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1 Quadratic Programming

An optimization problem with a quadratic objective function and linear constraints is called a quadratic
program. Problems of this type are important in their own right, and they also arise as subproblems
in methods for general constrained optimization, such as sequential quadratic programming, augmented
Lagrangian methods, and interior-point methods.

The general quadratic program (QP) can be stated as

min
x

q(x) =
1

2
xTGx + xT c (1)

subject to aT
i x = bi, i ∈ E , (2)

aT
i x ≥ bi, i ∈ I, (3)

where G is a symmetric n × n matrix, E and I are finite sets of indices, and c, x, and a − i, i ∈ E ∪ I,
are vectors in Rn. Quadratic programs can always be solved (or shown to be infeasible) in a finite amount
of computation, but the effort required to find a solution depends strongly on the characteristics of the
objective function and the number of inequality constraints. If the Hessian matrix G is positive semidefinite,
we say that (3) is a convex QP, and in this case the problem is often similar in difficulty to a linear program.
(Strictly convex QPs are those in which G is positive definite.) Nonconvex QPs, in which G is an indefinite
matrix, can be more challenging because they can have several stationary points and local minimal. In this
chapter we focus primarily on convex quadratic programs.

1.1 Applications

Portfolio optimization. This is formulated as solving the following optimization problem:

max xTµ− κxTGx, subject to

n∑
i=1

xi = 1,x ≥ 0.

Intuitively, we would like to find a portfolio for which the expected return xTµ is large while the variance
xTGx is small.
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MAP inference and Shape matching.

max bTx +
1

2
xTQx,

m∑
j=1

xij = 1, 1 ≤ i ≤ n, x ≥ 0.

Here vector b encodes the first-order potential and Q encodes the second-order potential.

1.2 Equality-Constrained Quadratic Programs

For simplicity, we write the equality constraints in matrix form and state the equality- constrained QP as
follows:

min
x

q(x) =
1

2
xTGx + xT c (4)

subject to Ax = b. (5)

The first-order necessary conditions for x? to be a solution of (5) state that there is a vector λ? such that
the following system of equations is satisfied:[

G −AT

A 0

] [
x?

λ?

]
=

[
−c
b

]
. (6)

These conditions are a consequence of the general result for first-order optimality conditions. We call λ? the
vector of Lagrange multipliers. The system (6) can be rewritten in a form that is useful for computation
by expressing x? as x? − x + p, where x is some estimate of the solution and p is the desired step. By
introducing this notation and rearranging the equations, we obtain[

G −AT

A 0

] [
−p
λ?

]
=

[
g
h

]
. (7)

where
h = Ax− b, g = c +Gx, p = x? − x. (8)

The matrix in (7) is called the Karush-Kuhn-Tucker (KKT) matrix, and the following result gives conditions
under which it is nonsingular. We denote the n × (n −m) matrix whose columns are a basis for the null
space of A. That is, Z has full rank and satisfies A · Z = 0.

Lemma 1.1. Let A have full row rank, and assume that the reduced-Hessian matrix ZTGZ is positive
definite. Then the KKT matrix [

G −AT

A 0

]
(9)

is nonsingular, and hence there is a unique vector pair (x?, λ?) satisfying (6).

Theorem 1.1. Let A have full row rank and assume that the reduced-Hessian matrix ZTGZ is positive
definite. Then the vector x? satisfying (6) is the unique global solution of (5).

The KKT system can be solved using factorization method, e.g., LU factorization. Another option is to
solve it using conjugate gradient methods.

1.3 Inequality-Constrained Problems

In the remainder of the chapter we discuss several classes of algorithms for solving convex quadratic programs
that contain both inequality and equality constraints. Active-set methods have been widely used since
the 1970s and are effective for small- and medium-sized problems. They allow for efficient detection of
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unboundedness and infeasibility and typically return an accurate estimate of the optimal active set. Interior-
point methods are more recent, having become popular in the 1990s. They are well suited for large problems
but may not be the most effective when a series of related QPs must be solved. We also study a special type
of active-set methods called a gradient projection method, which is most effective when the only constraints
in the problem are bounds on the variables.

Optimality Conditions for Inequality-Constrained Problems. As what we have discussed in the
optimality conditions of constrained optimization techniques, the active set A(x?) consists of the indices of
the constraints for which equality holds at x?:

A(x?) = {i ∈ E ∪ I|aT
i x

? = bi}. (10)

By specializing the KKT conditions to this problem, we find that any solution x? of (3) satisfies the following
first-order conditions, for some Lagrange multipliers λ?i , i ∈ A(x?):

Gx? + c−
∑

i∈A(x?)

λ?iai = 0,

aT
i x

? = bi, ∀i ∈ A(x?),

aT
i x

? ≥ bi, ∀i ∈ I \ A(x?),

λ?i ≥ 0, i ∈ I ∩ A(x?). (11)

Theorem 1.2. If x? satisfies the conditions (11) for some λ?i , i ∈ A(x?), and G is positive semidefinite,
then x? is a global solution of (3).

Proof. First of all, we have for any other feasible solution x,

(x− x?)T (Gx? + c) =
∑
i∈E

λ?ia
T
i (x− x?) +

∑
i∈A(x?)∩I

λ?ia
T
i (x− x?) ≥ 0.

By elementary manipulation, we find that

q(x) = q(x?) + (x− x?)T (Gx? + c) +
1

2
(x− x?)TG(x− x?) ≥ q(x?).

1.4 Interior-Point Methods

The interior-point approach can be applied to convex quadratic programs through a simple extension of the
linear-programming algorithms. For simplicity, we restrict our attention to convex quadratic programs with
inequality constraints, which we write as follows:

min
x

q(x) =
1

2
xTGx + xT c

subject to Ax ≥ b, (12)

where G is symmetric and positive semidefinite and where the m × n matrix A and right-hand side b are
defined by

A = [ai]i∈I , b = [bi]i∈I , I = {1, · · · ,m}.

Rewriting the KKT conditions (7) in this notation, we obtain

Gx−ATλ+ c = 0, (13)

Ax− b ≥ 0, (14)

(Ax− b)iλi = 0, i = 1, 2, · · · ,m, λ ≥ 0. (15)
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By introducing the slack vector y ≥ 0, we can rewrite these conditions as

Gx−ATλ+ c = 0, (16)

Ax− y − b = 0, (17)

yiλi = 0, i = 1, 2, · · · ,m, (y, λ) ≥ 0. (18)
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