CS395T: Numerical Optimization for Graphics and AI: Homework III

1 Guideline

- Please complete **3** problems out of **8** problems, and please complete at least one problem in the theory session.
- You are welcome to complete more problems.

2 Programming

Each problem in this section counts as two.

Problem 1 and Problem 2. We are interested in solving the following low-rank matrix problem. Given a sparse observation pattern $G = (g_{ij})_{1 \le i,j \le n} \in \{0,1\}^{n \times n}$ and a data matrix $A = (a_{ij})_{1 \le i,j \le n} \in \mathbb{R}^{n \times n}$, our goal is to recover a low-rank matrix pair $B \in \mathbb{R}^{n \times r}$, $C \in \mathbb{R}^{r \times n}$ by minimizing

$$\underset{B,C}{\text{minimize}} \sum_{i=1}^{n} \sum_{j=1}^{n} g_{ij} (a_{ij} - (\boldsymbol{e}_{i}^{T}B)(C\boldsymbol{e}_{j}))^{2} + \frac{\mu}{2} (\|B\|_{\mathcal{F}}^{2} + \|C\|_{\mathcal{F}}^{2}),$$

where μ is a small constant, which makes the optimization problem non-degenerate. Implement a trust-region method for solving this problem, and compare it against alternating minimization of B and C.

3 Theory

Problem 3. Derive necessary and sufficient conditions for p^* being a optimal solution to the following optimization problem:

$$\begin{array}{ll} \underset{\boldsymbol{p}}{\text{minimize}} & \boldsymbol{g}^{T}\boldsymbol{p} + \frac{1}{2}\boldsymbol{p}^{T}B\boldsymbol{p} \\ \text{subject to} & \boldsymbol{p}^{T}A\boldsymbol{p} \leq d^{2}, \end{array}$$
(1)

where B is symmetric and A is positive semidefinite (not necessarily positive definite).

Problem 4. Derive a close-form solution for the 2D trust-region problem under the L1-norm:

$$\begin{array}{ll}
\underset{x,y\in\mathbb{R}}{\text{minimize}} & \left(\begin{array}{cc} x & y \end{array}\right) \left(\begin{array}{c} b_1 \\ b_2 \end{array}\right) + \frac{1}{2} \left(\begin{array}{cc} x & y \end{array}\right) \left(\begin{array}{c} a_{11} & a_{12} \\ a_{12} & a_{22} \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) \\
\text{subject to} & |x| + |y| \le d.
\end{array}$$
(2)

Your solution should be as a close-form of $b_1, b_2, a_{11}, a_{12}, a_{22}, d$.

Problem 5. Derive an optimally condition for the following trust region sub-problem for optimizing rotations:

$$\begin{array}{l} \underset{R \in SO(m)}{\text{minimize}} & \operatorname{Trace}(C^T R) \\ \text{subject to} & \|R_0 - R\|_{\mathcal{F}}^2 \le d^2. \end{array}$$
(3)

Here $R_0 \in SO(m)$ and $C \in \mathbb{R}^{m \times m}$ is a constant matrix.

Problem 6. We consider solving the following "sub-problem" using conjugate gradient descent:

$$\begin{array}{ll} \underset{\boldsymbol{p}}{\operatorname{minimize}} & \phi(\boldsymbol{p}) := \boldsymbol{g}^T \boldsymbol{p} + \frac{1}{2} \boldsymbol{p}^T B \boldsymbol{p} \\ \text{subject to} & \boldsymbol{p}^T C \boldsymbol{p} \le d^2. \end{array}$$

$$(4)$$

Here B is a real symmetric matrix and C is positive definite matrix.

The algorithm we consider is described as follows:

- Step I: Set $p_0 = 0, r_0 = -g$. Solve $C\hat{r_0} = r_0$. Set $d_0 = \hat{r}_0, i = 0$.
- Step II: Compute $\gamma_i = d_i^T B d_i$. If $\gamma_i > 0$ then continue with Step III. Otherwise compute $\tau > 0$ so that $(\boldsymbol{p}_i + \tau d_i)^T C(\boldsymbol{p}_i + \tau d_i) = d^2$, set $\boldsymbol{p} = \boldsymbol{p}_i + \tau d_i$ and terminate.
- Step III: Compute $\alpha_i = \frac{\boldsymbol{r}_i^T \hat{\boldsymbol{r}}_i}{\gamma_i}$, $\boldsymbol{p}_{i+1} = \boldsymbol{p}_i + \alpha_i \boldsymbol{d}_i$. If $\boldsymbol{p}_{i+1}^T C \boldsymbol{p}_{i+1} < d^2$ than Continue with step IV. Otherwise compute $\tau > 0$ so that $(\boldsymbol{p}_i + \tau \boldsymbol{d}_i)^T C(\boldsymbol{p}_i + \tau \boldsymbol{d}_i) = d^2$, set $\boldsymbol{p} = \boldsymbol{p}_i + \tau \boldsymbol{d}_i$ and terminate.
- Step IV: Compute $r_{i+1} = r_i \alpha_i B d_i$. If $\frac{r_{i+1}^T C r_{i+1}}{g^T C g} \leq \epsilon^2$ then set $p = p_{i+1}$ and terminate. Otherwise continue with Step V.
- Step V: Solve $C\hat{r}_{i+1} = r_{i+1}$. Compute $\beta_i = \frac{r_{i+1}^T \hat{r}_{i+1}}{r_i^T \hat{r}_i}$ and $d_{i+1} = \hat{r}_{i+1} + \beta_i d_i$. Set i := i+1 and continue with step II.

Let $p_i, j = 0, \cdots, i$ be the iterates generated by the algorithm described above.

- Show that $\phi(\mathbf{p}_i)$ is strictly decreasing and $\phi(\mathbf{p}) \leq \phi(\mathbf{p}_i)$.
- Show that $p_j^T C p_j$ is strictly increasing for $j = 0, \dots, i$ and $p^T C p \ge p_j^T C p_j$.