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1 Simplex Methods

In class we will discuss the following items regarding the simplex method:
Dual Program and Optimality Conditions. The primal problem of LP

min ¢’z

xeR™
subject to Ax =b
x > 0.

The dual problem of LP

max b\
A8

subject to ATA+s=¢, s>0
x > 0.

An important property of LP is that the KKT conditions are sufficient for optimality:

AT A +s=c,
Ax = b,
x>0,
§>0,

$i5i207 i:1,2,~-~ ,n.
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Definition 1.1. A vector x is a basic feasible point if it is feasible and if there exists a subset B of the index

set {1,--- ,n} such that



e 3 contains exactly m indices;
o i ¢ B— x; =0 (that is, the bound x; > 0 can be inactive only if i € B);

e The m x m matrix B defined by
B = [Ajlien

is non-singular, where A; is the i-th column of A.

A set B satisfying these properties is called a basis for the problem . The corresponding matriz B is called
the basis matriz.
Theorem 1.1. o If has a nonempty feasible region, then there is at least one basic feasible point;

o If has solutions, then at least one such solution is a basic optimal point.

o If 1s feasible and bounded, then it has an optimal solution.

Theorem 1.2. All basic feasible points for are vertices of the feasible polytope {x|Ax = b,x > 0}, and
vice Versa.

Definition 1.2. A basis B is said to be degenerate if x; = 0 for some i € B, where x is the basic feasible
solution corresponding to B. A linear program is said to be degenerate if it has at least one degenerate basis.

Two-Phase Procedure for the Simplex Method. The first phase solves the following linear program
to obtain an initial solution:

mine’z subject to Ax + Fz =10, (z,2) >0, (8)
where z € R™ e = (1,---,1)T, and E is a diagonal matrix whose diagonal elements are
Ej;=1,ifb; >0, E;;=-1,ifb; =0.
The nice thing about this formulation is that there exists a very simple basic feasible solution for :

x =0, zj=|bj|,j=1,2,---,m.

The second phase solves the following linear program:
mine’x subject to Ax+z=b >0, 0>z 0. (9)

It is easy to modify the simplex method for solving @

2 Interior Point Method (Primal-Dual Methods)

2.1 Outline

Primal-dual methods find solutions (x*, \*, s*) of this system by applying variants of Newton’s method to the
three equalities , and and modifying the search directions and step lengths so that the inequalities
(z,s) > 0 are satisfied strictly at every iteration. The equations , and @ are linear or only mildly
nonlinear and so are not difficult to solve by themselves. However, the problem becomes much more difficult
when we add the nonnegativity requirement (&, s) > 0, which gives rise to all the complications in the design
and analysis of interior-point methods.

To derive primal-dual interior-point methods we restate the optimality conditions in a slightly different
form by means of a mapping F from R?"T™ to R2n+m:

F(x,\, 8) =0, (10)

(z,8) >0, (11)



where
X:diag(xl,m2,~- axn)a S:diag(sl732a"' 7871)’

and e = (1,1,---,1)T . Primal-dual methods generate iterates (:ck,)\k,:ck) that satisfy the bounds
strictly, that is, ¥ > 0 and s* > 0. This property is the origin of the term interior-point. By respecting
these bounds, the methods avoid spurious solutions, that is, points that satisfy F(x,\,s) = 0 but not
(z,s) > 0. Like most iterative algorithms in optimization, primal-dual interior-point methods have two
basic ingredients: a procedure for determining the step and a measure of the desirability of each point in the
search space. An important component of the measure of desirability is the average value of the pairwise
products z;s;,7 = 1,2,--- ;n, which are all positive when & > 0 and s > 0. This quantity is known as the
duality measure and is defined as follows:

1 — xTs
== 08 = ——. 12

The procedure for determining the search direction has its origins in Newton’s method for the nonlinear
equations . Newton’s method forms a linear model for F' around the current point and obtains the search
direction (dx, A, ds) by solving the following system of linear equations:

ox
J(x, A\, 8) | 0N | = —F(x, ), s),
0s

where J is the Jacobian of F. If we use the notation r. and 7, for the first two block rows in F', that is,
r=Ax—b, r.=ATA+s—c, (13)

we can write the Newton equations as follows:

0 AT I S —r.
A 0 0 x| =1 —m |- (14)
S 0 X 0s —XSe

Usually, a full step along this direction would violate the bound (x, s) > 0, so we perform a line search along
the Newton direction and define the new iterate as

(x, A\, s) + aldx,d\ds),

for some line search parameter a € (0,1]. We often can take only a small step along this direction o << 1
before violating the condition (x,s) > 0 . Hence, the pure Newton direction , sometimes known as the
affine scaling direction, often does not allow us to make much progress toward a solution. Most primal-dual
methods use a less aggressive Newton direction, one that does not aim directly for a solution but rather
for a point whose pairwise products z;s; are reduced to a lower average value — not all the way to zero.
Specifically, we take a Newton step toward the a point for which z;s; = ou, where p is the current duality
measure and o € [0,1] is the reduction factor that we wish to achieve in the duality measure on this step.
The modified step equation is then

0 AT I ox -7,
A 0 0 oA | = -7 . (15)
S 0 X ds —XSe+oue

We call ¢ the centering parameter, for reasons to be discussed later in this class. When ¢ > 0, it usually is
possible to take a longer step « along the direction defined by before violating the bounds (x,s) > 0.
At this point, we have specified most of the elements of a path-following primal-dual interior-point method.

The choices of centering parameter o and step length oy, are crucial to the performance of the method.
Techniques for controlling these parameters, directly and indirectly, give rise to a wide variety of methods
with diverse properties.
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