
Lecture 13: CS395T Numerical Optimization for

Graphics and AI — Theory of Constrained

Optimization

Qixing Huang
The University of Texas at Austin

huangqx@cs.utexas.edu

Disclaimer

This note is adapted from

• Section 12 of Numerical Optimization by Jorge Nocedal and Stephen J. Wright. Springer series in
operations research and financial engineering. Springer, New York, NY, 2. ed. edition, (2006)

1 Introduction

The second part of this class is about minimizing functions subject to constraints on the variables. A general
formulation for these problems is

minimize
x

f(x)

subject to ci(x) = 0, i ∈ E ,
ci(x) ≥ 0, i ∈ I, (1)

where f and the functions ci are all smooth, real-valued functions on a subset of Rn, and I and E are two
finite sets of indices.

If we define the feasible set Ω to be the set of points x that satisfies the constraints, that is,

Ω = {x|ci(x) = 0, i ∈ E ; ci(x) ≥ 0, i ∈ I}, (2)

then we can always rewrite (1) more compactly as

min
x∈Ω

f(x) (3)

In this lecture, we will go through some optimally conditions. They are generalized from their counterparts
in the constrained case. They are summarized below.

2 First-Order Optimality Conditions

To define the first-order optimality conditions, we first consider the notion of active sets:
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Definition 2.1. The active set A(x) at any feasible x consists of the equality constraint indices from E
together with the indices of the inequality constraints i for which ci(x) = 0; that is,

A(x) = E ∪ {i ∈ I|ci(x) = 0}.

We will also need the characterization of a local solution:

Definition 2.2. A vector x? is a local solution of the problem (3) if x? ∈ Ω and there is a neighborhood N
of x? such that f(x) ≥ f(x?) for x ∈ N ∩ Ω.

To define the optimality conditions, we will also need the so-called LICQ condition.

Definition 2.3. Given the point x and the active set A(x) defined in definition 2.1, we say that the linear
independence constraint qualification (LICQ) holds if the set of active constraint gradients {∇ci(x), i ∈ A(x)}
is linearly independent.

Now we are ready to introduce first-order necessary conditions, which often known as the Karush-Kuhn-
Tucker conditions, or KKT conditions for short.

Theorem 2.1. Consider the Lagrangian given by

L(x, λ) = f(x)−
∑

i∈I∪E
λici(x).

Suppose x? is a local solution of (1), that the functions f and ci in (1) are continuously differentiable, and
that the LICQ holds at x?. Then there is a Lagrangian multipler vector λ?, with components λ?i , i ∈ E ∪ I,
such that the following conditions are satisfied at (x?, λ?)

∇xL(x?, λ?) = 0, (4)

ci(x
?) = 0, for all i ∈ E , (5)

ci(x
?) ≥ 0, for all i ∈ I, (6)

λ?i ≥ 0, for all i ∈ I, (7)

λ?i ci(x
?) = 0, for all i ∈ I ∪ E . (8)

3 Second-Order Optimality Conditions

To derive second-order optimality conditions, we begin with defining the feasible direction set, which we
define as follows.

Definition 3.1. Given a feasible point x and the active constraint set A(x) of Definition 2.1, the set of
linearized feasible directions F(x) is

F(x) =

{
d
∣∣∣ dT∇ci(x) = 0, for all i ∈ E ,
dT∇ci(x) ≥ 0, for all i ∈ A(x) ∩ I

}
(9)

Definition 3.2. Given F(x?) from Definition 3.1 and some Lagrangian multipler vector λ? satisfying the
KKT conditions, we define the critical cone C(x?, λ?) as follows:

C(x?, λ?) = {w ∈ F(x?)|wT∇ci(x?) = 0, all i ∈ A(x?) ∩ I with λ?i > 0} (10)
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Equivalently,

w ∈ C(x?, λ?)↔

{ wT∇ci(x?) = 0, for all i ∈ E ,
wT∇ci(x?) = 0, for all i ∈ A(x?) ∩ I with λ?i > 0,
wT∇ci(x?) ≥ 0, for all i ∈ A(x?) ∩ I with λ?i = 0.

(11)

The critical cone contains those directions w that would tend to ”adhere” to the active inequality constraints
even when we were to make small changes to the objective (those indices i ∈ I for which the Lagrange
multiplier component λ?i is positive), as well as to the equality constraints. An important property of these
directions is:

w ∈ C(x?, λ?)→ wT∇f(x?) =
∑

i∈E∪I
λ?iw

T∇ci(x?) = 0.

Theorem 3.1. (Second-Order Necessary Conditions.) Suppose x? is a local solution of (1) and that
LICQ condition is satisfied. Let λ? be the Lagrangian multiplier vector for which the KKT conditions are
satisfied. Then

wT∇2
xxL(x?, λ?)w ≥ 0, for all w ∈ C(x?, λ?).

The corresponding Second-Order Sufficient Conditions are given below

Theorem 3.2. (Second-Order Sufficient Conditions.) Suppose that for some feasible point x? ∈ Rn

there is a Lagrangian multipler vector λ? such that the KKT conditions are satisfied. Suppose also that

wT∇2
xxL(x?, λ?)w > 0, for all w ∈ C(x?, λ?)\{0}.

Then x? is a strict local solution for (1).
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