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Disclaimer

This note is adapted from

•

• Section 17 of Numerical Optimization by Jorge Nocedal and Stephen J. Wright. Springer series in
operations research and financial engineering. Springer, New York, NY, 2. ed. edition, (2006)

• http://mpc.zib.de/index.php/MPC/article/viewFile/40/20

1 The Quadratic Penalty Method

Consider the optimization problem described below:

min
x

f(x) subject to ci(x) = 0, i ∈ E . (1)

The quadratic penalty function Q(x, µ) for this formulation is

Q(x;µ) := f(x) +
µ

2

∑
i∈E

c2i (x), (2)

where µ > 0 is the penalty parameter.

Quadratic Penalty Method.

• Given µ0 > 0, a non-negative sequence {τk} with τk → 0, and a starting point xs
0;

• for k = 0, 1, 2, · · ·

• Find an approximate minimizer xk ofQ(·;µk), starting at xs
k, and terminating when ‖∇xQ(x;µk)‖ ≤

τk

• if final convergence test satisfied stop with approximate solution xk; end (if)

• Choose new penalty parameter µk+1 > µk;

• Choose new starting point xsk+1;

• end (for)
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Convergence of The Quadratic Penalty Method.

Theorem 1.1. Suppose that each xk is the exact global minimizer of Q(x;µk) defined by (2) in the framework
described above, and that µk →∞. Then every limit point x? of the sequence xk is a global solution of the
problem.

The theorem above considers the case where an exact solution is obtained at each iteration. For inexact
solutions, we have:

Theorem 1.2. Suppose that the tolerances and penalty parameters in the framework above satisfy τk → 0
and µk → ∞. Then if a limit point x? of the sequence {xk} is infeasible, it is a stationary point of the
function ‖c(x)‖2. On the other hand, if a limit point x? is feasible and the constraint gradients ∇ci(x?)
are linearly independent, then x? is a KKT point for the problem. For such points, we have for any infinite
subsequence K such that limk∈K xk = x? that

lim
k∈K
−µkci(xk) = λ?i , for all i ∈ E .

where λ? is the multiplier vector that satisfies the KKT conditions for the quality-constrained problem.

2 Augmented Lagrangian Method: Equality Constraints

We consider first the equality-constrained problem. The quadratic penalty function Q(x;µ) penalizes con-
straint violations by squaring the infeasibilities and scaling them by µ/2. As we see from Theorem 1.2, how-
ever, the approximate minimizers xk ofQ(x;µk) do not quite satisfy the feasibility conditions ci(x) = 0, i ∈ E .
Instead, they are perturbed so that

ci(xk) ≈ −λ?i /µk, for all i ∈ E . (3)

To be sure, we have ci(xk) → 0 as µk → ∞, but one may ask whether we can alter the function Q(x;µk)
to avoid this systematic perturbation-that is, to make the approximate minimizers more nearly satisfy
the equality constraints ci(x) = 0, even for moderate values of µk. The augmented Lagrangian function
LA = (x, λ;µ) achieves this goal by including an explicit estimate of the Lagrange multipliers λ, based on
the estimate (3), in the objective. From the definition

LA(x, λ;µ) := f(x)−
∑
i∈E

λici(x) +
µ

2

∑
i∈E

c2i (x). (4)

we see that the augmented Lagrangian differs from the (standard) Lagrangian by the presence of the squared
terms, while it differs from the quadratic penalty function (2) in the presence of the summation term involving
λ. In this sense, it is a combination of the Lagrangian function and the quadratic penalty function. We now
design an algorithm that fixes the penalty parameter µ to some value µk > 0 at its kth iteration, fixes λ at
the current estimate λk, and performs minimization with respect to x. Using xk to denote the approximate
minimizer of LA(x, λk;µk), we have by the optimality conditions for unconstrained minimization that

0 ≈ ∇xLA(xk, λk;µk) = ∇f(xk)−
∑
i∈E

[λki − µkci(xk)]∇ci(xk). (5)

By comparing with the optimality conditions (assuming xk is already close to x?, we can deduce that

λ?i ≈ λki − µkci(xk), for all i ∈ E . (6)

By rearranging this expression, we have that

ci(xk) ≈ − 1

µk
(λ? − λk), for all i ∈ E ,
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so we conclude that if λk is close to the optimal multiplier vector λ?, the infeasibility in xk will be much
smaller than 1/µk, rather than being proportional to 1/µk as in Theorem 1.2. The relation (6) immedi-
ately suggests a formula for improving our current estimate λk of the Lagrange multiplier vector, using the
approximate minimizer xk just calculated: We can set

λk+1
i = λki − µkci(xk), for all i ∈ E .

Augmented Lagrangian Method-Equality Constraints.

• Given µ0 > 0, tolerance τ0 > 0, and a starting point xs
0 and λ0;

• for k = 0, 1, 2, · · ·

• Find an approximate minimizer xk of LA(·, λk;µk), starting at xs
k, and terminating when

‖∇xLA(xk, λ
k;µk)‖ ≤ τk

• if final convergence test satisfied stop with approximate solution xk; end (if)

• Update Lagrange multipliers using (6) to obtain λk+1;

• Choose new penalty parameter µk+1 > µk;

• Choose new starting point xsk+1 = xk;

• Select tolerance τk+1;

• end (for)

Properties of The Augmented Lagrangian. We now prove two results that justify the use of the
augmented Lagrangian function and the method of multipliers for equality-constrained problems. The first
result validates the approach of above framework by showing that when we have knowledge of the exact
Lagrange multiplier vector λ? the solution x? is a strict minimizer of LA(x, λ;µ) for all µ sufficiently large.
Although we do not know λ? exactly in practice, the result and its proof suggest that we can obtain a
good estimate of x? by minimizing LA(x, λ;µ) even when µ is not particularly large, provided that λ is a
reasonably good estimate of λ?.

Theorem 2.1. Let x? be a local solution of (1) at which the LICQ is satisfied (that is, the gradients∇ci(x?), i ∈
E, are linearly independent vectors), and the second-order sufficient conditions specified are satisfied for
λ = λ?. Then there is a threshold value µ− such that for all µ ≥ µ−, x? is a strict local minimizer of
LA(x, λ?;µ).

Theorem 2.2. Suppose that the assumptions of Theorem 2.1 are satisfied at x? and λ? and let µ− be chosen
as in that theorem. Then there exist positive scalars δ, ε and M such that the following claims hold:

• For all λk and µk satisfying
‖λk − λ?‖ ≤ µkδ, µk ≥ µ−, (7)

the problem
min
x
LA(x, λk;µk) s.t.‖x? − x?‖ ≤ ε

has a unique solution xk. Moreover, we have

‖xk − x?‖ ≤M‖λk − λ?‖/µk.

• For all λk and µk that satisfy (7), we have

‖λk+1 − λ?‖ ≤M‖λk − λ?‖/µk, (8)

where λk+1 is given by the formula (6).

• For all λk and µk that satisfy (7), the matrix ∇2
xxLA(xk, λk;µk) is positive definite and the constraint

gradients ∇ci(xk), i ∈ E, are linearly independent.
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