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1 Introduction

1.1 Proximal Mapping

The proximal mapping of a (convex) function h(x) is given by

proxh(x) = argmin
u

(
h(u) +

1

2
‖u− x‖2

)
.

The following are some examples:

• When h(x) = 0, then proxh(x) = x.

• When h(x) = IdC , where IdC is the indicator function on C. Then

proxh(x) = argmin
u∈C

‖u− x‖2.

• When h(x) = t‖x‖1 for some positive t > 0, then proxh(x) is a shrinkage operator defined as

proxh(x)i =

 xi − t xi > t
0 |xi| ≤ t

xi + t xi < −t

1.2 Proximal Gradient Method

We are interested in minimizing an objective function of the following form:

f(x) = g(x) + h(x).

Here g(x) is a nice convex objective function, e.g., smooth and easy to optimize. h(x) is also convex, but it
maybe not that nice, e.g., non-differentiable and non-smooth. However, we assume optimizing proxh(x) is
inexpensive. One such example is

argmin
x

‖Ax− b‖2 + λ‖x‖1

Proximal gradient methods admit the following form:

x(k) = proptkh

(
x(k−1) − tk∇g(x(k−1))

)
,

where tk is called the step-size, which is either a constant or determined by line-search.
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We can understand the proximal update as follows:

x(k) = proptkh

(
x(k−1) − tk∇g(x(k−1))

)
= argmin

u
h(u) +

1

2t
‖u− x(k−1) + t∇g(x(k−1))‖2

= argmin
u

(
h(u) + g(x(k−1)) +∇g(x(k−1))T (u− x(k−1)) +

1

2t
‖u− x(k−1)‖2

)
In other words, x(k) minimizes h(u) and a local quadratic approximation of g(u) in the neighborhood of

x(k−1).

Example I. When h(x) = 0, Then proximal gradient method becomes gradient method:

x(k) = x(k−1) − tk∇g(x(k−1)).

Example II. When h(x) = IdC , then

x(k) = projC
(
x(k−1) − tk∇g(x(k−1))

)
.

Example III. Iteractive soft-thresholding where h(x) = ‖x‖1, i.e., minimize g(x) + ‖x‖1:

x(k) = proxtkh
(x(k−1) − tk∇g(x(k−1))),

where

proxth(u)i =

 xi − t xi ≥ t
0 |xi| ≤ t

xi + t xi ≤ −t

2 Proximal Gradient Algorithm

The proximal gradient iteration can be written as x(k) = x(k−1) − tkGtk(x(k−1)) where

Gt(x) =
1

t

(
x− proxth

(
x− t∇g(x)

))
.

from sub-gradient definition of prox

Gt(x) ∈ ∇g(x) + ∂h(x− tGt(x)).

In other words, Gt(x) = 0 if and only of x minimizes f(x) = g(x) + h(x).

To determine stepsize t in
x+ = x− tGt(x).

Start with some t = t̂; repeat t := βt (with 0 < β < 1) until

g(x− tGt(x)) ≤ g(x)− t∇g(x)TGt(x) +
t

2
‖Gt(x)‖2.

The inequality is motivated from the convergence analysis, which will be described next.

3 Convergence of Proximal Gradient Method

Assumptions.
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• ∇g(x) is Lipschitz continuous with constant L > 0

‖∇g(x)−∇g(y)‖ ≤ L‖x− y‖, ∀x, y

• optimal value f? is finite and attained at x? (not necessarily unique).

Claim. We show that f(x(k))− f(x?) decreases at least as fast as 1/k if

• if step size tk = 1/L is used

• if backtrack line search is used

Proof. To prove this we will start with some properties regarding g(x):

• affine lower bound from convexity:

g(y) ≥ g(x) +∇g(x)T (y − x).

• quadratic upper bound from Lipschitz property

g(y) ≤ g(x) +∇g(x)T (y − x) +
L

2
‖y − x‖2.

Let v = y − x. The proof of this straight-forward using

g(y)− g(x) = ∇g(x)Tv +

∫ 1

0

(∇g(x + tv)−∇g(x))Tvdt.

A consequence of this is that the line search inequality

g(x− tGt(x)) ≤ g(x)− t∇g(x)Gt(x) +
t

2
‖Gt(x)‖2 (1)

is satisfied for 0 ≤ t ≤ 1
L . This means back-tracking at t̂ terminates at t ≥ min(t̂, β/L).

If the line search inequality (1) holds, then for all z,

f(x− tGt(x)) ≤ f(z) +Gt(x)T (x− z)− t

2
‖Gt(x)‖2. (2)

Using (2), we can obtain the progress in one iteration:

f(x+)− f(x?) ≤ 1

2t

(
‖x− x?‖2 − ‖x+ − x?‖2

)
.

Analysis with fixed stepsize. We will show that f(x(k))− f(x?) = O( 1
k ). In fact,

k∑
i=1

(f(x(i))− f(x?)) ≤
k∑

i=1

1

2t

(
‖x(i−1) − x?‖2 − ‖x(i) − x?‖2

)
≤ 1

2t

k∑
i=1

(
‖x(i−1) − x?‖2 − ‖x(i) − x?‖2

)
=

1

2t

(
‖x(0) − x?‖2 − ‖x(k) − x?‖2

)
.

Since f(x(i)) is non-increasing,

f(x(k))− f? ≤ 1

2kt
‖x(0) − x?‖2.
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This means when t = 1
L , f(x(k))− f? = O( L

2k ).

Analysis with line search. The derivation is quite similar:

k∑
i=1

(f(x(i))− f(x?)) ≤
k∑

i=1

1

2ti

(
‖x(i−1) − x?‖2 − ‖x(i) − x?‖2

)
≤ 1

2tmin

k∑
i=1

(
‖x(i−1) − x?‖2 − ‖x(i) − x?‖2

)
=

1

2tmin

(
‖x(0) − x?‖2 − ‖x(k) − x?‖2

)
.

Since f(x(i)) is non-increasing,

f(x(k))− f? ≤ 1

2ktmin
‖x(0) − x?‖2.
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