample Extension The out-of-sample extension of spectral methods is of-
ten solved using the Nystrom method [8, 21]. However, note that the cost of calcu-
lating the Nystrom extension of a new datapoint is linear in the size of the dataset.
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Fig. 12 Left: Eigenfunctions for a uniform rectangular distribution in 2D. Right: Thresholded
eigenfunctions. Outer-product eigenfunctions have a red frame. The eigenvalues depend on the as-
pect ratio of the rectangle and the spatial frequency of the cut—it is better to cut the long dimension
first, and lower spatial frequencies are better than higher ones.

With millions of items in the dataset this is impractical. In fact, calculating the Nys-
trom extension is as expensive as doing exhaustive nearest neighbor search.

In order to enable an efficient out-of-sample extension, the data points xxxi ∈ Rd

are assumed to be samples from a probability distribution p(xxx). The equations in
problem 19 above are now seen to be sample averages, which can be replaced by
their expectations:

minimize :
∫

‖yyy(xxx1)− yyy(xxx2)‖2W (xxx1,xxx2)p(xxx1)p(xxx2)dxxx1xxx2 (21)

sub ject to : yyy(xxx) ∈ {−1,1}b∫
yyy(xxx)p(xxx)dxxx = 0

∫
yyy(xxx)yyy(xxx)T p(xxx)dxxx = I,

with W (xxx1,xxx2) = e−‖xxx1−xxx2‖2/ε2
. Relaxing the constraint that yyy(xxx) ∈ {−1,1}b results

in a spectral problem whose solutions are eigenfunctions of the weighted Laplace-
Beltrami operators defined on manifolds [15, 7, 8, 48].

What do the eigenfunctionsΨb(xxx) look like? One important special case is when
p(xxx) is a separable distribution. A simple case of a separable distribution is a multi-
dimensional uniform distribution Pr(xxx) =∏i ui(xxxi) where ui is a uniform distribution
in the range [ai, āi]. In the uniform case, the eigenfunctions Ψb(xxx) and eigenvalues
λb are:

Ψb(xxx) = sin(
π
2

+
bπ

ā−a
xxx) (22)

λb = 1− e−
ε2
2 | bπ

ā−a |2 . (23)

Figure 12 shows the analytical eigenfunctions for a 2D rectangle in order of
increasing eigenvalue. The eigenvalue (which corresponds to the cut) determines
which b bits will be used. Note that the eigenvalue depends on the aspect ratio of
the rectangle and the spatial frequency—it is better to cut the long dimension before
the short one, and low spatial frequencies are preferred.

We distinguish between single-dimension eigenfunctions, which are of the form
Ψb(xxx1) orΨb(xxx2) and outer-product eigenfunctions which are of the formΨb(xxx1)Ψl(xxx2).
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Fig. 13 Left: results on 2D rectangles with different methods. Even though Spectral Hashing is
the simplest, it gives the best performance. Right: Similar pattern of results for a 10-dimensional
distribution.

Fig. 14 Comparison of neighborhood defined by Hamming balls of different radii using codes
obtained with vanilla LSH, Boosting, RBM, and Spectral Hashing when using 3, 7 and 15 bits.
The yellow dot denotes a test sample. The red points correspond to the locations that are within a
Hamming distance of zero. Green corresponds to a Hamming ball of radius 1, and blue to radius 2.

These outer-product eigenfunctions are shown marked with a red border in the fig-
ure. As we discuss below, these outer-product eigenfunctions should be avoided
when building a hashing code.

Summary of Algorithm Recapping, given a training set of points {xxxi} and a de-
sired number of bits b, the steps of the Spectral Hashing algorithm are:

• Find the principal components of the data using PCA.
• Calculate the b smallest single-dimension analytical eigenfunctions of Lp using a

rectangular approximation along every PCA direction. This is done by evaluating
the b smallest eigenvalues for each direction using (Eqn. 22), thus creating a list
of db eigenvalues, and then sorting this list to find the b smallest eigenvalues.

• Threshold the analytical eigenfunctions at zero, to obtain binary codes.

Illustrative Results Figure 13(a) shows a comparison between Spectral Hashing
and Euclidean LSH, RBMs, and Boosting on a 2D rectangle of data. Despite the
simplicity of Spectral Hashing, it outperforms the other methods. Indeed, even when
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Fig. 15 Performance of different binary codes on the LabelMe dataset described in [65]. The data
is certainly not uniformly distributed, and yet Spectral Hashing gives better retrieval performance
than Boosting or vanilla LSH.

we apply RBMs and Boosting to the output of Spectral Hashing the performance
does not improve. A similar pattern of results is shown for a 10D rectangle (Fig-
ure 13(b)). Note that the Boosting and RBM methods were trained using the ap-
proach described in Section 3.3.1 and Section 3.3.2, respectively, but using a dis-
tance matrix D = exp(−‖xxxi−xxx j‖2/ε2), instead of one produced by supervised label
information.

Some insight into the superior performance can be gained by comparing the par-
titions that each bit defines on the data (see Figure 12). Recall that we seek partitions
that give low cut value and are approximately independent. If simply using random
linear partitions, LSH can give very unbalanced partitions. RBMs and Boosting both
find good partitions, but the partitions can be highly dependent on each other. Spec-
tral Hashing finds well balanced partitions that are more compact than those of the
other methods, showing it makes efficient use of a given number of bits.

Figure 15 shows retrieval results for Spectral Hashing, RBMs, and Boosting on
the LabelMe dataset [65], using Gist descriptors as the input. Note that even though
Spectral Hashing uses a poor model of the statistics of the database—it simply as-
sumes a N-dimensional rectangle, it performs better than Boosting which actually
uses the distribution (the difference in performance relative to RBMs is not signif-
icant). Not only is the performance numerically better, but our visual inspection of
the retrieved neighbors suggests that with a small number of bits, the retrieved im-
ages are better using Spectral Hashing than with Boosting. However, Spectral Hash-
ing can only emulate the distance between Gist descriptors, as it has no mechanism
for using label information, whereas Boosting or RBMs do (see Section 3).
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4.3 Kernelized Locality Sensitive Hashing

Kernel functions are a valuable family of similarity measures, particularly since they
can support structured input spaces (sets, graphs, trees) and enable connections with
kernel learning algorithms. However, methods discussed thus far either assume that
the data to be hashed comes from a multidimensional vector space, or require that
the underlying embedding of the data be explicitly known and computable. For ex-
ample, Spectral Hashing assumes uniformly distributed data in Rd ; the random hy-
perplane LSH function expects vector data [12]; and certain specialized embeddings
are manually crafted for a function of interest (Section 4.1).

This is limiting, given that many recent successful vision results employ kernels
for which the underlying embedding is known only implicitly (i.e., only the kernel
function is computable). This includes various kernels designed specifically for im-
age comparisons (e.g., [76, 77, 68]), as well as some basic widely used functions
like a Gaussian RBF kernel, or arbitrary (e.g., non-Mahalanobis) learned kernels.

Therefore, we next overview the kernelized locality-sensitive hashing (KLSH)
approach recently introduced by Kulis and Grauman [39], which shows how to con-
struct randomized locality-sensitive functions for arbitrary kernel functions. KLSH
generalizes LSH to scenarios when the kernel-induced feature space embedding is
either unknown or incomputable.

Main Idea Formally, given an arbitrary (normalized) kernel function κ , we have

sim(xxxi,xxx j) =
κ(xxxi,xxx j)√

κ(xxxi,xxxi)κ(xxx j,xxx j)
(24)

=
φ(xxxi)Tφ(xxx j)

‖φ(xxxi)‖2‖φ(xxx j)‖2
, (25)

for some (possibly unknown) embedding function φ(·). As usual, given a database
of n objects, the goal is to quickly find the most similar item to a query object qqq in
terms of the kernel function, that is, argmaxiκ(qqq,xxxi). Since we know that any Mercer
kernel can be written as an inner product in some high-dimensional space [62], at a
glance we might consider simply employing the random hyperplane hash functions
introduced earlier in Eqn. (5), which is locality-sensitive for the inner product.

However, looking more closely, it is unclear how to do so. The random hyper-
plane projections assume that the vectors are represented explicitly, so that the sign
of rrrT xxx can easily be computed. That would require referencing a random hyperplane
in the kernel-induced feature space, but we have access to the data only through
the kernel function κ(xxxi,xxx j) = φ(xxxi)Tφ(xxx j). For example, the RBF kernel has an
infinite-dimensional embedding, making it seemingly impossible to construct rrr.
Thus the key challenge in applying LSH to this scenario is in constructing a vec-
tor rrr from N (0, I) such that rrrTφ(xxx) can be computed via the kernel function.

The main idea of KLSH is to construct rrr as a weighted sum of a subset of the
database items, drawing on the central limit theorem. In doing so, like standard LSH,
hash functions are computed as random projections; however, unlike standard LSH,
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these random projections will be constructed using only the kernel function and a
sparse set of representative examples.

Algorithm Consider each data point φ(xxxi) from the database as a vector from some
underlying distribution D with mean μ and covariance Σ , which are generally un-
known. Given a natural number t, define

zzzt =
1
t ∑i∈S

φ(xxxi), (26)

where S is a set of t database objects chosen i.i.d. from D . According to the central
limit theorem [54], for sufficiently large t, the random vector

z̃zzt =
√

t(zzzt −μ) (27)

is distributed according to the multi-variate Gaussian N (0,Σ). By applying a
whitening transform, the vector Σ−1/2z̃zzt will be distributed according to N (0, I),
precisely the distribution required for hashing.

Therefore, we denote our random vector as rrr = Σ−1/2z̃zzt , and the desired hash
function h(φ(xxx)) is given by

h(φ(xxx)) =
{

1, if φ(xxx)TΣ−1/2z̃zzt ≥ 0
0, otherwise

. (28)

Now the issue becomes how to express the product of the implicit random vector z̃zzt
and the matrix Σ−1/2 as a weighted sum of kernel-space instances.

To do this, KLSH uses a technique similar to that used in kernel Principal Com-
ponent Analysis (kPCA) [58] to project onto the eigenvectors of the covariance
matrix, as follows. Both the covariance matrix Σ and the mean μ of the data are
unknown, and must be approximated via a sample of the data. We choose a set of
p database objects, which we denote without loss of generality as the first p items
φ(xxx1), ...,φ(xxxp) of the database (where p 	 n), and assume to be zero-centered.
Now we may (implicitly) estimate the mean μ = 1

p ∑
p
i=1 φ(xxxi) and covariance ma-

trix Σ over the p samples. Define a kernel matrix K over the p sampled points, and
let the eigendecomposition of K be K = UΘUT . If the eigendecomposition of Σ is
VΛVT , then Σ−1/2 = VΛ−1/2VT . Therefore, we can rewrite the hash function as
follows:

h(φ(xxx)) = sign(φ(xxx)TVΛ−1/2VT z̃zzt). (29)

Note that the non-zero eigenvalues of Λ are equal to the non-zero eigenvalues of
Θ . Further, denote the k-th eigenvector of the covariance matrix as vvvk and the k-th
eigenvector of the kernel matrix as uuuk. According to the derivation of kernel PCA,
when the data is zero-centered, we can compute the projection

vvvT
k φ(xxx) =

p

∑
i=1

1√
θk

uuuk(i)φ(xxxi)Tφ(xxx), (30)
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where the φ(xxxi) are the sampled p data points.
We complete the computation of h(φ(xxx)) by performing this projection over all

k eigenvectors, resulting in the following expression:

φ(xxx)TVΛ−1/2VT z̃zzt =
p

∑
k=1

1√
θk

vvvT
k φ(xxx)vvvT

k z̃zzt . (31)

Substituting Eqn. 30 for each of the eigenvector inner products, we have

φ(xxx)TVΛ−1/2VT z̃zzt =
p

∑
k=1

1√
θk

( p

∑
i=1

1√
θk

uuuk(i)φ(xxxi)Tφ(xxx)
)( p

∑
i=1

1√
θk

uuuk(i)φ(xxxi)T z̃zzt

)
.

After reordering and simplifying, this yields

h(φ(xxx)) =
{

1, if ∑p
i=1 www(i)(φ(xxxi)Tφ(xxx)) ≥ 0

0, otherwise
, (32)

where www(i) = ∑p
j=1∑

p
k=1

1

θ3/2
k

uuuk(i)uuuk( j)φ(xxx j)T z̃zzt . See [39] for intermediate steps.

Hence, the desired Gaussian random vector can be expressed as rrr =∑p
i=1 www(i)φ(xxxi),

that is, a weighted sum over the feature vectors chosen from the set of p sampled
database items.8 Then, given any novel input, the hash bit is assigned by computing
kernel values between the input and those sampled items.

Summary of Algorithm Recapping, the kernelized locality-sensitive hashing al-
gorithm consists of the following steps:

• Select p data instances and form a kernel matrix K over this data.
• Center the kernel matrix.
• Form the hash table over the n 
 p database items: for each hash function

h j(φ(xxx)), select t indices at random from [1, . . . , p] to sample the implicit vector
z̃zzt , and use it to assign the next hash bit for each database instance xxx according to
h j(φ(xxx)) = sign(∑i www(i)κ(xxx,xxxi)).

• For each query, form its hash key using these same hash functions (same samples
of p and t indices) and employ existing LSH methods to find the approximate
nearest neighbors.

Matlab code for computing KLSH functions is available from the authors’ web-
sites [39].

Computational Complexity The most expensive step in KLSH is in the single of-
fline computation of the kernel matrix square root, which takes time O(p3). Once
this matrix has been computed, each individual hash function requires O(p2) ker-
nel function evaluations to compute its corresponding www vector (also done offline).
Once www has been computed for a given hash function, the computation of the hash

8 Note that the random vector rrr constructed during the KLSH routine is only approximately dis-
tributed according to N (0, I)—the central limit theorem assumes that the mean and covariance of
the data are known exactly, whereas KLSH employs an approximation using a sample of p points.
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Fig. 16 Results using KLSH [39] to search the 80 Million Tiny Images data set (top left) and
Flickr scenes dataset (top right) with useful image kernels—a Gaussian RBF learned kernel on
Gist, and the χ2-kernel on local features, respectively. Top left: Plot shows how many linear scan
neighbors are needed to cover the first 10, 20, or 30 KLSH hashing neighbors. The ideal curve
would reach the top left corner of the plot. Top right: Plot shows k-nearest neighbor accuracy of
a linear scan and the KLSH algorithm as a function of LSH’s ε parameter, revealing how hashing
accuracy approaches that of a linear scan for smaller values of ε . Bottom: Example Tiny Image
queries and the retrieved result using either a linear scan or KLSH.

function can be computed with p evaluations of the kernel function. In order to
maintain efficiency, we want p to be much smaller than n—for example, p =

√
n

would guarantee that the algorithm maintains sub-linear search times. Empirical re-
sults for various large-scale image search tasks done in [39] suggest relatively few
samples are sufficient to compute a satisfactory random vector (e.g., p = 300 and
t = 30, for n up to 80 million).

Illustrative Results Figure 16 shows some example results using KLSH for im-
age search. In both cases, kernels are employed that would not be supported by
any previous LSH algorithm. The example image retrievals show qualitatively that
KLSH often retrieves neighbors very similar to those of a linear scan, but does so by
searching less than 1% of the 80 Million images. At the same time, the quantitative
results show exactly how much accuracy is traded off. The 10-hashing NN’s curve
on the Tiny Images data (top left) shows, for example, that 100% of the neighbors
in KLSH’s top ten are within the top 50 returned with an exhaustive linear scan.
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4.4 Other Unsupervised Methods

A few other methods in the vision and learning literature tackle the problem of unsu-
pervised binary embeddings for different metrics. Most related to some of the tech-
niques here, Athitsos et al. [2, 3] propose a boosting-based approach which gives
a parametric function for mapping points to binary vectors, and can accommodate
metric and non-metric target similarity functions. Salakhutdinov and Hinton [56]
use a neural network trained with an NCA objective [26] to build codes for text-
documents. Both these approaches are explored in Torralba et al. [65], as detailed
in Section 3.3.1 and Section 3.3.2, but with the similarity function being defined by
Euclidean distance rather than label overlap. Most recently, Kulis and Darrell [38]
use a kernel-based approach that jointly learns a set of projections that minimize
reconstruction error. This objective can be directly and efficiently minimized using
coordinate-descent.

5 Conclusions

We have reviewed a variety of methods for learning compact and informative binary
projections for image data. Some are purely unsupervised (e. g. Spectral Hashing),
but most can be applied in both supervised and unsupervised settings. As illustrated
by the results displayed in this chapter, they offer crucial scalability for useful image
search problems.

Despite their common goal, the approaches draw on a wide range techniques, in-
cluding random projections, spectral methods, neural networks, boosting, and kernel
methods. This diversity reflects the open nature of the problem and the extensive at-
tention it has received lately. We anticipate that advances in machine learning and
algorithms will continue to be relevant to this problem of great practical interest.
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