
Lecture 8: CS395T Numerical Optimization for

Graphics and AI — Trust Region Methods II

Qixing Huang
The University of Texas at Austin

huangqx@cs.utexas.edu

1 Disclaimer

This note is adapted from

• Section 4 of Numerical Optimization by Jorge Nocedal and Stephen J. Wright. Springer series in
operations research and financial engineering. Springer, New York, NY, 2. ed. edition, (2006)

2 Introduction

In this lecture, we will study the global convergence of trust region methods. We are particularly interested
in the following algorithm:

1. Input: Given ∆̂ > 0, ∆0 ∈ (0, ∆̂), and η ∈ [0, 1
4 ):

2. for k = 0, 1, 2, . . .

3. Obtain pk by approximately solving the subproblem:

pk := argmin
p

mk(p) := fk + gTk p +
1

2
pTBkp

subject to ‖p‖ ≤ ∆k. (1)

4. Evaluate ρk = f(xk)−f(xk+pk)
mk(0)−mk(pk) ;

5. if ρk <
1
4

6. ∆k+1 = 1
4∆k

7. else

8. if ρk >
3
4 and ‖pk‖ = ∆k

9. ∆k+1 = min(2∆k, ∆̂);

10. else

11. ∆k+1 = ∆k;

12. if ρk ≥ η

13. xk+1 = xk + pk
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14. else

15. xk+1 = xk;

16. end(for).

Last lecture, we have talked about how to solve the sub-problem (1) exactly. In this lecture, we study
the global convergence of this algorithm under different strategies for solving (1).

2.1 Algorithms Based on the Cauchy Point

We have discussed line search methods can be globally convergent even when the optimal step length is not
used at each iteration. In fact, the step length αk only need to satisfy fairly loose criteria. A similar situation
applies in trust-region methods. Although in principle we seek the optimal solution of the subproblem, it
is enough for purposes of global convergence to find an approximate solution pk that lies within the trust
region and gives a sufficient reduction in the model. The sufficient reduction can be quantified in terms of
the Cauchy point, which we denote by pCk and define in terms of the following simple procedure.

Cauchy point calculation. The Cauchy point is calculated by following a two step procedure. The
first step determines the search direction by solving the following optimization problem:

pk := argmin
p

fk + gTk p

subject to ‖p‖ ≤ ∆k. (2)

Given the search direction, we then optimize the best step-size τk by solving the reduced trust-region problem
by involving Bk:

τk := argmin
τ

fk + gTk (pkτ) +
1

2
(pkτ)TBk(pkτ)

subject to ‖pkτ‖ ≤ ∆k. (3)

It is easy to see that

pk := −∆k
gk
‖gk‖

,

and

τk :=

{
1 gTkBkgk ≤ 0

min(1, ‖gk‖
3

∆kgT
kBkgk

) gTkBkgk > 0

The Cauchy step pCk = τkpk is inexpensive to calculate—no matrix factorizations are required—and is
of crucial importance in deciding if an approximate solution of the trust-region sub-problem is acceptable.
As we will see later, a trust-region method will be globally convergent if its steps pk give a reduction in the
model mk that is at least some fixed positive multiple of the decrease attained by the Cauchy step.

Cauchy point method can be considered as a specialized version of steepest decent, which may converge
poorly. The major issue is that the second order term Bk is not involved in determining the search direc-
tion. Below we study a few enhanced versions of the Cauchy point method which utilize the second order
information Bk.

Dogleg method. This method is used in the case Bk is positive definite. To motivate this method, we
start by examining the effect of the trust-region radius ∆ on the solution p?(∆) of the sub-problem. When
Bk is positive definite, we have already noted that the unconstrained minimizer of mk is pBk = −B−1

k gk.
When this point is feasible, it is obviously a solution, so we have

p?k(∆k) = pB , when ∆k ≥ ‖pBk ‖.
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When ∆k is small relative to pBk , the restriction ensures that the quadratic term in mk has little effect on
the solution of the sub-problem. For such ∆k, we can get an approximation to p(∆k) by simply omitting
the quadratic term in the sub-problem and writing

p?k(∆k) ≈ −∆k
gk
‖gk‖

, when ∆k is small.

For intermediate ∆k, p?k(∆k) follows a curved trajectory that interpolates xk and pBk . The curved trajectory
is also tangent to gk.

The dogleg method approximates this trajectory by a polygonal curve with three vertices xk, pUk and
pBk . Here pUk is given by the optimal solution along the search direction (requires a bit derivation):

pUk = − ‖gk‖
2

gTkBkgk
gk.

Formally we denote this trajectory as

p̂k(τk) =

{
τkp

U
k , 0 ≤ τk ≤ 1,

pUk + (τk − 1)(pBk − pUk ), 1 ≤ τk ≤ 2.
(4)

The dogleg method chooses pk to minimize the model mk along this path, subject to the trust-region bound.
The following lemma shows that the minimum along the dogleg path can be found easily.

Lemma 2.1. Let Bk be positive definite. Then

• ‖p̂k(τk)‖ is an increasing function of τk, and

• mk(p̂k(τk)) is a decreasing function of τk.

The proof is straight-forward, we will work this in class. The Lemma also gives a way to calculate the
optimal τk:

τk =


∆k

‖pU
k ‖

∆k ≤ ‖pUk ‖
‖pUk + (τk − 1)(pBk − pUk )‖ = ∆k ‖pUk ‖ ≤ ∆k ≤ ‖pBk ‖

2 ∆k ≥ ‖pBk ‖.
(5)

Two-dimensional Sub-space Minimization

minimize
p

mk(p) := fk + gTk p +
1

2
pTBkp

subject to ‖p‖ ≤ ∆k, p ∈ span[gk, B
−1
k gk]. (6)

When Bk is indefinite, we can replace B−1
k gk by (Bk + αI)−1gk, where α ∈ (−λn(Bk),−2λn(Bk)).

3 Global Convergence

The main argument we will develop is that the dogleg and two-dimensional subspace minimization algorithms
produce approximate solutions pk of the sub-problem that satisfy the following estimate of decrease in the
model function:

mk(0)−mk(pk) ≥ c1‖gk‖min
(

∆k,
‖gk‖
‖Bk‖

)
, (7)

for some constant c1 ∈ (0, 1]. The usefulness of this estimate will become clear in the following two sections.
For now, we note that when ∆k is the minimum value in (7), the condition is slightly reminiscent of the first
Wolfe condition: The desired reduction in the model is proportional to the gradient and the size of the step.
We show now that the Cauchy point pCk satisfies (7), with c1 = 1

2 .
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Lemma 3.1. The Cauchy point pCk satisfies (7) with c1 = 1
2 , that is,

mk(0)−mk(pCk ) ≥ 1

2
‖gk‖min(∆k,

‖gk‖
‖Bk‖

). (8)

To satisfy (8), our approximate solution pk has only to achieve a reduction that is at least some fixed
fraction c2 of the reduction achieved by the Cauchy point. We state the observation formally as a theorem.

Theorem 3.1. Let pk be any vector such that ‖pk‖ ≤ ∆k and mk(0) − mk(pk) ≥ c2(mk(0) − mk(pCk )).
Then pk satisfies (8) with c1 = c2

2 . In particular, if pk is the exact solution p?k of the sub-problem, then it
satisfies (8) with c1 = 1

2 .

Note that the dogleg and two-dimensional subspace minimization algorithms both satisfy (8) with c1 = 1
2 ,

because they all produce approximate solutions pk for which mk(pk) ≤ mk(pCk ).

Convergence to Stationary Points. We make a few assumptions regarding the objective function f :

• f is bounded below on the level set

S := {x|f(x) ≤ f(x0)}.

• We also consider an open neighborhood of this set by

S(R0) := {x|‖x− y‖ < R0 for some y ∈ S}.

• We also allow the length of the approximate solution pk of the sub-problem to exceed the trust-region
bound, provided that it stays within some fixed multiple of the bound; that is, for some constant γ ≥ 1,

‖pk‖ ≤ γ∆k. (9)

The first result deals with the case γ = 0.

Theorem 3.2. Let γ = 0. Suppose that ‖Bk‖ ≤ β for some constant β, that f is bounded below on the
level set S and Lipschitz continuously differentiable in the neighborhood S(R0) for some R0 > 0, and that all
approximate solutions pk of the sub-problem satisfy the inequalities (8) and (9) for some positive constants
c1 and γ. We then have

lim inf ‖gk‖ = 0.

Sketch proof: First of all, we can obtain

|ρk − 1| = |mk(pk)− f(xk + pk)

mk(0)−mk(pk)
|.

Using the bound on Bk and the Lipschitz continuity condition, we have

|mk(pk)− f(xk + pk)| ≤ (
β

2
)‖pk‖2 + β1‖pk‖2.

Show that the following argument leads to a contradiction:

‖gk‖ ≥ ε, for all k ≥ K.

A similar analysis leads to

Theorem 3.3. Let γ ∈ (0, 1
4 ). Suppose that ‖Bk‖ ≤ β for some constant β, that f is bounded below on

the level set S and Lipschitz continuously differentiable in S(R0) for some R0 > 0, and that all approximate
solutions pk of the sub-problem satisfy the inequalities (8) and (9) for some positive constants c1 and γ. We
then have

lim gk = 0.
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