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1 Basic

You need to be familiar with basics Probability theory. A good Wikipedia page for review is https:

//en.wikipedia.org/wiki/Probability. The focus of this lecture is on concentration inequalities.

2 Markov Inequality

Markov’s inequality gives an upper bound for the probability that a non-negative function of a random
variable is greater than or equal to some positive constant. It is named after the Russian mathematician
Andrey Markov. Markov’s inequality (and other similar inequalities) relate probabilities to expectations,
and provide (frequently loose but still useful) bounds for the cumulative distribution function of a random
variable.

Fact 2.1. Formally speaking, if X is a non-negative random variable and choose a > 0, then the probability
that X is no less than a is no greater than the expectation of X divided by a:

P (X ≥ a) ≤ E[X]

a
. (1)

Proof: For any event E, let IE be the indicator random variable of E, that is, IE = 1 if E occurs and IE = 0
otherwise.

Using this notation, we have I(X ≥ a) = 1 if the event X ≥ a occurs, and I(X ≥ a) = 0 if X < a. Then,
given a > 0,

aI(X ≥ a) ≤ X,

which is clear if we consider the two possible values of X ≥ a. If X < a, then I(X ≥ a) = 0, and so
aI(X ≥ a) = 0 ≤ X. Otherwise, we have X ≥ a, for which I(X ≥ a) = 1, and so aI(X ≥ a) = (a ≤ X).

Since E is a monotonically increasing function, taking expectation of both sides of an inequality cannot
reverse it. Therefore,

E(aI(X ≥ a)) ≤ E(X).

Now, using linearity of expectations, the left side of this inequality is the same as

aE(I(X ≥ a)) = a(1 · P (X ≥ a) + 0 · P (X < a)) = aP (X ≥ a).

Thus we have
aP (X ≥ a) ≤ E(X).

and since a > 0, we can divide both sides by a.

Markov’s inequality has a version in the language of measure theory:
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Fact 2.2. In the language of measure theory, Markov’s inequality states that if (X,Σ, µ) is a measure space,
f is a measurable extended real-valued function, and ε > 0, then

µ({x ∈ X : |f(x)| ≥ ε}) ≤ 1

ε

∫
X

|f |dµ. (2)

This measure theoretic definition is sometimes referred to as Chebyshev’s inequality (Andrew Markov’s
teacher).

Markov’s inequality is the foundation for deriving provable bounds. However, it is usually not applied
on random variables directly, but rather transformations of random variables. For example, if we apply
Markov’s inequality to (X − E[X])2, we obtain Chebyshev’s inequality:

P (|X − E[X]| ≥ a) ≤ V ar[X]

a2
.

2.1 Power Moment

In this section, we are interested in derivating a concentration bound on Rademacher variables. Specifically,
suppose we have n independent random variables X1, · · · , Xn. Each variable Xi takes 1 or −1 with equal
probability. It is clear that

E(Xi) = 0, E(X2
i ) = 1, 1 ≤ i ≤ n.

We want to estimate the value of

s =

n∑
i=1

Xi.

We look at what the so-called power moment offers.

The basic idea is to look at E(s2k). The Markov’s inequality then gives

P (|s| ≥ a) ≤ E(s2k)

a2k
. (3)

As you will see later, we will get tighter and tighter bounds by varying k. Our goal is to look for a small
upper bound on P (|s| ≥ a) when a = O(

√
n log(n)).

When k = 1. We have

E(s2) = E
(
(

n∑
i=1

Xi)
2
)

= n, (4)

where we have used the fact that for different i and j, Xi and Xj are independent, so E(XiXj) = 0. Applying
(3), we have

P (|s| ≥ c
√
n log(n)) ≤ 1

c2 log(n)
. (5)

This is actually not bad. But let us look at what k = 2 offers. In fact,

E(s4) = E((

n∑
i=1

Xi)
4)

=
∑

1≤i1,i2,i3,i4≤n

E[Xi1Xi2Xi3Xi4 ]. (6)

In order for E[Xi1Xi2Xi3Xi4 ] to be non-zero. There are two possibilities

• Type I. i1 = i2 = i3 = i4. There are n such possibilities, and the total contribution to E(s4) is n.
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• Type II. is1 = it1 6= is2 = it2 , {s1, t1, s2, t2} = {1, 2, 3, 4}. First of all, there are 3 such configurations.
For each configuration, there are n(n − 1) different E[Xi1Xi2Xi3Xi4 ], and the contribution of each
term is 1. So the total contribution is 3n(n− 1).

As a summary, we have
E(s4) = 3n(n− 1) + n.

This means

P (|s| ≥ c
√
n log(n)) ≤ n(3n− 2)

c4n2 log2(n)
≤ 3

c4 log2(n)
. (7)

(7) improves from (5) by a log(n) factor, this motivates us to look at bigger values of k. Before proceeding,
we do a big relaxation by just counting Type 2 while allow is1 = is2 when enumerating is1 and is2 . This
will, however, count Type 1 multiple times (6 times when k = 2). Nevertheless, as we will see later, this
relaxation will not incur any change in the order of the approximation.

Generally speaking, there are (2k)!
k!2k

configurations of 2-pairs from 2k elements. The contribution of each

configuration is upper bounded by nk. Please be aware that different configurations multiple times. This
can be easily understood via recursion. So we have

E(s2k) ≤ (2k)!

k!2k
nk.

This means

P (|s| ≥ c
√
n log(n)) ≤ (2k)!

k! · 2k · c2k · logk(n)
. (8)

Using Stirling’s approximation n! ≈
√

2πn(n
e )n, we have

P (|s| ≥ c
√
n log(n)) ≤

√
2
( 2k

ec2 log(n)

)k
. (9)

Let k = c2 log(n), we have

P (|s| ≥ c
√
n log(n)) ≤

(2c2
ec2
)c2 log(n)

= nc2 log(
2c2
ec2

). (10)

We can optimize c2 to minimize the right-hand side of (10), the optimal c2 is given by

c2 =
ec2

2
e−

ec2

2 .

In other words, we have

P (|s| ≥ c
√
n log(n)) ≤ n− c2

2 .

2.2 Exponential Moment

We will cover Pages 12-16 of https://www.stat.berkeley.edu/~mjwain/stat210b/Chap2_TailBounds_

Jan22_2015.pdf.
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