
Lecture 6: CS395T Numerical Optimization for

Graphics and AI — Line Search Applications

Qixing Huang
The University of Texas at Austin

huangqx@cs.utexas.edu

1 Disclaimer

This note is adapted from

• Section 3 of Numerical Optimization by Jorge Nocedal and Stephen J. Wright. Springer series in
operations research and financial engineering. Springer, New York, NY, 2. ed. edition, (2006)

• Geometry and convergence analysis of algorithms for registration of 3D shapes. H Pottmann, QX
Huang, YL Yang, SM Hu - International Journal of Computer Vision, 2006.

• http://www.scholarpedia.org/article/Policy_gradient_methods.

2 Rigid Alignment of Depth Scans

This section covers http://www.geometrie.tuwien.ac.at/geom/ig/papers/tr117.pdf.

Given a surface Φ and a point cloud p1, · · · ,pn (which can be considered as sampling from Φ followed by
rotation and translation), our goal is to solve the following optimization problem to recover the underlying
rotation R? and translation t?:

(R?, t?) = argmin
R,t

n∑
i=1

d2(Rxi + t,Φ). (1)

2.1 The squared distance function of a surface

To solve (1) we will have to know the second-order approximation of d2(x,Φ), which is given by

Proposition 1. The second order Taylor approximant of the squared distance function of a surface Φ at a
point p ∈ R3 is expressed in the principal frame at its normal foot point s ∈ Φ via

Fd(x1, x2, x3) =
d

d− ρ1
x21 +

d

d− ρ2
x22 + x23. (2)

Let us look at two important special cases.

• For d = 0 we obtain
F0(x1, x2, x3) = x23.

This means that the second order approximant to d2 at a surface point p is the same for the surface
Φ and for its tangent plane at p. Thus, if we are close to the surface, the squared distance function to
the tangent plane at the closest point to the surface is a very good approximant.

1

http://www.scholarpedia.org/article/Policy_gradient_methods
http://www.geometrie.tuwien.ac.at/geom/ig/papers/tr117.pdf

• For d =∞, we obtain
F∞(x1, x2, x3) = x21 + x22 + x23.

This is the squared distance to the foot point on the surface. We see that distances to normal foot
points are just good if we are in the ‘far field’ of the surface Φ. In the near field it is much better to
use other local quadratic approximants. The simplest one is the squared distance to the tangent plane
at the normal foot point.

2.2 Gradient-Based Method

Please refer to Section 4 of Pottmann et al. 06 for more details.

The directional derivative of F in the direction C = (c, c) is given by

∂F

∂C
=

n∑
i=1

(xi − yi)
Tv(xi) =

n∑
i=1

(fTi c + (xi × f i)
T c).

So any local minimizer satisfies
n∑
i=1

(xi − yi) = 0,

n∑
i=1

xi × (xi − yi) = 0. (3)

To compute the gradient we need the following normalization
n∑
i=1

‖c + c× xi‖2 = 1,

which gives rise to
cTMec = 1.

So the actual gradient is given by

∇eF = M−1e

(∑
i xi × (xi − yi)∑

i(xi − yi)

)

2.3 ICP Revisited

Please refer to Section 5 of Pottmann et al. 06 for more details.

2.4 Quadratically Convergent Registration Algorithms

The rule for Newton-method:
x+ = xc − (∇2F (xc))

−1∇F (xc).

Using first-order motion approximation:
v(x) = c + c× x.

The approximation to the objective function is given by

F2 =
∑
i

2∑
j=1

αij [n
T
i,j(c + c× xi)]

2 + F̂2,

where
F̂2 =

∑
i

(nTi (c + c× xi) + di)
2.

This leads to a linear system. Note that for Gauss-Newton method, we set αi,j = 0.

To obtain quadratically convergent algorithms, we replace v(x) = c + c× x by

v(x) = c + c× x +
1

2
(c× c + (ccT − ‖c‖2I3)xi).

2

3 Policy Gradient Methods

3.1 Assumptions and Notations

We assume that we can model the control system in a discrete-time manner and we will denote the current
time step k. To model the system, we use xk to denote the state vector at iteration k and use uk to denote
the action at iteration k. The state vector at the current iteration k and the next iteration k+ 1 follow from
a distribution

xk+1 ∼ p(xk+1|xk,uk).

We further assume that actions are generated by a policy uk ∼ πθ(uk|xk) which is modeled as a probability
distribution in order to incorporate exploratory actions; for some special problems, the optimal solution to
a control system is actually a stochastic controller. The policy is assumed to be parameterized by K policy
parameters θ ∈ RK .

At each instant of time, the system receives a reward denoted by rk = r(xk,uk) ∈ R. The general goal
of policy optimization in reinforcement learning is to optimize the policy parameters θ ∈ RK so that the
expected return

J(θ) = E{
H∑
k=0

akrk}

is optimized where ak denote time-step dependent weighting factors, often set to ak = γk for some constant
γ ∈ (0, 1) or ak = 1

H , if we are interested in the average reward.

When optimizing J(θ), policy gradient methods which follow the steepest descent on the expected return
are the method of choice. These methods update the policy parameterization according to the gradient
update rule

θh+1 = θh + αh∇θJ |θ=θh ,
here ∇θJ |θ=θh denotes the gradient information, and αh denotes the step-size. Note that the update is given
by +αh∇θJ |θ=θh since we want to maximize the reward. If the gradient estimate is unbiased and learning
rates fulfill

∑∞
h=0 αh > 0 and

∑∞
h=0 α

2
h = const, the learning progress is guaranteed to converge to a local

minimum (something we covered last lecture).

Note that the main problem in policy gradient methods is to estimate ∇θJ |θ=θh accurately. In the fol-
lowing, we will talk about three main approaches. Optimization is fun because even though the number of
optimization strategies is relatively fixed, the implementation of each optimization strategy varies signifi-
cantly across different applications. Policy gradient methods provide one such instance. The rigid alignment
problem we just covered is another problem.

3.2 Finite-Difference Methods

Finite-difference methods are one of the most widely used methods for calculating numerical gradients.
The nice feature of finite-difference methods is that they only require computing the values of objective
functions. The application in policy gradient methods is straight-forward: the policy parameterization is
varied I times by small increments δθi, i = 1, 2, · · · , I and for each policy parameter variation θh + δθi
roll-outs (or trajectory) are performed which generate estimates δĴi ≈ J(θh + δθi) − Jref of the expected
return. There are different ways of choosing the reference value Jref , e.g., forward-difference estimators with
Jref = J(θh) and central-difference estimators with Jref = J(θh− δθi). The policy gradient estimate can be
obtained by regression:

min
x

I∑
i=1

‖δĴi − xT δθi‖2

The choice of number of roll-outs can be essentially, empirically setting I to be twice as the number of
parameters gives accurate gradient estimation.

Advantages.

3

• Easy to implement

Disadvantages.

• Perturbation of the parameters is tricky.

• The error decreases slowly in the presence of noise.

• Performance depends highly on the chosen policy parameterization.

3.2.1 A Few Words about Re-parameterization

Consider a function given by f(g(x)), where g(x) = (g1(x), · · · , gm(x)). The first order derivatives give rise
to

∂f(g(x))

∂x
= [∇g(x)]T∇f(g(x)).

The second-order derivative gives

∂2f(g(x))

∂2x
= [∇g(x)]T∇2f(g(x))[∇g(x)] +

m∑
i=1

∂2gi(x)

∂2x
· ∂f(g(x))

∂xi

It is easy to see that, at any critical point g(x?), the Hessian matrix is given by

∂2f(g(x?))

∂2x
= [∇g(x?)]T∇2f(g(x?))[∇g(x?)].

In other words, re-parameterization can effectively change the condition number of the Hessian-matrix, which
could lead to a huge impact on convergence behavior. The question is can we do this for neural networks,
e.g., via neural network re-parametrization.

3.3 Likelihood Ratio Methods and REINFORCE

Likelihood ratio methods are driven by a different important insight. Assume that trajectories τ are generated
from a system by roll-outs, i.e., τ ∼ pθ(τ) = p(τ |θ) with return r(τ) =

∑H
k=0 akrk which leads to J(θ) =

E[r(τ)] =
∫
T
pθ(τ)r(τ)dτ by using

∇θpθ(τ) = pθ(τ)∇θ log pθ(τ).

This means

∇θJ(θ) =

∫
T
∇θpθ(τ)r(τ)d(τ) = E[∇θ log pθ(τ)r(τ)].

This expectation can be computed by sampling, and the remaining task is to compute ∇θ log pθ(τ). Note
that,

pθ(τ) = p(x0)

H∏
k=0

p(xk+1|xk,uk)πθ(uk|xk)

We will spend one lecture on stochastic methods.

Advantages.

• Theoretically faster convergence rate.

• No-need to generate policy parameter variations.

• This approach has yielded the most real-world robotics results.

Disadvantages.

• One has to maintain a system model for deterministic policy.

4

3.4 Natural Policy Gradients

The KL-divergence between two probability distributions pθ(τ) and pθ+δθ(τ) is given by

dKL(pθ, pθ+δθ) ≈ (δθ)TFθδθ,

where

Fθ =

∫
T
pθ(τ)∇ log pθ(τ)[log pθ(τ)]T dτ

is known as the Fisher-information matrix.

So the natural policy gradient is given by

max
δθ

(δθ)T∇θJ s.t. [δθ]TFθδθ = ε.

The solution to this program is given by
δ ∝ F−1θ ∇θJ.

Advantages.

• Natural policy gradients can be an order of magnitude faster than the regular gradient. They also
profit from most other advantages of the regular policy gradients.

Disadvantages.

• Matrix inverse is numerically brittle.

• Natural policy gradient estimators are often much harder to implement.

5

	Disclaimer
	Rigid Alignment of Depth Scans
	The squared distance function of a surface
	Gradient-Based Method
	ICP Revisited
	Quadratically Convergent Registration Algorithms

	Policy Gradient Methods
	Assumptions and Notations
	Finite-Difference Methods
	A Few Words about Re-parameterization

	Likelihood Ratio Methods and REINFORCE
	Natural Policy Gradients

