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1 Basic

Linear algebra is widely used in AI and Graphics research. If you have not seriously learned this before,
please take a class. At UT, you can take CS 383C NUMERICAL ANLY: LINEAR ALGEBRA. If you have
learned it before but forgot the technical details (most likely), I recommend you to go through the following
wikipedia page for review:

• Introduction to linear algebra 1.

1.1 Notations

We will use the following convention throughout all the lectures:

• Capital letters denote matrices, e.g., A,B,C, · · · .

• Lowercase bold face letters denote vectors, e.g., x,y, z, · · · .

• Lowercase letters denote scalars, e.g., s, t, · · · .

• ei = (0, · · · , 1, · · · , 0)T is the reserved for the canonical basis of Rn.

2 Spectral of Normalized Adjacency Matrix

Eigenvalues and eigenvectors of a square matrix are very fundamental concepts in matrix theory. We are
particularly interested in symmetric matrices. Specifically, given a symmetric matrix A ∈ Rn×n, it has n
eigenvalues λ1(A) ≥ · · · ≥ λn(A) and n eigenvectors u1(A), · · · ,un(A). The eigenvalues and eigenvectors
are related by the following equality

Aui = λiui, 1 ≤ i ≤ n.
Equivalently, we can write out the eigen-decomposition of A as

A = UΛUT , (1)

where
U = (u1, · · · ,un), Λ = diag(λ1, · · · , λn).

In this lecture, we use some basic facts of spectral graph theory to study properties of eigenvalues and
eigenvectors of square matrices. Spectral techniques are widely used in Graphics and AI, we will have three
lectures on this topic later this semester.

1https://en.wikipedia.org/wiki/Linear algebra
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Consider a connected graph of n vertices G = ({1, · · · , n}, E). With di we denote the vertex degree of
i-th vertex. Consider so-called normalized adjacency matrix A ∈ Rn×n, whose elements are given by

Aij =

{
1√
didj

(i, j) ∈ E
0 otherwise

We will prove the following facts:

Fact 2.1. 1 is an eigenvalue of A, and the corresponding eigenvector is u1 = (
√

d1∑
i
di
, · · · ,

√
dn∑
i
di

).

Proof. The proof reviews matrix-vector multiplication. In fact, let N (i) ⊂ {1, · · · , n} collects indices of the
neighboring vertices of vertex i, then

eTi Au1 =
∑

j∈N (i)

1√
didj

·
√√√√ dj∑

k

dk

=
1√
di

∑
j∈N (i)

√√√√ 1∑
k

dk

=

√√√√ di∑
k

dk
.

Fact 2.2. The eigenvalues of A are between −1 and 1.

The proof of the following fact will use a different definition of eigenvalues for symmetric matrices:

λ1(A) = max
x∈Rn

xTAx

xTx
, (2)

λn(A) = min
x∈Rn

xTAx

xTx
. (3)

The proof is easy — using (1), we have

max
x∈Rn

xTAx

xTx
= max

x∈Rn
(UTx)T Λ(UTx)

(UTx)T (UTx)

= max
y∈Rn

yT Λy

yTy

= max
y∈Rn

n∑
i=1

λiy
2
i

n∑
i=1

y2i

= λ1. (4)

We can generalize (2) and (3) to other eigenvalues. For example,

λi(A) = max
x∈Rn,uT1 x=0,··· ,uTi−1x=0

xTAx

xTx
,

λi(A) = min
x∈Rn,uTnx=0,··· ,uTi+1x=0

xTAx

xTx
. (5)
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Alternatively, we have

λi(A) = min
U,dim(U)=n−i

max
x∈U

xTAx

xTx
,

λi(A) = max
U,dim(U)=i

min
x∈U

xTAx

xTx
. (6)

The proofs are more details can be found at Rayleigh quotient (https://en.wikipedia.org/wiki/Rayleigh_
quotient) and min-max theorem (https://en.wikipedia.org/wiki/Min-max_theorem). Now we give the
proof of Fact 2.2.

Proof of Fact 2.2. First of all,

xTAx =
∑

(i,j)∈E

xixj√
didj

=
1

2

∑
(i,j)∈E

(
(
xi√
di

+
xj√
dj

)2 − x2i
di
−
x2j
dj

)
≥ −1

2

∑
(i,j)∈E

(x2i
di

+
x2j
dj

)

= −1

2

( n∑
i=1

∑
j∈N (i)

x2i
di

+

n∑
j=1

∑
i∈N (j)

x2j
dj

)
= −1

2
(2

n∑
i=1

x2i )

= −
n∑

i=1

x2i . (7)

In other words,
λn(A) ≥ −1.

In the other direction,

xTAx =
∑

(i,j)∈E

xixj√
didj

=
1

2

∑
(i,j)∈E

(
− (

xi√
di
− xj√

dj
)2 +

x2i
di

+
x2j
dj

)
≤ 1

2

∑
(i,j)∈E

(x2i
di

+
x2j
dj

)

=

n∑
i=1

x2i , (8)

which means
λ1(A) ≤ 1.

3 Rotation Matrices

Rodrigues’ rotation formula, named after Olinde Rodrigues, is an efficient algorithm for rotating a Euclidean
vector, given a rotation axis and an angle of rotation. In other words, Rodrigues’ formula provides an algo-
rithm to compute the exponential map from so(3) to SO(3) without computing the full matrix exponential.
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If v is a vector in R3 and e is a unit vector rooted at the origin describing an axis of rotation about which
v is rotated by an angle θ, Rodrigues’ rotation formula to obtain the rotated vector is

vrot = (cos θ)v + (sin θ)(e× v) + (1− cos θ)(e · v)e .

For the rotation of a single vector it may be more efficient than converting e and θ into a rotation matrix to
rotate the vector.

Exponential map. The exponential map effects a transformation from the axis-angle representation of
rotations to rotation matrices,

exp: so(3)→ SO(3) .

Essentially, by using a Taylor expansion one derives a closed-form relation between these two represen-
tations. Given a unit vector ω ∈ so(3) = R3 representing the unit rotation axis, and an angle, θ ∈ R, an
equivalent rotation matrix R is given as follows, where K is the cross product matrix of ω, that is, Kv = ω×v
for all vectors v ∈ R3,

R = exp(θK) =

∞∑
k=0

(θK)k

k!
= I + θK +

1

2!
(θK)2 +

1

3!
(θK)3 + · · ·

Because K is skew-symmetric, and the sum of the squares of its above-diagonal entries is 1, the characteristic
polynomial P (t) of K is P (t) = det(K− tI) = −(t3 + t). Since, by the Cayley-Hamilton theorem, P (K) = 0,
this implies that K3 = −K.

As a result, K4 = −K2,K5 = K,K6 = K2,K7 = −K. This cyclic pattern continues indefinitely, and so
all higher powers of K can be expressed in terms of K and K2. Thus, from the above equation, it follows
that

R = I +

(
θ − θ3

3!
+
θ5

5!
− · · ·

)
K +

(
θ2

2!
− θ4

4!
+
θ6

6!
− · · ·

)
K2 ,

that is,
R = I + (sin θ)K + (1− cos θ)K2 .

4 Quaternion

Besides the standard matrix representation of matrices, Quaternion is another widely used representation of
matrices. Here we provide a concise introduction, and please refer to

• https://en.wikipedia.org/wiki/Quaternion

for more details.

One can think that quaternions generalize complex numbers. A quaternion is generally represented in
the form:

a+ bi + cj + dk

where a, b, c, and d are real numbers, and i, j, and k are the fundamental quaternion units.

Quaternions give a simple way to encode this axis-angle representation in four numbers, and can be used
to apply the corresponding rotation to a position vector, representing a point relative to the origin in R3.

A Euclidean vector such as (2, 3, 4) or (ax, ay, az) can be rewritten as 2i + 3j + 4k or axi + ayj + azk,
where i, j,k are unit vectors representing the three Cartesian axes. A rotation through an angle of θ around
the axis defined by a unit vector

u = (ux, uy, uz) = uxi + uyj + uzk.
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can be represented by a quaternion. This can be done using an extension of Euler’s formula:

q = e
θ
2 (uxi+uyj+uzk) = cos(

θ

2
) + (uxi + uyj + uzk) sin(

θ

2
).

It can be shown that the desired rotation can be applied to an ordinary vector p = (px, py, pz) = pxi+pyj +
pzk in 3-dimensional space, considered as a quaternion with a real coordinate equal to zero, by evaluating
the conjugation of p by q:

p′ = qpq−1

using the Hamilton product, where p′ = (p′x, p
′
y, p
′
z) is the new position vector of the point after the rotation.

In this instance,

q−1 = e−
θ
2 (uxi+uyj+uzk) = cos

θ

2
− (uxi + uyj + uzk) sin

θ

2
.

We will leave the proof as a homework.

It follows that conjugation by the product of two quaternions is the composition of conjugations by these
quaternions: If p and q are unit quaternions, then rotation (conjugation) by pq is

pqv(pq)−1 = pqvq−1p−1 = p(qvq−1)p−1,

which is the same as rotating (conjugating) by q and then by p. The scalar component of the result is
necessarily zero.

Quaternion-derived rotation matrix. A quaternion rotation p′ = qpq−1 (with q = qr + qii+ qjj+ qkk)
can be algebraically manipulated into a matrix rotation p′ = Rp, where R is the rotation matrix given by

R =

1− 2s(q2j + q2k) 2s(qiqj − qkqr) 2s(qiqk + qjqr)
2s(qiqj + qkqr) 1− 2s(q2i + q2k) 2s(qjqk − qiqr)
2s(qiqk − qjqr) 2s(qjqk + qiqr) 1− 2s(q2i + q2j )


Here s = ‖q‖−2 and if q is a unit quaternion, s = 1.

Recovering the axis-angle representation. The expression qpq−1 rotates any vector quaternion p
around an axis given by the vector a by the angle θ, where a and θ depends on the quaternion

(ax, ay, az) =
(qi, qj , qk)√
q2i + q2j + q2k

θ = 2 atan2
(√

q2i + q2j + q2k, qr

)
,

where atan2 is the two-argument arctangent. Care should be taken when the quaternion approaches a scalar,
since due to degeneracy the axis of an identity rotation is not well-defined.
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