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1 Disclaimer

This note is adapted from

• Section 5 of Numerical Optimization by Jorge Nocedal and Stephen J. Wright. Springer series in
operations research and financial engineering. Springer, New York, NY, 2. ed. edition, (2006)

2 Introduction

In this section, we discuss nonlinear variants of the conjugate gradient, which have proved to be quite
successful in practice.

2.1 Fletcher-Reeves method

The FR method (denoted as CG-FR) is based on a simple modification of the linear version of CG:

• Given x0;

• Evaluate f0 = f(x0), ∇f0 = ∇f(x0);

• Set p0 ← −∇f(x0), k ← 0;

• while ∇fk 6= 0

• Compute αk and set xk+1 = xk + αkpk;

• Evaluate ∇fk+1;

• βFR
k+1 ←

∇fT
k+1∇fk+1

∇fT
k ∇fk

;

• pk+1 ← −∇fk+1 + βFR
k+1pk;

• k ← k + 1;

• end (while)
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Note that in CG-FR, line search is used instead of the explicit formula for αk in the linear case. So to
make a global convergence argument, we have to be careful about the step-size αk. In fact, the angle between
the search direction pk of the gradient ∇fk may even be bigger than 90◦.

In fact, we have
∇fTk pk = −‖∇fk‖2 + βFR

k ∇fTk pk−1.

If the line search is exact, so that αk−1 is a local minimizer of f along the direction pk−1, we have∇fTk pk−1 =
0. In this case, we have ∇fTk pk < 0, so that pk is indeed a descent direction. If the line search is inexact,
then βFR

k ∇fTk pk−1 > ‖∇fk‖2, then pk may not be a descent direction. Fortunately, we can avoid this
situation by requiring the step length αk to satisfy the strong Wolfe conditions, which we restate here:

f(xk + αkpk) ≤ f(xk) + c1αk∇fTk pk, (1)

|∇f(xk + αkpk)Tpk| ≤ −c2∇fTk pk, (2)

where 0 < c1 < c2 <
1
2 . We will show that (2) ensures pk is a descent direction.

Lemma 2.1. Suppose that the algorithm is implemented with a step length αk that satisfies the strong Wolfe
conditions (2) with 0 < c2 <

1
2 . Then the method generates descent directions pk that satisfy the following

inequalities:

− 1

1− c2
≤ ∇f

T
k pk

‖∇fk‖2
≤ 2c2 − 1

1− c2
, for all k = 0, 1, . . . (3)

Proof. We prove this by induction. When k = 0, (3) is obvious, since

∇fTk pk

‖∇fk‖2
= −1.

We prove (3) by induction. Suppose it is true for all integers that are small than k, now consider

∇fTk+1pk+1

‖∇fk+1‖2
=
∇fTk+1(−∇fk+1 + βFR

k+1pk)

‖∇fk+1‖2
= −1 + βFR

k+1

∇fTk+1pk

‖∇fk+1‖2

= −1 +
∇fTk+1pk

‖∇fk‖2
.

Since
|fTk+1pk| ≤ c2|fTk pk|,

and

− 1

1− c2
≤ ∇f

T
k pk

‖∇fk‖2
≤ 2c2 − 1

1− c2
.

It follows that

− 1

1− c2
≤ ∇f

T
k pk

‖∇fk‖2
≤ −1 + c2

1

1− c2
=

2c2 − 1

1− c2
.

Remark 2.1. The Lemma above can also be used to explain a weakness of the CG-FR method. We will
argue that if the method generates a bad direction and a tiny step, then the next direction and next step are
also likely to be poor. Let θk be the angle between pk and the steepest descent direction −∇fk, defined by

cos(θk) = − ∇fTk pk

‖∇fk‖‖pk‖
.

Suppose that pk is a poor search direction, in the sense that it makes an angle of nearly 90◦ with −∇fk, that
is, cos(θk) ≈ 0. Note that

1− 2c2
1− c2

‖∇fk‖
‖pk‖

≤ cos(θk) ≤ 1

1− c2
‖∇fk‖
‖pk‖

, for all k = 0, 1, . . .
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From these inequalities, we deduce that cos(θk) ≈ 0 if and only if

‖∇fk‖ << ‖pk‖.

Since pk is almost orthogonal to the gradient, it is likely that the step from xk to xk+1 is tiny, that is,
xk+1 ≈ xk. If so, we have ∇fk+1 ≈ ∇fk, and therefore

βk+1 = 1,

by the definition of βk+1. Note that pk+1 = −∇fk+1 + βk+1pk, ∇fk+1 ≈ ∇fk and ‖∇fk‖ << ‖pk‖, we
conclude that

pk+1 ≈ pk.

In other words, it is better to restart CG-FR when the angle between pk and ∇fk becomes close to 90◦.

2.2 Global Convergence

For the purposes of this section, we make the following (non-restrictive) assumptions on the objective func-
tion.

1. The levelset L := {x|f(x) ≤ f(x0)} is bounded;

2. In some open neighborhood Nof L, the objective function f is Lipschitz continuously differentiable.

Now comes to the global convergence of CG-FR.

Theorem 2.1. Suppose that assumptions hold, and that CG-FR is implemented with a line search that
satisfies the strong Wolfe conditions, with 0 < c1 < c2 <

1
2 . Then

lim inf
k→∞

‖∇fk‖ = 0.

Proof. The proof is by contradiction. Suppose there exists a γ > 0 such that

‖∇fk‖ ≥ γ,

for all k sufficiently large.

First of all, the strong Wolfe condition implies that

∞∑
k=0

cos2(θk)‖∇fk‖2 <∞.

Note that

cos2(θk) = (
∇fTk pk

‖∇fk‖‖pk‖
)2 = (

∇fTk pk

‖∇fk‖2
)2
(
‖∇fk‖
‖pk‖

)2

≥ (
1− 2c2
1− c2

)2
(
‖∇fk‖
‖pk‖

)2

.

It turns out
∞∑
k=0

‖∇fk‖4

‖pk‖2
<∞.

Since ‖∇fk‖ ≥ γ, it follows that
∞∑
k=0

1

‖pk‖2
<∞.

Now we derive an upper bound on ‖pk‖. First of all,

‖pk‖2 = ‖ − ∇fk + βkpk−1‖2 ≤ ‖∇fk‖2 + 2βk|∇fTk pk−1|+ β2
k‖pk−1‖2.
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Using the Wolfe condition, we have

|∇fTk pk−1| ≤ c2|∇fTk−1pk−1| ≤
c2

1− c2
‖∇fk−1‖2.

It follows that

‖pk‖2 ≤ ‖∇fk‖2 +
2c2

1− c2
βk‖∇fk−1‖2 + β2

k‖pk−1‖2

≤ 1 + c2
1− c2

‖∇fk‖2 + β2
k‖pk−1‖2.

Applying the recursion, we have

‖pk‖2 ≤
1 + c2
1− c2

‖∇fk‖2 +
‖∇fk‖4

‖∇fk−1‖4
‖pk−1‖2

≤ 1 + c2
1− c2

(‖∇fk‖2 +
‖∇fk‖4

‖∇fk−1‖2
) +

‖∇fk‖4

‖∇fk−2‖4
‖pk−2‖2

≤ 1 + c2
1− c2

‖∇fk‖4
k∑

j=0

1

‖∇fj‖2

≤ 1 + c2
1− c2

(k + 1)
γ4

γ2
.

This means
∞∑
k=0

1

‖pk‖2
= O(

∞∑
k=1

1

k
) =∞,

leading to a contradiction.

Remark 2.2. In general, if we can show that there exist constants c4, c5 > 0 such that

cos(θk) ≥ c4
‖∇fk‖
‖pk‖

,
‖∇fk‖
‖pk‖

≥ c5 > 0, k = 1, 2, . . . ,

then
lim
k→∞

‖∇fk‖ = 0.
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