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1 Simplex Methods

In class we will discuss the following items regarding the simplex method:

Dual Program and Optimality Conditions. The primal problem of LP

min
x∈Rn

cTx

subject to Ax = b

x ≥ 0. (1)

The dual problem of LP

max
λ,s

bTλ

subject to ATλ+ s = c, s ≥ 0

x ≥ 0. (2)

An important property of LP is that the KKT conditions are sufficient for optimality:

ATλ+ s = c, (3)

Ax = b, (4)

x ≥ 0, (5)

s ≥ 0, (6)

xisi = 0, i = 1, 2, · · · , n. (7)

Geometry of Feasible Set.

Definition 1.1. A vector x is a basic feasible point if it is feasible and if there exists a subset B of the index
set {1, · · · , n} such that

1



• B contains exactly m indices;

• i /∈ B → xi = 0 (that is, the bound xi ≥ 0 can be inactive only if i ∈ B);

• The m×m matrix B defined by
B = [Ai]i∈B

is non-singular, where Ai is the i-th column of A.

A set B satisfying these properties is called a basis for the problem (1). The corresponding matrix B is called
the basis matrix.

Theorem 1.1. • If (1) has a nonempty feasible region, then there is at least one basic feasible point;

• If (1) has solutions, then at least one such solution is a basic optimal point.

• If (1) is feasible and bounded, then it has an optimal solution.

Theorem 1.2. All basic feasible points for (1) are vertices of the feasible polytope {x|Ax = b,x ≥ 0}, and
vice versa.

Definition 1.2. A basis B is said to be degenerate if xi = 0 for some i ∈ B, where x is the basic feasible
solution corresponding to B. A linear program is said to be degenerate if it has at least one degenerate basis.

Two-Phase Procedure for the Simplex Method. The first phase solves the following linear program
to obtain an initial solution:

min eTz subject to Ax + Ez = b, (x, z) ≥ 0, (8)

where z ∈ Rm, e = (1, · · · , 1)T , and E is a diagonal matrix whose diagonal elements are

Ejj = 1, if bj ≥ 0, Ejj = −1, if bj = 0.

The nice thing about this formulation is that there exists a very simple basic feasible solution for (8):

x = 0, zj = |bj |, j = 1, 2, · · · ,m.

The second phase solves the following linear program:

min cTx subject to Ax + z = b, x ≥ 0, 0 ≥ z 0. (9)

It is easy to modify the simplex method for solving (9).

2 Interior Point Method (Primal-Dual Methods)

2.1 Outline

Primal-dual methods find solutions (x?, λ?, s?) of this system by applying variants of Newton’s method to the
three equalities (3),(4) and (7) and modifying the search directions and step lengths so that the inequalities
(x, s) ≥ 0 are satisfied strictly at every iteration. The equations (3),(4) and (7) are linear or only mildly
nonlinear and so are not difficult to solve by themselves. However, the problem becomes much more difficult
when we add the nonnegativity requirement (x, s) ≥ 0, which gives rise to all the complications in the design
and analysis of interior-point methods.

To derive primal-dual interior-point methods we restate the optimality conditions in a slightly different
form by means of a mapping F from R2n+m to R2n+m:

F (x, λ, s) = 0, (10)

(x, s) ≥ 0, (11)
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Denote
X = diag(x1, x2, · · · , xn), S = diag(s1, s2, · · · , sn),

and e = (1, 1, · · · , 1)T . Primal-dual methods generate iterates (xk, λk,xk) that satisfy the bounds (11)
strictly, that is, xk > 0 and sk > 0. This property is the origin of the term interior-point. By respecting
these bounds, the methods avoid spurious solutions, that is, points that satisfy F (x, λ, s) = 0 but not
(x, s) ≥ 0. Like most iterative algorithms in optimization, primal-dual interior-point methods have two
basic ingredients: a procedure for determining the step and a measure of the desirability of each point in the
search space. An important component of the measure of desirability is the average value of the pairwise
products xisi, i = 1, 2, · · · , n, which are all positive when x > 0 and s > 0. This quantity is known as the
duality measure and is defined as follows:

µ =
1

n

n∑
i=1

xisi =
xTs

n
. (12)

The procedure for determining the search direction has its origins in Newton’s method for the nonlinear
equations (10). Newton’s method forms a linear model for F around the current point and obtains the search
direction (δx, δλ, δs) by solving the following system of linear equations:

J(x, λ, s)

 δx
δλ
δs

 = −F (x, λ, s),

where J is the Jacobian of F . If we use the notation rc and rb for the first two block rows in F , that is,

rb = Ax− b, rc = ATλ+ s− c, (13)

we can write the Newton equations as follows: 0 AT I
A 0 0
S 0 X

 δx
δλ
δs

 =

 −rc
−rb
−XSe

 . (14)

Usually, a full step along this direction would violate the bound (x, s) ≥ 0, so we perform a line search along
the Newton direction and define the new iterate as

(x, λ, s) + α(δx, δλ, δs),

for some line search parameter α ∈ (0, 1]. We often can take only a small step along this direction α << 1
before violating the condition (x, s) > 0 . Hence, the pure Newton direction (14), sometimes known as the
affine scaling direction, often does not allow us to make much progress toward a solution. Most primal-dual
methods use a less aggressive Newton direction, one that does not aim directly for a solution but rather
for a point whose pairwise products xisi are reduced to a lower average value – not all the way to zero.
Specifically, we take a Newton step toward the a point for which xisi = σµ, where µ is the current duality
measure and σ ∈ [0, 1] is the reduction factor that we wish to achieve in the duality measure on this step.
The modified step equation is then 0 AT I

A 0 0
S 0 X

 δx
δλ
δs

 =

 −rc
−rb

−XSe + σµe

 . (15)

We call σ the centering parameter, for reasons to be discussed later in this class. When σ > 0, it usually is
possible to take a longer step α along the direction defined by (15) before violating the bounds (x, s) ≥ 0.
At this point, we have specified most of the elements of a path-following primal-dual interior-point method.

The choices of centering parameter σk and step length αk are crucial to the performance of the method.
Techniques for controlling these parameters, directly and indirectly, give rise to a wide variety of methods
with diverse properties.
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3 Convergence of Interior Point Methods

This section works through the proof of a convergence analysis of an interior point method.

The Central Path. The primal-dual feasible set F and strictly feasible set Fo are defined as follows:

F = {(x, λ, s)|Ax = b, ATλ+ s = c, (x, s) ≥ 0}, (16)

Fo = {(x, λ, s)|Ax = b, ATλ+ s = c, (x, s) > 0}. (17)

The central path C is an arc of strictly feasible points that plays a vital role in primal-dual algorithms.
It is parametrized by a scalar τ > 0, and each point (xτ , λτ , sτ ) ∈ C satisfies the following equations:

ATλ+ s = c, (18)

Ax = b, (19)

xisi = τ, i = 1, 2, · · · , n, (20)

(x, s) > 0 (21)

These conditions differ from the KKT conditions only in the term τ on the right-hand side of (20). Instead
of the complementarity condition (20), we require that the pairwise products xisi have the same (positive)
value for all indices i. From (18)-(21), we can define the central path as C = {(xτ , λτ , sτ )|τ > 0}. It can
be shown that (xτ , λτ , sτ ) is defined uniquely for each τ > 0 if and only if Fo is nonempty. The conditions
(18)-(21) are also the optimality conditions for a logarithmic-barrier formulation. By introducing log-barrier
terms for the nonnegativity constraints, with barrier parameter τ > 0, we obtain

min cTx− τ
n∑
i=1

log(xi), subject to Ax = b. (22)

Central Path Neighborhoods and Path-Following Methods. Path-following algorithms explicitly
restrict the iterates to a neighborhood of the central path C and follow C to a solution of the linear program.
By preventing the iterates from coming too close to the boundary of the nonnegative orthant, they ensure
that it is possible to take a nontrivial step along each search direction. Moreover, by forcing the duality
measure µk to zero as k → ∞, we ensure that the iterates (xk, λk, sk) come closer and closer to satisfying
the KKT conditions.

The two most interesting neighborhoods of C are

N2(θ) = {(x, λ, s) ∈ Fo|‖XSe− µe‖ ≤ θµ}, (23)

for some θ ∈ [0, 1), and

N−∞(γ) = {(x, λ, s) ∈ Fo|xisi ≥ γµ, i = 1, 2, · · · , n}, (24)

for some γ ∈ (0, 1]. (Typical values of the parameters are θ = 0.5 and γ = 10−3.) If a point lies in N−∞(γ),
each pairwise product xisi must be at least some small multiple γ of their average value µ. This requirement
is actually quite modest, and we can make N−∞(γ) encompass most of the feasible region F by choosing
γ close to zero. The N2(θ) neighborhood is more restrictive, since certain points in Fo do not belong to
N2(θ) no matter how close θ is chosen to its upper bound of 1. By keeping all iterates inside one or other
of these neighborhoods, path-following methods reduce all the pairwise products xisi to zero at more or less
the same rate.

Long-Step Path-Following. The pesudo-code of the algorithm we want to discuss is given below:

• Given γ, σmin, σmax with γ ∈ (0, 1), 0 < σmin ≤ σmax < 1, and (x0, λ0, s0) ∈ N−∞(γ);

• for k = 0, 1, 2, . . . ,

• Choose σk ∈ [σmin, σmax];
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• Solve the following linear system to obtain (∆xk,∆λk,∆sk): 0 AT I
A 0 0
Sk 0 Xk

 ·
 ∆xk

∆λk

∆sk

 =

 0
0

−XkSke + σµke

 . (25)

• Choose αk as the largest value of α in [0, 1] such that

(xk(α), λk(α), sk(α)) ∈ N−∞(γ)

• Set (xk+1, λk+1, sk+1) = (xk(αk), λk(αk), sk(αk)).

• end(for)

Proof Architecture.

Lemma 3.1. Let u and v be any two vectors in Rn with uTv ≥ 0. Then

‖UV e‖ ≤ 2−
3
2 ‖u + v‖22,

where
U = diag(u1, · · · , un), V = diag(v1, · · · , vn).

Lemma 3.2. If (x, λ, s) ∈ N−∞(γ), then

‖∆X∆Se‖ ≤ 2−
3
2 (1 +

1

γ
)nµ.

Theorem 3.1. Given the parameters γ, σmin, σmax, there is a constant δ independent of n such that

µk+1 ≤ (1− δ

n
)µk,

for all k ≥ 0.

Theorem 3.2. Given ε ∈ (0, 1) and γ ∈ (0, 1), suppose the starting point satisfies (x0, λ0, s0) ∈ N−∞(γ).
Then there is an index K with K = O(n log(1/ε)) such that

µk ≤ εµ0, for all k ≥ K.
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