CS395T: Numerical Optimization for Graphics and AI: Homework IV

1 Guideline

- Please complete 3 problems out of 5 problems, and please complete at least one problem in the theory session.
- You are welcome to complete more problems.

2 Programming

Each problem in this section counts as two.

Problem 1 and Problem 2. We are interested in solving

$$\sum_{x_i, 1 \le i \le m}^{m} \|A_i x_i - b_i\|^2 + \lambda \sum_{1 \le i < j \le m} \|x_i - x_j\|_1$$
 (1)

where $\|\boldsymbol{a}\|_1 = \sum_{i=1}^n |a_i|$ stands for the L1-norm of a vector. Here A_i and \boldsymbol{b}_i constant matrices. Please apply proximal gradient method to solve (1). An example dataset can be downloaded from ¹.

3 Theory

Problem 3. Let \mathcal{A} and \mathcal{B} be two disjoint nonempty convex subsets of \mathbb{R}^n . Then there exists a nonzero vector \mathbf{v} and a real number c such that

$$\langle \boldsymbol{x}, \boldsymbol{v} \rangle \geq c$$
 and $\langle \boldsymbol{y}, \boldsymbol{v} \rangle \leq c$

for all $x \in \mathcal{A}$ and $y \in \mathcal{B}$; i.e., the hyperplane $\langle \cdot, v \rangle = c$, v the normal vector, separates \mathcal{A} and \mathcal{B} .

Problem 4. This problem studies the convergence rate of a variant of proximal gradient method. Consider the problem of solving

$$\underset{\boldsymbol{x}}{\text{minimize}}\ f(\boldsymbol{x}) := g(\boldsymbol{x}) + h(\boldsymbol{x})$$

where g is a smooth function whose gradient is Lipschitz continuous, i.e.,

$$\|\nabla g(\boldsymbol{x}) - \nabla g(\boldsymbol{y})\| \le M\|\boldsymbol{x} - \boldsymbol{y}\|, \quad \forall \boldsymbol{x}, \boldsymbol{y}.$$

h is also convex. Given x^0 and let $z^1 = x^0$, and iterate

$$\boldsymbol{x}^{k} = \operatorname{prox}_{\alpha,h} (\boldsymbol{z}^{k} - \alpha \nabla g(\boldsymbol{z}^{k}))$$

$$\beta_{k+1} = \frac{1}{2} (1 + \sqrt{1 + 4\beta_{k}^{2}})$$

$$\boldsymbol{z}^{k+1} = \boldsymbol{x}^{k} + \frac{\beta_{k} - 1}{\beta_{k+1}} (\boldsymbol{x}^{k} - \boldsymbol{x}^{k-1})$$
(2)

¹https://www.cs.utexas.edu/~huangqx/hw4_data.mat

Derive a upper bound on α so that

$$f(x^k) - f(x^*) \le \frac{2M}{(k+1)^2} ||x^0 - x^*||^2,$$

where \boldsymbol{x}^{\star} is one optimal solution.

Problem 5. Consider the following constrained optimization problem

$$\begin{array}{ll}
\text{minimize} & f(\boldsymbol{x}) \\
\text{subject to} & g_i(\boldsymbol{x}) \leq 0, \quad 1 \leq i \leq m
\end{array}$$
(3)

Suppose there exists a common function $\eta(\boldsymbol{x},\boldsymbol{u}) \in \mathbb{R}^n$, so that

$$f(\boldsymbol{x}) - f(\boldsymbol{u}) \ge \eta(\boldsymbol{x}, \boldsymbol{u})^T \nabla f(\boldsymbol{u})$$
 $\forall \boldsymbol{x}, \boldsymbol{u}$
 $-g_i(\boldsymbol{u}) \ge \eta(\boldsymbol{x}, \boldsymbol{u})^T \nabla g_i(\boldsymbol{u})$ $\forall \boldsymbol{x}, \boldsymbol{u}, i = 1, \cdots, m.$

Then KKT conditions are become sufficient conditions for optimality.