
Lecture 4: CS395T Numerical Optimization for

Graphics and AI — Fundamentals of Unconstrained

Optimization

Qixing Huang
The University of Texas at Austin

huangqx@cs.utexas.edu

1 Disclaimer

This note is adapted from Section 2 of

• Numerical Optimization by Jorge Nocedal and Stephen J. Wright. Springer series in operations research
and financial engineering. Springer, New York, NY, 2. ed. edition, (2006)

2 Classifying Optimization Problems

2.1 Unconstrained versus Constrained Optimization

Optimization can be divided into unconstrained problems and constrained problems. Unconstrained prob-
lems are typically formulated as

minimize
x∈Rn

f(x),

where f : Rn → R is a continuous function (usually we also assume f is smooth, and please refer to the
discussion later).

Constrained optimization problems are formulated as

minimize
x∈Rn

f(x)

subject to x ∈ D

D, which is called the feasible region in most cases, are specified by various constraints. The types of
constraints include linear/non-linear constraints as well as equality/inequality constraints.

Note that unconstrained and constrained problems are not mutually exclusive. For example, when solving
a linear program

minimize
x∈Rn

cTx

subject to Ax ≥ b (1)

We can convert (1) into a unconstrained problem using the so-called log-barrier:

minimize
x∈Rn

cTx− λT log(Ax− b)

1



As another example, in non-rigid deformation we typically solve the following optimization problem

minimize
pi,ci,1≤i≤n

µ
∑
i∈H
‖hi − pi‖2 +

n∑
i=1

‖ exp(ci×)(prest
i − prest

j )− (pi − pj)‖2, (2)

where Ri = exp(ci×) gives the parameterization of the rotation at each vertex using the exponential map.
It is clear that

minimize
pi,Ri,1≤i≤n

µ
∑
i∈H
‖hi − pi‖2 +

n∑
i=1

‖Ri(prest
i − prest

j )− (pi − pj)‖2

subject to Ri ∈ SO(3), 1 ≤ i ≤ n (3)

(3) is called constrained optimization. However, (3) turns out to be easier to optimize, e.g., via alternating
minimization. When Ri is fixed, pi can be optimized by solving a linear system. When pi are fixed, Ri can
be optimized independently, by solving a registration with known correspondence problem.

2.2 Smooth versus Non-smooth

Optimization problems can be classified into smooth optimization problems (e.g., f is smooth) and non-
smooth optimization problems (e.g., the second order derivatives of f do not exist at some points). Non-
smooth problems are hard to optimize, since we cannot predict what is going on when crossing singular
points. What people typically do is to convert non-smooth problems into smooth problems. For example,

minimize
x∈Rn

‖Ax− b‖1 (4)

can be first converted into solving a linear program

minimize
x∈Rn

1Ts

subject to Ax− b ≤ s

Ax− b ≥ −s

which can then be converted into solving a smooth optimization via the log-barrier:

minimize
x∈Rn

1Ts− λ1T (log(s−Ax + b)− λ1T log(Ax− b + s) (5)

Note that the value of λ is gradually decreasing so that the objective functions of (4) and (5) are close
enough.

2.3 Convex versus Non-convex

Convex optimization problems stand for the problems where both the objective function and the constraints
are convex functions (we will talk about this later). The remaining problems are generally called non-
convex problems. Convex problems are generally easier to solve than non-convex problems. On the other
hand, when solving non-convex problems, we typically solve local convex proxies, e.g., trust region methods.
Convex problems have been the major focus in the research community. Recent interests shift from convex
optimization to non-convex optimization. In particular, training neural networks amounts to solve non-
convex optimization problems.

3 What is a Solution?

Definition 3.1. A point x? is a global minimizer if f(x?) ≤ f(x) for all x ∈ Rn.

2



Global minimizers are hard to find, and most algorithms can only find local minimizers. Formally
speaking,

Definition 3.2. A point x? is a local minimizer if there is a neighborhood N of x? such that f(x?) ≤ f(x)
for x ∈ N .

Recall what we have learned in calculus that the neighborhood of x? is simply an open set that contains
x?. A point that satisfies this definition is sometimes called a weak local minimizer. This terminology
distinguishes it from a strict local minimizer, which is the outright winner in its neighborhood. Formally,

Definition 3.3. A point x? is a strict local minimizer (also called a strong local minimizer) if there is a
neighborhood of N of x? such that f(x?) < f(x for all x ∈ N with x 6= x?).

A different and sometimes more useful definition is as follows:

Definition 3.4. A point x? is an isolated local minimizer if there is a neighborhood N of x? such that x?

is the only local minimizer in N .

The book gives one example where strict local minimizers are not isolated:

f(x) = x4 cos(1/x) + 2x4, f(0) = 0.

f is twice continuously differentiable and has a strict local minimizer at x? = 0.

3.1 Recognizing a Local Minimum

If f is twice continuously differentiable, we may be able to tell that x? is a local minimizer (and possibly a
strict local minimizer) by examining just the gradient ∇f(x?) and the Hessian ∇2f(x?). The mathematical
tool used to study minimizers of smooth functions is Taylor’s thereom. The proof can be found in any
Calculus textbook.

Theorem 3.1. (Taylor’s Theorem) Suppose that f : Rn → R is continuously differentiable and that p ∈ Rn.
Then we have that

f(x + p) = f(x) +∇f(x + tp)Tp, (6)

for some t ∈ (0, 1). Moreover, if f is twice continuously differentiable, we have that

∇f(x + p) = ∇f(x) +

1∫
0

∇2f(x + tp)pdt, (7)

and that

f(x + p) = f(x) +∇f(x)Tp +
1

2
pT∇2f(x + tp)p, (8)

for some t ∈ (0, 1).

Theorem 3.2. (First-Order Necessary Conditions) If x? is a local minimizer and f is continuously differ-
entiable in an open neighborhood of x?, then ∇f(x?) = 0.

Suppose ∇f(x?) 6= 0. The proof looks at the value of f in the neighborhood of x? in the direction defined

by − ∇f(x?)
‖∇f(x?)‖ .

Theorem 3.3. (Second-Order Necessary Conditions). If x? is a local minimizer of f and ∇2f is continuous
in an open neighborhood of x?, then ∇f(x?) = 0 and ∇2f(x?) is positive semidefinite.

The proof applies the continuity of ∇2f(x) in the neighborhood of x? as well the second-order Taylor
expansion,

f(xstar + tp) = f(x?) + tpT∇f(x?) +
1

2
t
2
pT∇2f(x? + tp)p.

3



Theorem 3.4. (Second-Order Sufficient Conditions). Suppose that ∇2f is continuous in an open neigh-
borhood of x? and that ∇f(x?) = 0 and ∇2f(x?) is positive definite. Then x? is a strict local minimizer of
f .

The following theorem is related to convex functions.

Theorem 3.5. When f is convex, any local minimizer x? is a global minimizier of f . If in addition f is
differentiable, then any stationary point x? is a global minimizer of f .

The proof uses the convexity property, i.e.,

x = λz + (1− λ)x?, for someλ ∈ (0, 1],

then we have
f(x) ≤ λf(z) + (1− λ)f(x?).

4 Overview of Algorithms

There are generally two strategies: Line search and Trust region. In this class, we will also talk about
alternating minimization and stochastic methods, which are variants of this basic method.

4.1 Line Search

In the line search strategy, the algorithm chooses a direction pk and searches along this direction from the
current iterate xk for a new iterate with a lower function value. The distance to move along pk can be found
by approximately solving the following one-dimensional minimization problem to find a step length α:

minimize
α

f(xk + αpk) (9)

By solving (9) exactly, we would derive the maximum benefit from the direction pk, but an exact minimization
is expensive and unnecessary. Instead, the line search algorithm generates a limited number of trial step
lengths until it finds one that loosely approximates the minimum of (9). At the new point a new search
direction and step length are computed, and the process is repeated.

The search direction is crucial in line search algorithms.

• Steepest descent: p = −∇fk/‖∇fk‖.

• Newton method: pNk = −(∇2fk)−1∇fk.

4.2 Trust Region

In the second algorithmic strategy, known as trust region, the information gathered about f is used to
construct a model function mk whose behavior near the current point xk is similar to that of the actual
objective function f . Because the model mk may not be a good approximation of f when x is far from xk,
we restrict the search for a minimizer of mk to some region around xk. In other words, we find the candidate
step p by approximately solving the following sub-problem:

min mk(xk + p), where xk + p lies inside the trust region. (10)

If the candidate solution does not produce a sufficient decrease in f , we conclude that the trust region is
too large, and we shrink it and re-solve (10). Usually, the trust region is a ball defined by ‖p‖ ≤ δ, where

4



the scalar δ > 0 is called the trust-region radius. For some problems, box-shaped trust regions may also be
used. The model mk in (10) is usually defined to be a quadratic function of the form

mk(xk + p) = fk + pT∇fk +
1

2
pTBkp, (11)

where fk , ∇fk , and Bk are a scalar, vector, and matrix, respectively. As the notation indicates, fk and
∇fk are chosen to be the function and gradient values at the point xk, so that mk and f are in agreement
to first order at the current iterate xk. The matrix Bk is either the Hessian ∇2fk or some approximation to
it.

5


	Disclaimer
	Classifying Optimization Problems
	Unconstrained versus Constrained Optimization
	Smooth versus Non-smooth
	Convex versus Non-convex

	What is a Solution?
	Recognizing a Local Minimum

	Overview of Algorithms
	Line Search
	Trust Region


