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1 Introduction

The second part of this class is about minimizing functions subject to constraints on the variables. A general
formulation for these problems is

minimize
x

f(x)

subject to ci(x) = 0, i ∈ E ,
ci(x) ≥ 0, i ∈ I, (1)

where f and the functions ci are all smooth, real-valued functions on a subset of Rn, and I and E are two
finite sets of indices.

If we define the feasible set Ω to be the set of points x that satisfies the constraints, that is,

Ω = {x|ci(x) = 0, i ∈ E ; ci(x) ≥ 0, i ∈ I}, (2)

then we can always rewrite (1) more compactly as

min
x∈Ω

f(x) (3)

In this lecture, we will go through some optimally conditions. They are generalized from their counterparts
in the constrained case. They are summarized below.

2 Local and Global Solutions

We have seen already that global solutions are difficult to find even when there are noconstraints. The
situation may be improved when we add constraints, since the feasible setmight exclude many of the local
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minima and it may be comparatively easy to pick the global minimum from those that remain. However,
constraints can also make things much more difficult. As an example, consider the problem

min
x∈Rn

‖x‖22, subject to ‖x‖22 ≥ 1.

Without the constraint, this is a convex quadratic problem with unique minimizer x = 0. When the
constraint is added, any vector x with ‖x‖2 = 1 solves the problem. There are infinitely many such vectors
(hence, infinitely many local minima) whenever n ≥ 2.

A second example shows how addition of a constraint produces a large number of local solutions that do
not form a connected set. Consider

min (x2 + 100)2 + 0.01x2
1, subject tox2 − cos(x1) ≥ 0/

Without the constraint, the problem has the unique solution (−100, 0). With the constraint there are local
solutions near the points

(x1, x2) = (kπ,−1), for k = ±1,±3,±5, · · ·

Definitions of the different types of local solutions are simple extensions of the corresponding definitions for
the unconstrained case, except that now we restrict consideration to the feasible points in the neighborhood
of x?. We have the following definition.

Definition 2.1. A vector x? is a local solution to (3) if x? ∈ Ω and there is a neighborhood N of x? such
that f(x) ≥ f(x?) for x ∈ N ∩ Ω.

Definition 2.2. A vector x? is a strict local solution (also called a strong local solution) if x? ∈ Ω and there
is a neighborhood N of x? such that f(x) ≥ f(x)?) for all x ∈ N ∩ Ω with x 6= x?.

Definition 2.3. A point x? is an isolated local solution if x? ∈ Ω and there is a neighborhood N of x? such
that x? is the only local minimize

3 Examples

To introduce the basic principles behind the characterization of solutions of constrained optimization prob-
lems, we work through three simple examples. The ideas discussed here will be made rigorous in the sections
that follow. We start by noting one item of terminology that recurs throughout the rest of the class: At a
feasible point x, the inequality constraint i ∈ I is said to be active if ci(x) = 0 and inactive if the strict
inequality ci(x) > 0 is satisfied.

3.1 A Single Equality Constraint

Our first example is a two-variable problem with a single equality constraint:

min x1 + x2 s.t. x2
1 + x2

2 − 2 = 0 (4)

In the language of (1), we have f(x) = x1 + x2, I = ∅, E = {1} and c1(x) = x2
1 + x2

2 − 2. We can see
by inspection that the feasible set for this problem is the circle of radius

√
2centered at the origin-just the

boundary of this circle, not its interior. The solution x? is obviously (−1,−1)T . From any other point on
the circle, it is easy to find a way to move that stays feasible (that is, remains on the circle) while decreasing
f . For instance, from the point x = (

√
2, 0)T any move in the clockwise direction around the circle has the

desired effect. We also see that at the solution x?, the constraint normal ∇c1(x?) is parallel to ∇f(x?).
That is, there is a scalar λ?1 such that

∇f(x?) = λ?1∇c?1(x?). (5)

(In this particular case, we have λ?1 = − 1
2 .)
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We can derive (5) by examining first-order Taylor series approximations to the objective and constraint
functions.To retain feasibility with respect to the function c1(x) = 0, we require that c1(x + d) = 0; that is,

0 = c1(x + d) ≈ c1(x) +∇c1(x)Td = ∇c1(x)Td. (6)

Hence, the direction d retains feasibility with respect to c1, to first order, when it satisfies

∇c1(x)Td = 0. (7)

Similarly, a direction of improvement must produce a decrease in f , so that

0 > f(x + d)− f(x) ≈ ∇f(x)Td,

or, to first order,
∇f(x)Td < 0. (8)

If there exists a direction d that satisfies both (7) and (8), we conclude that improvement on our current
point x is possible. It follows that a necessary condition for optimality for the problem (4) is that there exist
no direction d satisfying both (7) and (8).

It is easy to check that the only way that such a direction cannot exist is if ∇f(x) and ∇c1(x) are
parallel, that is, if the condition

∇f(x) = λ1∇c1(x)

holds at x, for some scalar λ1. If this condition is not satisfied, the direction defined by

d ==
(
I − ∇c1(x)∇c1(x)T

‖∇c1(x)‖2
)
∇f(x). (9)

satisfies both conditions (7) and (8). By introducing the Lagrangian function

L(x, λ) = f(x)− λ1c1(x). (10)

and noting that ∇xf(x, λ1) = ∇f(x)−λ1∇c1(x), we can state the condition (5) equivalently as follows: At
the solution x?,, there is a scalar λ?1 such that

∇xL(x?, λ?1) = 0. (11)

This observation suggests that we can search for solutions of the equality-constrained problem (4) by search-
ing for stationary points of the Lagrangian function. The scalar quantity λ1 in (10) is called a Lagrange
multiplier for the constraint c1(x) = 0.

Though the condition (5) (equivalently, (11)) appears to be necessary for an optimal solution of the
problem (4), it is clearly not sufficient. For instance, (5) is satisfied at the point x = (1, 1)T (with λ1 = 1

2 ),
but this point is obviously not a solution-in fact, it maximizes the function f on the circle. Moreover, in the
case of equality-constrained problems, we cannot turn the condition (5) into a sufficient condition simply by
placing some restriction on the sign of λ1. To see this, consider replacing the constraint x2

1 + x2
2 − 2 = 0 by

its negative 2 − x2
1 − x2

2 = 0. The solution of the problem is not affected, but the value of λ?1 that satisfies
the condition (5) changes from λ?1 = − 1

2 to λ?1 = 1
2 .

3.2 A Single Inequality Constraint

This is a slight modification of the first example, in which the equality constraint is replaced by an inequality.
Consider

minx1 + x2 s.t. 2− x2
1 − x2

2 ≥ 0, (12)

for which the feasible region consists of the circle of problem (4) and its interior. Note that the constraint
normal ∇c1 points toward the interior of the feasible region at each point on the boundary of the circle. By
inspection, we see that the solution is still x? = (−1,−1)T and that the condition (5) holds for the value
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λ?1 = 1
2 . However, this inequality-constrained problem differs from the equality-constrained problem (4) in

that the sign of the Lagrange multiplier plays a significant role.

As before, we conjecture that a given feasible point x is not optimal if we can find a step d that both retains
feasibility and decreases the objective function f to first order. The main difference between problems (4)
and (12) comes in the handling of the feasibility condition. As in (8), the direction d improves the objective
function, to first order, if ∇f(x)Td < 0. Meanwhile, the direction d retains feasibility if

0 ≤ c1(x + d) ≈ c1(x) +∇c1(x)Td.

so, to first order, feasibility is retained if

c1(x) +∇c1(x)Td ≥ 0. (13)

In determining whether a direction d exists that satisfies both (8) and (13), we consider the following two
cases:

Case I: Consider first the case in which x lies strictly inside the circle, so that the strict inequality c1(x) > 0
holds. In this case, any vector d satisfies the condition (13), provided only that its length is sufficiently small.
In particular, whenever∇f(x?) 6= 0, we can obtain a direction d that satisfies both (8) and (13) by setting

d = −c1(x)
∇f(x)

‖∇f(x)‖
.

The only situation in which such a direction fails to exist is when

∇f(x) = 0. (14)

Case II: Consider now the case in which x lies on the boundary of the circle, so that c1(x) = 0. The
conditions (8) and (13) therefore become

∇f(x)Td < 0, ∇c1(x)Td ≥ 0.

The first of these conditions defines an open half-space, while the second defines a closed half-space. It is
clear from this figure that the two regions fail to intersect only when ∇f(x) and ∇c1(x) point in the same
direction, that is, when

∇f(x) = λ1∇c1(x), for some λ1 ≥ 0. (15)

Note that the sign of the multiplier is significant here. If (5) were satisfied with a negative value of λ1, then
∇f(x) and ∇c1(x) would point in opposite directions, and we can see that the set of directions that satisfy
both (8) and (13) would make up an entire open half-plane. The optimality conditions for both cases I and
II can again be summarized neatly with reference to the Lagrangian function. When no first-order feasible
descent direction exists at some point x?, we have that

∇x?L(x?, λ?1) = 0, for some λ?1 ≥ 0. (16)

where we also require that
λ?1c1(x?

1) = 0. (17)

This condition is known as a complementarity condition; it implies that the Lagrange multiplier λ1 can be
strictly positive only when the corresponding constraint c1 is active. Conditions of this type play a central
role in constrained optimization. In case I, we have that c1(x?) > 0, so (17) requires that λ?1 = 0. Hence,
(16) reduces to ∇f(x?) = 0, as required by (14). In case II, (17) allows λ?1 to take on a nonnegative value,
so (16) becomes equivalent to (17).

Exercise. Please apply the methodology described above to analyze the following constrained optimization
problem that has two inequality constraints:

min x1 + x2 s.t. 2− x2
1 − x2

2 ≥ 0, x2 ≥ 0. (18)
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4 First-Order Optimality Conditions

To define the first-order optimality conditions, we first consider the notion of active sets:

Definition 4.1. The active set A(x) at any feasible x consists of the equality constraint indices from E
together with the indices of the inequality constraints i for which ci(x) = 0; that is,

A(x) = E ∪ {i ∈ I|ci(x) = 0}.

We will also need the characterization of a local solution:

Definition 4.2. A vector x? is a local solution of the problem (3) if x? ∈ Ω and there is a neighborhood N
of x? such that f(x) ≥ f(x?) for x ∈ N ∩ Ω.

To define the optimality conditions, we will also need the so-called LICQ condition.

Definition 4.3. Given the point x and the active set A(x) defined in definition 4.1, we say that the linear
independence constraint qualification (LICQ) holds if the set of active constraint gradients {∇ci(x), i ∈ A(x)}
is linearly independent.

Now we are ready to introduce first-order necessary conditions, which often known as the Karush-Kuhn-
Tucker conditions, or KKT conditions for short.

Theorem 4.1. Consider the Lagrangian given by

L(x, λ) = f(x)−
∑

i∈I∪E
λici(x).

Suppose x? is a local solution of (1), that the functions f and ci in (1) are continuously differentiable, and
that the LICQ holds at x?. Then there is a Lagrangian multipler vector λ?, with components λ?i , i ∈ E ∪ I,
such that the following conditions are satisfied at (x?, λ?)

∇xL(x?, λ?) = 0, (19)

ci(x
?) = 0, for all i ∈ E , (20)

ci(x
?) ≥ 0, for all i ∈ I, (21)

λ?i ≥ 0, for all i ∈ I, (22)

λ?i ci(x
?) = 0, for all i ∈ I ∪ E . (23)

5 Second-Order Optimality Conditions

To derive second-order optimality conditions, we begin with defining the feasible direction set, which we
define as follows.

Definition 5.1. Given a feasible point x and the active constraint set A(x) of Definition 4.1, the set of
linearized feasible directions F(x) is

F(x) =

{
d
∣∣∣ dT∇ci(x) = 0, for all i ∈ E ,
dT∇ci(x) ≥ 0, for all i ∈ A(x) ∩ I

}
(24)

Definition 5.2. Given F(x?) from Definition 5.1 and some Lagrangian multipler vector λ? satisfying the
KKT conditions, we define the critical cone C(x?, λ?) as follows:

C(x?, λ?) = {w ∈ F(x?)|wT∇ci(x?) = 0, all i ∈ A(x?) ∩ I with λ?i > 0} (25)
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Equivalently,

w ∈ C(x?, λ?)↔

{ wT∇ci(x?) = 0, for all i ∈ E ,
wT∇ci(x?) = 0, for all i ∈ A(x?) ∩ I with λ?i > 0,
wT∇ci(x?) ≥ 0, for all i ∈ A(x?) ∩ I with λ?i = 0.

(26)

The critical cone contains those directions w that would tend to ”adhere” to the active inequality constraints
even when we were to make small changes to the objective (those indices i ∈ I for which the Lagrange
multiplier component λ?i is positive), as well as to the equality constraints. An important property of these
directions is:

w ∈ C(x?, λ?)→ wT∇f(x?) =
∑

i∈E∪I
λ?iw

T∇ci(x?) = 0.

Theorem 5.1. (Second-Order Necessary Conditions.) Suppose x? is a local solution of (1) and that
LICQ condition is satisfied. Let λ? be the Lagrangian multiplier vector for which the KKT conditions are
satisfied. Then

wT∇2
xxL(x?, λ?)w ≥ 0, for all w ∈ C(x?, λ?).

The corresponding Second-Order Sufficient Conditions are given below

Theorem 5.2. (Second-Order Sufficient Conditions.) Suppose that for some feasible point x? ∈ Rn

there is a Lagrangian multipler vector λ? such that the KKT conditions are satisfied. Suppose also that

wT∇2
xxL(x?, λ?)w > 0, for all w ∈ C(x?, λ?)\{0}.

Then x? is a strict local solution for (1).
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