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1 Basic

Linear algebra is widely used in AI and Graphics research. If you have not seriously learned this before,
please take a class. At UT, you can take CS 383C NUMERICAL ANLY: LINEAR ALGEBRA. If you have
learned it before but forgot the technical details (most likely), I recommend you to go through the following
wikipedia page for review:

• Introduction to linear algebra 1.

1.1 Notations

We will use the following convention throughout all the lectures:

• Capital letters denote matrices, e.g., A,B,C, · · · .

• Lowercase bold face letters denote vectors, e.g., x,y, z, · · · .

• Lowercase letters denote scalars, e.g., s, t, · · · .

• ei = (0, · · · , 1, · · · , 0)T is the reserved for the canonical basis of Rn.

2 Spectral of Normalized Adjacency Matrix

Eigenvalues and eigenvectors of a square matrix are very fundamental concepts in matrix theory. We are
particularly interested in symmetric matrices. Specifically, given a symmetric matrix A ∈ Rn×n, it has n
eigenvalues λ1(A) ≥ · · · ≥ λn(A) and n eigenvectors u1(A), · · · ,un(A). The eigenvalues and eigenvectors
are related by the following equality

Aui = λiui, 1 ≤ i ≤ n.
Equivalently, we can write out the eigen-decomposition of A as

A = UΛUT , (1)

where
U = (u1, · · · ,un), Λ = diag(λ1, · · · , λn).

In this lecture, we use some basic facts of spectral graph theory to study properties of eigenvalues and
eigenvectors of square matrices. Spectral techniques are widely used in Graphics and AI, we will have three
lectures on this topic later this semester.

1https://en.wikipedia.org/wiki/Linear algebra
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Consider a connected graph of n vertices G = ({1, · · · , n}, E). With di we denote the vertex degree of
i-th vertex. Consider so-called normalized adjacency matrix A ∈ Rn×n, whose elements are given by

Aij =

{
1√
didj

(i, j) ∈ E
0 otherwise

We will prove the following facts:

Fact 2.1. 1 is an eigenvalue of A, and the corresponding eigenvector is u1 = (
√

d1∑
i
di
, · · · ,

√
dn∑
i
di

).

Proof. The proof reviews matrix-vector multiplication. In fact, let N (i) ⊂ {1, · · · , n} collects indices of the
neighboring vertices of vertex i, then

eTi Au1 =
∑

j∈N (i)

1√
didj

·
√√√√ dj∑

k

dk

=
1√
di

∑
j∈N (i)

√√√√ 1∑
k

dk

=

√√√√ di∑
k

dk
.

Fact 2.2. The eigenvalues of A are between −1 and 1.

The proof of the following fact will use a different definition of eigenvalues for symmetric matrices:

λ1(A) = max
x∈Rn

xTAx

xTx
, (2)

λn(A) = min
x∈Rn

xTAx

xTx
. (3)

The proof is easy — using (1), we have

max
x∈Rn

xTAx

xTx
= max

x∈Rn

(UTx)T Λ(UTx)

(UTx)T (UTx)

= max
y∈Rn

yT Λy

yTy

= max
y∈Rn

n∑
i=1

λiy
2
i

n∑
i=1

y2i

= λ1. (4)

We can generalize (2) and (3) to other eigenvalues. For example,

λi(A) = max
x∈Rn,uT

1 x=0,··· ,uT
i−1x=0

xTAx

xTx
,

λi(A) = min
x∈Rn,uT

nx=0,··· ,uT
i+1x=0

xTAx

xTx
. (5)
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Alternatively, we have

λi(A) = min
U,dim(U)=n−i

max
x∈U

xTAx

xTx
,

λi(A) = max
U,dim(U)=i

min
x∈U

xTAx

xTx
. (6)

The proofs are more details can be found at Rayleigh quotient (https://en.wikipedia.org/wiki/Rayleigh_
quotient) and min-max theorem (https://en.wikipedia.org/wiki/Min-max_theorem). Now we give the
proof of Fact 2.2.

Proof of Fact 2.2. First of all,

xTAx =
∑

(i,j)∈E

xixj√
didj

=
1

2

∑
(i,j)∈E

(
(
xi√
di

+
xj√
dj

)2 − x2i
di
−
x2j
dj

)
≥ −1

2

∑
(i,j)∈E

(x2i
di

+
x2j
dj

)

= −1

2

( n∑
i=1

∑
j∈N (i)

x2i
di

+

n∑
j=1

∑
i∈N (j)

x2j
dj

)
= −1

2
(2

n∑
i=1

x2i )

= −
n∑

i=1

x2i . (7)

In other words,
λn(A) ≥ −1.

In the other direction,

xTAx =
∑

(i,j)∈E

xixj√
didj

=
1

2

∑
(i,j)∈E

(
− (

xi√
di
− xj√

dj
)2 +

x2i
di

+
x2j
dj

)
≤ 1

2

∑
(i,j)∈E

(x2i
di

+
x2j
dj

)

=

n∑
i=1

x2i , (8)

which means
λ1(A) ≤ 1.

3 Registration

We proceed to consider singular values and singular value decompositions of matrices. Given a matrix
A ∈ Rm×n(assuming m < n for simplicity), its singular value decompositions admit the form

A = UΣV T , (9)
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where U = (u1, · · · ,um) ∈ O(m) and V = (v1, · · · ,vn) ∈ O(n) are unitary matrices that collect singular
vectors ui,vj ; Σ = (diag(σ1, · · · , σm), 0) is a generalized diagonal matrix that collects its singular values
σi ≥ 0, 1 ≤ i ≤ m.

Now we apply singular value decomposition to a concrete problem. We are interested in estimating the
best rigid translation between two point clouds with known correspondences. Formally speaking, we are
given two point clouds in Rk: P = (p1, · · · ,pn) and Q = (q1, · · · , qn). pi and qi are linked. You can think
that these point clouds come from the feature points of two 3D shapes, and the correspondences come from
matching feature descriptors.

We estimate the best rigid transformation R ∈ SO(m), t by solving the following minimization problem:

min
R,t

n∑
i=1

‖Rpi + t− qi‖2 (10)

In other words, the rigid transform aligns the corresponding points in L2 norm. Rotations are formally called
signed unitary matrices, i.e., det(R) = 1, R ∈ O(m). Note that det(R) = −1, R ∈ O(m) encode matrices
that encode reflection symmetries (which also preserve pair-wise distances). Please refer to https://en.

wikipedia.org/wiki/Rotation_group_SO(3) and https://en.wikipedia.org/wiki/Orthogonal_group

for further reading.

Now we describe how to solve (10). First, we notice that when R is fixed, the objective function is
quadratic in t, and the optimal solution admits the following form

t? = R(
1

n

n∑
i=1

pi)−
( 1

n

n∑
i=1

qi

)
. (11)

In fact, for points a1, · · · ,an,

1

n

n∑
i=1

ai := argmin
x

n∑
i=1

‖x− ai‖2.

Denote

p =
1

n

n∑
i=1

pi, q =
1

n

n∑
i=1

qi,

and let
P = (p1 − p, · · · ,pn − p), Q = (q1 − q, · · · , qn − q).

Substituting (11) into (10), it is easy to see that the optimal R? is given by

R? = argmin
R

‖RP −Q‖2F . (12)

To proceed, we will use the so-called matrix inner product, which is tied to both the Frobenius norm and
trace of matrices https://en.wikipedia.org/wiki/Trace_%28linear_algebra%29. More precisely, the
inner product between two matrices A,B ∈ Rm×n is given by

〈A,B〉 =

m∑
i=1

n∑
j=1

aijbij = Trace(ABT ) = Trace(ATB).

The matrix inner product can be used to encode the Frobenius norm:

‖X‖2F = 〈X,X〉.

It also possesses many standard properties such as

〈X,Y + Z〉 = 〈X,Y 〉+ 〈X,Z〉.

Please refer tohttps://en.wikipedia.org/wiki/Frobenius_inner_product for more details.
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With this setup, we can expand

‖RP −Q‖2F = 〈RP −Q,RP −Q〉
= ‖RP‖2F + ‖Q‖2F − 2〈RP,Q〉
= ‖RP‖2F + ‖Q‖2F − 2Trace(RPQT ). (13)

Denote S = PQT , the optimal solution is given by

R? = max
R

Trace(RS). (14)

In the following, we will derive an explicit formula for R?. First of all, when S is a diagonal matrix with
non-negative diagonal entries, i.e., S = diag(s1, · · · , sm), we have

Trace(RS) =

m∑
i=1

Riisi.

Since the largest possible value for each Rii is 1. So the optimal solution for (14) is R? = Im.

Now how to turn S into a diagonal matrix? Well, one possibility is to use singular value decomposition.
Let S = UΣV T be the SVD of S. We have

Trace(RS) = Trace(RUΣV T ) = Trace(V TRUΣ),

where we have used the most importance property about matrix trace, i.e., Trace(AB) = Trace(BA).
Applying what we have just derived, the optimal solution shall satisfy V TR?U = Im, or in other words,

R? = V · UT .

Are we done?.... Unfortunately not, because we have forgot the constraint that det(R?) = 1. When det(S) ≥
0, we have det(U) · det(V ) = 12, which means det(R?) = 1. However, when det(S) < 0, det(U) · det(V ) =
−1, and we have to do more work. In fact, we have to solve the following optimization problem: Given
s1 ≥ · · · ≥ sm ≥ 0,

max
R∈O(k),det(R)=−1

k∑
i=1

Riisi. (15)

This becomes non-trivial problem. We will have to use a fact that was proven in [1]: Consider the diagonal
entries of a matrix R ∈ O(k),det(R) = −1 as the vector in Rk. The convex-hull of these vectors are given by
the convex hull of the points (Â±1, ..., Â±1) with an odd number of−1s. In this convex hull, a linear objective
function is attached at the vertices. So the optimal solution is given by Rii = 1, 1 ≤ i ≤ k − 1, Rkk = −1.

References
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2When det(S) = 0, you can flip at least one column of U without changing the decomposition.
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