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1 Disclaimer

This note is adapted from

e Section 5 of Numerical Optimization by Jorge Nocedal and Stephen J. Wright. Springer series in
operations research and financial engineering. Springer, New York, NY, 2. ed. edition, (2006)

2 Introduction

In this section, we discuss nonlinear variants of the conjugate gradient, which have proved to be quite
successful in practice.

2.1 Fletcher-Reeves method

The FR method (denoted as CG-FR) is based on a simple modification of the linear version of CG:

e Given xg;

Evaluate fo = f(x0), Vfo = Vf(xo);

Set p, + —V f(xg), k < 0;
while Vfi, #0

] Compute ay and set Tx11 = T + QEPy;

Evaluate V fr11;
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end (while)



Note that in CG-FR, line search is used instead of the explicit formula for oy in the linear case. So to
make a global convergence argument, we have to be careful about the step-size ay. In fact, the angle between
the search direction p;, of the gradient V f;, may even be bigger than 90°.

In fact, we have
Ve ==Vl + 8LV fipy_y.

If the line search is exact, so that ay_1 is a local minimizer of f along the direction p,_,, we have V fg Pr_1 =
0. In this case, we have V fkT Py, < 0, so that p,, is indeed a descent direction. If the line search is inexact,
then BERV fIp,_, > ||[Vfil? then p, may not be a descent direction. Fortunately, we can avoid this
situation by requiring the step length «j to satisfy the strong Wolfe conditions, which we restate here:

fln + agpy) < flzr) + oV L Dy, (1)
IV f(@k + arpy) prl < =2V i py., (2)

where 0 < ¢; < ¢y < % We will show that ensures p,;, is a descent direction.

Lemma 2.1. Suppose that the algorithm is implemented with a step length «y that satisfies the strong Wolfe

conditions (@) with 0 < ¢y < % Then the method generates descent directions p,, that satisfy the following
inequalities:
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, for all k=0,1,... (3)

Proof. We prove this by induction. When k£ = 0, is obvious, since
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We prove by induction. Suppose it is true for all integers that are small than k, now consider
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Remark 2.1. The Lemma above can also be used to explain a weakness of the CG-FR method. We will
arque that if the method generates a bad direction and a tiny step, then the next direction and next step are
also likely to be poor. Let 0y be the angle between p;, and the steepest descent direction —V fi., defined by
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Suppose that py, is a poor search direction, in the sense that it makes an angle of nearly 90° with —V f, that
is, cos(fy) =~ 0. Note that

cos(fy) =
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forall k=0,1,...



From these inequalities, we deduce that cos(0y) ~ 0 if and only if

IV Fill << lIpyll-

Since p,, is almost orthogonal to the gradient, it is likely that the step from xy to Tiri1 is tiny, that is,
Tpr1 ~ k. If so, we have V fy11 =~ V fi., and therefore

Br+1 =1,

by the definition of Biy1. Note that py 1 = =V i1 + Brr1Py, Vi = Vi and ||V fil| << ||pgll, we
conclude that

Pk+1 =~ Pk
In other words, it is better to restart CG-FR when the angle between p,, and V fi, becomes close to 90°.

2.2 Global Convergence

For the purposes of this section, we make the following (non-restrictive) assumptions on the objective func-
tion.

1. The levelset £ := {x|f(x) < f(xo)} is bounded;

2. In some open neighborhood Nof L, the objective function f is Lipschitz continuously differentiable.

Now comes to the global convergence of CG-FR.

Theorem 2.1. Suppose that assumptions hold, and that CG-FR is implemented with a line search that
satisfies the strong Wolfe conditions, with 0 < ¢; < ¢3 < % Then

liminf |V f|| = 0.
k—o0

Proof. The proof is by contradiction. Suppose there exists a v > 0 such that

IVl =,

for all k sufficiently large.
First of all, the strong Wolfe condition implies that
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Note that
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It turns out
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Since ||V fx|| > 7, it follows that
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Now we derive an upper bound on ||p.||. First of all,

e l1* = 1| =V fio + Bepi—1 1> < IV Full® + 281V i Prca| + Billpr—a |-



Using the Wolfe condition, we have

|Vfgpk—1| < 02|Vf1?—1pk—1| <

It follows that
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Applying the recursion, we have
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This means
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leading to a contradiction.
Remark 2.2. In general, if we can show that there exist constants cq,c5 > 0 such that

cos(0r) > ¢y vak”, IV 7 >c5 >0, k=1,2,..
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then
lim |V f%] = 0.
k— o0
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