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Disclaimer

This note is adapted from

• https://people.eecs.berkeley.edu/~satishr/cs270/sp11/rough-notes/SDP.pdf

• http://www.optimization-online.org/DB_FILE/2001/03/296.pdf

• http://mpc.zib.de/index.php/MPC/article/viewFile/40/20

1 Primal and Dual Program

Primal SDP:

min 〈C,X〉 (1)

subject to 〈Ai, X〉 = bi, i = 1, · · · ,m, (2)

X � 0. (3)

Dual SDP:

max 〈b,y〉 (4)

subject to C �
m∑
i=1

yiAi. (5)

Proposition 1. Weak duality:
〈C,X〉 ≥ 〈b,y〉.

Strong duality under the Slater’s condition.

2 Max-Cut Problem

The max cut problem is to partition a graph G = (V,E) into two pieces (S, S) such that the weight of the
edges cut is maximized. If OPT is the weight of the maximum cut, there is a simple randomized algorithm
that produces cuts with weight at least OPT/2. The algorithm constructs set S by independently adding
vertices v ∈ G to S with probability 1/2. The indicator random variable Ie = 1 if the edge e is cut and 0
otherwise, by linearity of expectation we have,

E[w(S, S)] =
∑
e

E[w(e)Ie] =
∑
e

we
2
≥ OPT

2
.

1

https://people.eecs.berkeley.edu/~satishr/cs270/sp11/rough-notes/SDP.pdf
http://www.optimization-online.org/DB_FILE/2001/03/296.pdf
http://mpc.zib.de/index.php/MPC/article/viewFile/40/20


The expected weight of the cut produced by the randomized algorithm is half the total weight, if the variance
is large cuts with high weight would be produced frequently. The variance can be shown to be small for
random graphs, also it is easy to derandomize the algorithm. The simple algorithm was the best known for
a long time, in order to achieve an improvement let us write the max cut problem as an integer program,

max
∑

(i,j)∈E

wij
1− xixj

2
∀i, xi ∈ {−1, 1}.

As the integer program is NP hard to solve exactly we look for relaxations of the program that are easier to
solve. Instead of one dimensional unit vectors, optimizing over vectors in n dimensional space we have the
program,

max
∑

(i,j)∈E

wij
1− vTi vj

2
∀i,vi ∈ Rn, ‖vi‖ = 1.

The program is a semi definite program as the objective function and constraints are linear in the inner
products vTi vj . The optimal value of the program is denoted by V P (OPT ), the solution vectors v1, · · · ,vn
can be found by computing the Cholesky decomposition of the matrix A output by the SDP solver. As an
example, let us consider the 5 cycle, the size of the maximum cut is 4 while the optimal solution to the vector
program is two dimensional and corresponds to the embedding of the five star. The optimum value for the

relaxed program is
5(1−cos( 4π

5 ))

2 = 4.52. The one dimensional solution corresponding to the maximum cuts
is a solution to the relaxed problem, the value V P (OPT ) is therefore greater than OPT . We will show that
starting with a solution v1, · · · ,vn to the vector program a cut with value 0.878V P (OPT ) can be found,

0.878V P (OPT ) ≤ OPT ≤ V P (OPT ).

Select a random hyper-plane wTx = 0 through the origin and define S := {i|wTvi ≥ 0} to be the set of
points that lie on one side of the hyperplane.

Proposition 2. The expected weight of the cut (S, S) is at least 0.878V P (OPT ).

Sketch Proof.
E[w(S, S)]

V P (OPT )
=
∑
e

2weθ

we(1− cos(θ))
≥ min
θ∈[0,π]

2θ

1− cos(θ)
= 0.878.

3 Numerical Algorithms Beyond Interior Point Methods

3.1 Solving Semidefinite Programs via Low-Rank Factorizations

Proposition 3. Consider a semidefinite program over the form:

min 〈C,X〉
subject to Ai(X) = bi, i = 1, · · · ,m,

X � 0. (6)

Then there exists an optimal solution X? having rank r that satisfies r(r+1)
2 ≤ m.

Lemma 3.1. Suppose that X ∈ F , where F is a face of the feasible set of (6). Let d = dim(F ), r = rank(X).
Then

r(r + 1)

2
≤ m+ d.
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This motivates us to reformulate (6) as

min 〈C,RRT 〉
subject to Ai(RR

T ) = bi, i = 1, · · · ,m. (7)

We again consider its Lagrangian version:

L(R,y, σ) = 〈C,RRT 〉 −
m∑
i=1

(Ai(RR
T )− bi) +

σ

2

m∑
i=1

(
Ai(RR

T )− bi
)2
.

3.2 ADMM method

ADMM method considers the following Lagrangian (of the dual program):

Lµ(X,y, S) := −bTy + 〈X,A?(y) + S − C〉+
1

2µ
‖A?(y) + S − C‖2F .

ADMM applies the following recursion:

yk+1 := argmin
y∈Rm

Lµ(Xk,y, Sk), (8)

Sk+1 := argmin
S∈Sn

Lµ(Xk,yk+1, S), S � 0, (9)

Xk+1 := Xk +
A?(yk+1) + Sk+1 − C

µ
. (10)

After some derivations, we have

y(S,X) := −(AA?)−1
(
µ(A(X)− b) +A(S − C)

)
.

Sk+1 is given by
Sk+1 = argmin

S�0
‖S −

(
C −A∗(yk+1)− µXk

)
‖2F .

The next lecture we will cover the proof of convergence.
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