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1 Disclaimer

This note is adapted from

• Section 5 of Numerical Optimization by Jorge Nocedal and Stephen J. Wright. Springer series in
operations research and financial engineering. Springer, New York, NY, 2. ed. edition, (2006)

2 Basic Setting

In this section, we study how to solve the following optimization problem using conjugate gradient method

minimize
x

− bTx +
1

2
xTAx,

where A is assumed to be positive definite. Later we will replace this constraint and also consider non-linear
objective functions.

Conjugate directions. We say a few directions pi, 1 ≤ i ≤ n are conjugate with respect to A if

pTi Apj = 0, 1 ≤ i 6= j ≤ n.

It is easy to see that when A = In, then conjugate directions become orthogonal directions. This means
conjugate directions are essentially generalizations of orthogonal directions.

Conjugate directions also exist, for example, let the spectral decomposition of A be

A = UΣUT .

Then we can let p1, · · · ,pn be the columns of U , i.e., U = (p1, · · · ,pn), and it is easy to check that they are
indeed conjugate directions. On the other hand, the set of conjugate directions are not unique.

Fact 2.1. Conjugate directions are linearly independent.

Proof. Suppose they are linearly dependent. This means there exist non-zero (meaning not all of them are
zero) coefficients ci, 1 ≤ i ≤ n such that

n∑
i=1

cipi = 0.
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It follows that

0 = (

n∑
i=1

cipi)
TA(

n∑
i=1

cipi)

=

n∑
i=1

c2i (p
T
i Api) > 0, (1)

which leads to a contradiction.

The conjugate directions are useful for optimization. Intuitively, in the case A = In, we can essentially
optimize along each coordinate independently to obtain the optimal solution. This is also true in the general
case. In fact, starting from an initial solution x0, we can gradually improve the solution by searching along
pk at each iteration:

xk+1 = xk + αkpk,

where

αk = minimize
α

bT (xk−1 + αpk)− 1

2
(xk−1 + αpk)TA(xk−1 + αpk)

= −1

2
α2(pTkApk) + α(b−Axk)Tpk

= − rTk pk
pTkApk

, (2)

where rk := b−Axk.

Proposition 1. The procedure described above converges to the optimal solution x? = −A−1b in at most n
steps.

Proof. Define
rk := Apk − b.

It is equivalent to show that
rTk pi = 0, 1 ≤ i < k ≤ n.

We prove this by induction. When k = 1, we have

rT1 p0 = −(b−Ax0 − α0Ap0)Tp1

= rT0 p0 − α0 · (pT0 Ap0) = 0.

Suppose it is true for 1 ≤ i < k ≤ j, now let us consider k = j + 1. First of all, we have

rTj+1pj = −(b−Axj − αjApj)Tpj
= rTj pj − αj(pTj Apj) = 0.

When i < j + 1, we have

rTj+1pi = −(b−Axj − αjApj)Tpi
= −rTj pi + αjp

T
j Api = 0,

which ends the proof.

The conjugate gradient method is based on a genius idea of choosing the conjugate gradient directions.
Specifically, let

p0 = −r0 = b−Ax0.

The intermediate search directions are given by

pk = −rk + βkpk−1,
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where βk is chosen such that pTkApk−1 = 0 or in other words

βk =
rTkApk−1

pTk−1Apk−1

.

Interesting, we can show that pk is also conjugate to previous directions. Formally speaking, we summarize
the properties in the following theorem:

Theorem 2.1. Suppose that the kth iterate generated by the conjugate gradient method is not the solution
point x?. The following four properties hold:

rTk ri = 0, for i = 0, 1, . . . , k − 1, (3)

span{r0, r1,
. . . , rk} = span{r0, Ar0, . . . , Akr0}, (4)

span{p0,p1,
. . . ,pk} = span{r0, Ar0, . . . , Akr0}, (5)

pTkApi = 0, for i = 0, 1, . . . , k − 1. (6)

Therefore, the sequence {xk} converges to x? in at most n steps.

Proof. The proof is by induction. The expressions (4) and (5) holds trivially when k = 0. In addition, by
construction pT1 Ap0 = 0 so (6) also holds when k = 1. Now suppose (3)-(6) hold for all j ≤ k. Now consider
k + 1. Since p0, · · · ,pk are conjugate directions, we conclude that

rTk pi = 0, 0 ≤ i ≤ k.

We first show that
αk 6= 0.

Suppose αk = 0, this means

0 = rTkApk

= rTkA(−rk + βkpk−1)

= −rTkArk +
1

αk−1
rTk (rk−1 − rk−2)

= −rTkArk.

Since A is positive semidefinite, it means rk = 0, which leads to a contradiction.

We then consider (4) and (5). Since rk+1 = αkApk +rk. As by induction pk ∈ span{r0, Ar0, . . . , Akr0}.
It follows that rk+1 ∈ span{r0, Ar0, . . . , Ak+1r0}. This means

span{r0, r1,
. . . , rk+1} ⊂ span{r0, Ar0, . . . , Ak+1r0}.

In addition, since pk+1 = −rk+1 + βk+1pk, it follows that

span{p0, r1,
. . . ,pk+1} ⊂ span{r0, Ar0, . . . , Ak+1r0}.

To prove the inverse. Let
Akr0 = c0r0 + · · ·+ ckrk.
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It follows that

Ak+1r0 ∈ span{Ar0, · · · , Ark}
∈ span{Ar0, A(β1p0 − p1), · · · , A(βkpk−1 − pk)}
∈ span{Ap0, Ap1, · · · , Apk}

∈ span{ (r1 − r0)

α0
,

(r2 − r1)

α1
, · · · , (rk+1 − rk)

αk
}

∈ span{r0, · · · , rk+1}
∈ span{p0, β1p0 − p1 · · · , βk+1pk − pk+1}
∈ span{p0,p1 · · · ,pk+1}

Now we show that
rTk+1ri = 0, 0 ≤ i ≤ k.

In fact,
rTk+1ri = rTk+1(βipi−1 − pi) = βi(r

T
k+1pi−1)− rTk+1pi = 0.

Finally, for 0 ≤ i ≤ k,

pTk+1Api = (−rk+1 + βk+1pk)TApi = −rTk+1Api = −rTk+1(
ri − ri−1

αi
) = 0.

Conjugate gradient methods require computing two constants

βk =
rTk+1Apk

pTkApk
, αk = − rTk pk

pTkApk
.

Note that
rTk pk = −rTk (−rk + βkpk−1) = rTk rk.

Moreover,

βk =
rTk+1Apk
pTkApk

=
rTk+1Apk

pTkA(−rk + βkpk−1)
= −

rTk+1Apk
rTkApk

= −
rTk+1(αkApk)

rTk (αkApk)

= −
rTk+1(rk+1 − rk)

rTk (rk+1 − rk)
=

rTk+1rk+1

rTk rk
.

Finally, we arrive at the standard form of conjugate gradient descent method:

• Given x0;

• Set r0 = Ax0 − b,p0 ← −r0, k ← 0;

• while rk 6= 0

• αk ← rT
k rk

pT
kApk

;

• xk+1 ← xk + αkpk;

• rk+1 ← rk + αkApk;

• βk+1 ←
rT
k+1rk+1

rT
k rk

;

• pk+1 = −rTk+1 + βk+1pk;

• k ← k + 1;

• end (while)
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2.1 Convergence Rate of CG

One thing is analyze the convergence of CG is to utilize the fact that xk+1 is the approximation of x? in
x0 + span(r0, Ar0, · · · , Akr0). Define

Pk(A) = γ0I + γ1A+ · · ·+ γkA
k,

where γ0, γ1, · · · , γk are coefficients. It turns out xk+1 is given by the best degree k polynomial that solves
the following optimization problem:

min
Pk

‖x0 + Pk(A)r0 − x?‖2A.

Let P ?k (A) be the best polynomial, we have that

xk+1 − x? = x0 + P ?k (A)r0 − x? = (I + P ?k (A)A)(x0 − x?).

Let vi, 1 ≤ i ≤ n be the eigen-vectors of A. Write

x0 − x? =

n∑
i=1

ψivi.

It follows that

‖xk+1 − x?‖2A =

n∑
i=1

λi(1 + λiP
?
k (λi))ψ

2
i .

So we have

‖xk+1 − x?‖2A = min
Pk

n∑
i=1

λi(1 + λiPk(λi))ψ
2
i .

It follows that
‖xk+1 − x?‖2A ≤ min

Pk

max
1≤i≤n

(1 + λiPk(λi))
2‖x0 − x?‖2A.

By choosing different polynomials, we can have different types convergence bounds. In the literature,
people have obtained the following bounds:

‖xk+1 − x?‖2A ≤
(
λk+1 − λn
λk+1 + λn

)2

‖x0 − x?‖2A (7)

and

‖xk+1 − x?‖2A ≤

(√
κ(A)− 1√
κ(A) + 1

)k+1

‖x0 − x?‖2A. (8)
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