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1 Disclaimer

This note is adapted from Section 3 of

• Numerical Optimization by Jorge Nocedal and Stephen J. Wright. Springer series in operations research
and financial engineering. Springer, New York, NY, 2. ed. edition, (2006)

2 Introduction

Each iteration of a line search method computes a search direction pk and then decides how far to move
along that direction. The iteration is given by

xk+1 = xk + αkpk, (1)

where the positive scalar αk is called the step length. The success of a line search method depends on
effective choices of both the direction pk and the step length αk. Most line search algorithms require pk

to be a descent direction one for which pT
k∇f(xk) < 0—because this property guarantees that the function

f can be reduced along this direction, as discussed in the previous chapter. Moreover, the search direction
often has the form

pk = −B−1k ∇f(xk), (2)

where Bk is a symmetric and non-singular matrix. In the steepest descent method Bk is simply the identity
matrix I , while in Newton’s method Bk is the exact Hessian ∇2f(xk). In quasi-Newton methods, Bk is an
approximation to the Hessian that is updated at every iteration by means of a low-rank formula. When pk

is defined by (2) and Bk is positive definite, we have

pT
k∇f(xk) = −∇f(xk)TB−1k ∇f(xk) < 0,

and therefore pk is a descent direction. In the next few lectures we study how to choose the matrix Bk, or
more generally, how to compute the search direction. We now give careful consideration to the choice of the
step-length parameter αk.

3 Step Length

In computing the step length αk, we face a tradeoff. We would like to choose αk to give a substantial
reduction of f , but at the same time, we do not want to spend too much time making the choice. The ideal
choice would be the global minimizer of

φ(α) = f(xk + αpk), α > 0, (3)
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but in general, it is too expensive to identify this value. To find even a local minimizer of φ to moderate
precision generally requires too many evaluations of the objective function f and possibly the gradient ∇f .
More practical strategies perform an inexact line search to identify a step length that achieves adequate
reductions in f at minimal cost. Typical line search algorithms try out a sequence of candidate values for α,
stopping to accept one of these values when certain conditions are satisfied. The line search is done in two
stages: A bracketing phase finds an interval containing desirable step lengths, and a bisection or interpolation
phase computes a good step length within this interval.

How to terminate a line-search is critical. We now discuss various termination conditions for the line
search algorithm and show that effective step lengths need not lie near minimizers of the univariate function
φ(α) defined above. A simple condition we could impose on αk is that it provide a reduction in f , i.e.,
f(xk + αkpk) < f(xk). However, this may not be appropriate. For example, consider minimizing f(x) =
(x+ 1)2. We can let xk = 5

k . It is clear that the value of the objective function always goes down. However,
it does not go the minimizer. The difficulty is that we do not have sufficient reduction in f , a concept we
discuss next.

3.1 The Wolfe Conditions

A popular inexact line search condition stipulates that αk should first of all give sufficient decrease in the
objective function f , as measured by the following inequality:

f(xk + αpk) ≤ f(xk) + c1α∇f(xk)Tpk, (4)

for some constant c1 ∈ (0, 1). In other words, if you move far, then you should have more reduction. This
implicitly favors small step-sizes. In practice, c1 is chosen to be small, i.e., c1 = 10−4.

The sufficient decrease condition is not enough by itself to ensure that the algorithm makes reasonable
progress. To rule out unacceptably short steps we introduce a second requirement, called the curvature
condition, which requires αk to satisfy

∇f(xk + αkpk)Tpk ≥ c2∇f(xk)Tpk, (5)

for some constant c2 ∈ (c1, 1), where c1 is the constant from (4). Note that the left-hand-side is simply
the derivative φ′(αk), so the curvature condition ensures that the slope of φ(αk) is greater than c2 times
the gradient φ′(0). This makes sense because if the slope φ(α) is strongly negative, we have an indication
that we can reduce f significantly by moving further along the chosen direction. On the other hand, if the
slope is only slightly negative or even positive, it is a sign that we cannot expect much more decrease in f
in this direction, so it might make sense to terminate the line search. Typical values of c2 are 0.9 when the
search direction pk is chosen by a Newton or quasi-Newton method, and 0.1 when p k is obtained first order
methods.

The sufficient decrease and curvature conditions are known collectively as the Wolfe conditions. We
restate them here for future reference:

f(xk + αkpk) ≤ f(xk) + c1αk∇f(xk)Tpk, (6)

∇f(xk + αkpk)Tpk ≥ c2∇f(xk)Tpk, (7)

with 0 < c1 < c2 < 1.

Lemma 3.1. Suppose that f : Rn → R is continuously differentiable. Let pk be a decent direction at xk,
and assume that f is bounded below along the ray {xk + αpk|α > 0}. Then if 0 < c1 < c2 < 1, there exist
intervals of step lengths satisfying the Wolfe conditions.

The proof is straight-forward using mean-value theorem.
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3.2 Sufficient Decrease and Backtracking

We have mentioned that the sufficient decrease condition alone is not sufficient to ensure that the algorithm
makes reasonable progress along the given search direction. However, if the line search algorithm chooses its
candidate step lengths appropriately, by using a so-called backtracking approach, we can dispense with the
extra condition use just the sufficient decrease condition to terminate the line search procedure. In its most
basic form, backtracking proceeds as follows:

• Choose α > 0, ρ, c ∈ (0, 1); set α← α;

• repeat until f(xk + αpk) ≤ f(xk) + cα∇f(xk)Tpk.

• α← ρα;

• end.

4 Convergence of Line Search Methods

To obtain global convergence, we must not only have well-chosen step lengths but also well-chosen search
directions pk. We discuss requirements on the search direction in this section, focusing on one key property:
the angle θk between pk and the steepest descent direction −∇f(xk), defined by

cos(θk) = − ∇f(xk)Tpk

‖∇f(xk)‖‖pk‖
. (8)

The following theorem, due to Zoutendijk, has far-reaching consequences. It shows, for example, that the
steepest descent method is globally convergent. For other algorithms it describes how far pk can deviate
from the steepest descent direction and still give rise to a globally convergent iteration. Various line search
termination conditions can be used to establish this result, but for concreteness we will consider only the
Wolfe conditions.

Theorem 4.1. Consider any iteration of the form (1), where pk is a descent direction and αk satisfies the
Wolfe conditions. Suppose that f is bounded below in Rn and that f is continuously differentiable in an
open set N containing the level set L := {x : f(x) ≤ f(x0)}, where x0 is the starting point of the iteration.
Assume also that the gradient ∇f is Lipschitz continuous on N , that is, there exists a constant L > 0 such
that

‖∇f(x)−∇f(x̄)‖ ≤ L‖x− x̄‖, ∀x, x̄ ∈ N . (9)

Then ∑
k≥0

cos2(θk)‖∇f(xk)‖2 <∞.

Proof: From the line search conditions, we have that

(∇f(xk+1)−∇f(xk))Tpk ≥ (c2 − 1)∇f(xk)Tpk,

while the Lipschitz condition implies that

(∇fk+1 −∇fk)Tpk ≤ αkL‖pk‖2.

By combing these two relations, we obtain

αk ≥
c2 − 1

L

∇f(xk)Tpk

‖pk‖2
.

By substituting this inequality into the first Wolfe condition, we obtain

f(xk+1) ≤ f(xk)− c1
1− c2
L

(∇f(xk)Tpk)2

‖pk‖2
,
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or in other words,
f(xk+1) ≤ f(xk)− c cos2(θk)‖∇f(xk)‖2,

where c = c1(1− c2)/L. We can conclude the proof by summing this expression over all indices less than or
equal to k, we obtain

fk+1 ≤ f0 − c
k∑

j=0

cos2(θj)‖∇f(xj)‖2.

Steepest decent: lim
k→∞

‖∇f(xk)‖ = 0.

Newton method:

cos(θk) ≥ 1

M
,

where ‖Bk‖‖B−1k ‖ ≤M .

4.1 Convergence Rate

Convergence rate of steepest descent: Let us suppose that

f(x) =
1

2
xTQx− bTx,

where Q is symmetric and positive definite. The gradient is given by ∇f(x) = Qx − b, and the minimizer
x? is the unique solution of the linear system Qx = b.

Let us compute the step length αk that minimizes f(xk − α∇f(xk). By differentiating

f(xk − αgk) =
1

2
(xk − αgk)TQ(xk − αgk)− bT (xk − αgk)

with respect to α, we obtain

α =
∇f(xk)T∇f(xk)

∇f(xk)TQ∇f(xk)
.

If we use this exact minimizer αk, the steepest descent iteration is given by

xk+1 = xk −
( ∇f(xk)T∇f(xk)

∇f(xk)TQ∇f(xk)

)
∇f(xk).

Theorem 4.2. When the steepest descent method with exact line searches is applied, the error norm satisfies

‖xk+1 − x?‖2Q ≤
(
λn − λ1
λn + λ1

)2

‖xk − x?‖2Q (10)

Note that for this function of interest,

1

2
‖x− x?‖2Q = (x− x?)TQ(x− x?) = f(x)− f(x?).

The rate of convergence behavior of the steepest descent method is essentially the same on general non-
linear objective functions. In the following result we assume that the step length is the global minimizer
along the search direction.

Theorem 4.3. Suppose that f : Rn → R is twice continuously differentiable, and that the iterates generated
by the steepest descent method with exact line searches converge to a point x? where the Hessian matrix
∇2f(x?) is positive definite. Then

(f(xk+1)− f(x?)) ≤
(
λn − λ1
λn + λ1

)2

(f(xk)− f(x?)). (11)
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Newton method:

Theorem 4.4. Suppose that f is twice differentiable and that the Hessian ∇2f(x) is Lipschitz continuous
in a neighborhood of a solution x? at which the sufficient conditions are satisfied. Consider the iteration

xk+1 = xk + pk, where pk = −
(
∇2f(xk)

)−1∇f(xk). Then

1. if the starting point x0 is sufficiently close to x?, the sequence of iterates converge to x?;

2. the rate of convergence of xk is quadratic; and

3. the sequence of gradient norms ‖∇f(xk)‖ converges quadratically to zero.
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