CS 395T
Lecture 12: Feature Matching and
Bundle Adjustment

Qixing Huang
October 105t 2018

Lecture Overview

* Dense Feature Correspondences

* Bundle Adjustment in Structure-from-Motion

Image Matching Algorithm

Given images A and B

Compute image features for A and B
Match features between A and B
Estimate the essential matrix

Robustness

* Let’s consider a simpler example... linear

regression

Problem: Fit a line to these datapoints

Least squares fit

Potential Fix!

* Given a hypothesized line

* Count the number of points that “agree” with

the line
— “Agree” = within a small distance of the line

— |.e., the inliers to that line

* For all possible lines, select the one with the
largest number of inliers

Counting inliers

Counting inliers

Inliers: 4

Counting inliers

Inliers> 20

How do we find the best line?

* Unlike least-squares, no simple closed-form
solution--- we will get back to this, e.g., using
robust norms

* Hypothesize-and-test

— Try out many lines, keep the best one
— Which lines?

RANSAC

e General version:

1. Randomly choose s samples

* Typically s = minimum sample size that lets you fit a
model

Fit a model (e.g., line) to those samples

Count the number of inliers that approximately
fit the model

Repeat N times

5. Choose the model that has the largest set of
inliers

Analysis of RANSAC

however, can be determined as a function of the desired probability of success p using a theoretical result. Let p be the desired probability that the RANSAC
algorithm provides a useful result after running. RANSAC returns a successful result if in some iteration it selects only inliers from the input data set when it
chooses the 1 points from which the model parameters are estimated. Let w be the probability of choosing an inlier each time a single point is selected, that is,

w = number of inliers in data / number of points in data

A common case is that w is not well known beforehand, but some rough value can be given. Assuming that the »n points needed for estimating a model are
selected independently, w™ is the probability that all n points are inliers and 1 — w™ is the probability that at least one of the 7 points is an outlier, a case which
implies that a bad model will be estimated from this point set. That probability to the power of £ is the probability that the algorithm never selects a set of # points

which all are inliers and this must be the same as 1 — p. Consequently,
1-p=(1-—uw")*
which, after taking the logarithm of both sides, leads to
log(1 —p)
B log(1 — w")

This result assumes that the n data points are selected independently, that is, a point which has been selected once is replaced and can be selected again in the
same iteration. This is often not a reasonable approach and the derived value for & should be taken as an upper limit in the case that the points are selected
without replacement. For example, in the case of finding a line which fits the data set illustrated in the above figure, the RANSAC algorithm typically chooses two

points in each iteration and computes maybe_model as the line between the points and it is then critical that the two points are distinct.
To gain additional confidence, the standard deviation or multiples thereof can be added to k. The standard deviation of k is defined as

JI—o

wﬂ.

SD(k) =

https://en.wikipedia.org/wiki/Random_sample_consensus

Reweighted Least Squares

When the fraction of inliers > 50%

LP norm linear regression |[edit]

To find the parameters B = (B4, ...,Bx)" Which minimize the L” norm for the linear regression problem,

|yi _Xiﬂ|pa

n
=1

arg minHy — XB||p, = argmin
B

]

the IRLS algorithm at step t + 1 involves solving the weighted linear least squares problem:!

ﬂ(t+1) = arg minzwgt) lyi — Xz,3|2 — (XTW(t)X)_lXTW(t)y,
=1

where WA is the diagonal matrix of weights, usually with all elements set initially to:
wz(.o) =1
and updated after each iteration to:

w!) = ly: — X, 8% |p_2-

https://en.wikipedia.org/wiki/lteratively _reweighted_least_squares

When the fraction of inliers > 50%

where WA is the diagonal matrix of weights, usually with all elements set initially to:
0) _
w;,’ =1
and updated after each iteration to:

wE” = |y — X:8Y ‘p—2.

In the case p = 1, this corresponds to least absolute deviation regression (in this case, the problem would be better approached
by use of linear programming methods,” so the result would be exact) and the formula is:

Wt — 1
7: —_— .
|y — XiBY|
To avoid dividing by zero, regularization must be done, so in practice the formula is:
6 _ 1
{2 t) :
max{&, yi — X; 8! ’}

where 6 is some small value, like 0.0001.”! Note the use of § in the weighting function is equivalent to the Huber loss function in

robust estimation.

https://en.wikipedia.org/wiki/lteratively _reweighted_least_squares

Bundle Adjustment

Recap: Structure-From-Motion

e Two views initialization:

— 8-point linear algorithm

/
"
ﬁ)<:
O; R.T 0,

v)

Recap: Structure-From-Motion

* Triangulation: 3D Points

E->(Rt)

Slide Credit: https://cvg.ethz.ch/teaching/3dvision/slides/classO6eth18_annotated.pdf

Recap: Structure-From-Motion

* Triangulation: 3D Points

Slide Credit: https://cvg.ethz.ch/teaching/3dvision/slides/classO6eth18_annotated.pdf

Bundle Adjustment

 Refinement step in Structure-from-Motion

e Refine a visual reconstruction to produce jointly
optimal 3D structures P and camera poses C

* Minimize total re-projection errors dz

Cost Function:

arg min ZZH% (P, C)|1?

X=[PC]

Bundle Adjustment

Refinement step in Structure-from-Motion
Refine a visual reconstruction to produce jointly

optimal 3D structures P and camera poses C

* Minimize total re-projection errors dz

X

Measurement error
covariance matrix

Cost Function: /

arg;nin ZZ dZ?;-Wideij
i 7

[RC]

de,;j = Ljj — 7T(Pj, C@)

Bundle Adjustment

* Minimize the cost function: arg min f(X)
— Gradient Descent
— Newton Method
— Gauss-Newton
— Levenberg-Marquardt

— All line search based techniques

Bundle Adjustment

e Gradient Descent

Initialization: X, = X,

: df(X
Compute gradient: g = Al)‘X:Xk =dZ"W.J

Iterate until 0X
convergence
Update: X «+ Xy —ng

Jacobi

Very slow convergence

Bundle Adjustment

e Newton Method

2ndorder approximation (Quadratic Taylor Expansion):

flx+0) = f(x)+g'd+ %5TH5

. . 0% f(x +0)
Hessian matrix: H = 525 | x=x,

X, X, —H g

H is expensive to compute, and H may not be positive definite

Bundle Adjustment

* Levenberg-Marquardt

Regularized Gauss-Newton with damping factor)\
(JITWJT +X)§ = —J" Wdz
)\ — 0 :Gauss-Newton (When convergence is rapid)

A — oo :Gradient descent (When convergence is slow)

Adaptin)\ during optimization
Decrease)\ when function value decreases

Increase)\ otherwise
Global convergence!

https://pdfs.semanticscholar.org/6048/ff93f92a865172dc621beld318ba2c2ed244.pdf

Structure of the Jacobian and Hessian
Matrices

e Sparse matrices since 3D structures are locally observed

Network E
graph A) “‘@
1= @/f:E
AB C DE 12 34 Hyo
A1 | . =
a2 | = B
1| M | =
O | |
B4 H B8 =
Jd = o | O =
= (] =
D2 [o =
= = O
] B B
= = O
= 3 B

Efficiently Solving the Normal Equation

e Schur Complement: Exploit structure of H

H,,86=-J"WAZ

KK
O
00
0d
OO
H = =
LM — O
|
=
O
O
(]
_J
~y” '
3D Camera

Structures Parameters

Efficiently Solving the Normal Equation

* SchurComplement: Exploit structure of H

H, 6=-J"WAZ

AR C DE

\ A\ A
Y h

3D Camera
Structures Parameters

Other Aspects

* Efficient solver of the linear system
— Use the sparse structure
— Prefactorization

* Robust cost function
* |teratively re-weighted least-squares

State-of-the-art Solvers

Google Ceres:

— https://code.google.com/p/ceres-solver/

g2o0:
— https://openslam.org/g20.html

GTSAM:
— https://collab.cc.gatech.edu/borg/gtsam/

Multicore Bundle Adjustment
— http://grail.cs.washington.edu/projects/mcba/

