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1 Introduction

1.1 Proximal Mapping

The proximal mapping of a (convex) function h(x) is given by

1
prox; () = argmin (h(u) + §Hu —z|?).

The following are some examples:
e When h(z) = 0, then prox,(z) = x.
e When h(z) = Idc, where Ide is the indicator function on C. Then

prox,, (x) = argmin |lu — x|°.
ueC

e When h(z) = t||z||; for some positive ¢ > 0, then prox,(z) is a shrinkage operator defined as

xr; —t xr; >t
prox, (x); = 0 x| <t
T+t x; < —t

1.2 Proximal Gradient Method
We are interested in minimizing an objective function of the following form:
f(x) = g(x) + h(z).

Here g(x) is a nice convex objective function, e.g., smooth and easy to optimize. h(x) is also convex, but it
maybe not that nice, e.g., non-differentiable and non-smooth. However, we assume optimizing prox,,(x) is
inexpensive. One such example is
argmin ||Az — b||> + \||z|
xT

Proximal gradient methods admit the following form:

k) —

2™ = prop, (w(k_” —~ thg(fv(’“_”))7

where t, is called the step-size, which is either a constant or determined by line-search.



We can understand the proximal update as follows:
z®) — propy, , (m(kfl) — thg(a:(kfl)))
1 ) .
= argmin h(u) + %Hu — x4 1vg(x*Y)|2
u

. _ _ _ 1 _
= argmin (h(w) + g(x*™) + Vo) (w — 2ED) 4+ —flu — 2*D2)

u

In other words, (%) minimizes h(u) and a local quadratic approximation of g(wu) in the neighborhood of
(k—1)
T .

Example I. When h(x) = 0, Then proximal gradient method becomes gradient method:

) = =D _ vg(xFY),

Example II. When h(z) = Idc, then

2™ = proj. (2 — 1, Vg(z* V).

Example III. Tteractive soft-thresholding where h(x) = ||z||1, i.e., minimize g(x) + ||z||1:
a®) = prox, (" — 1, Vg(x* V),

where
Ty — t €T; Z t

prox,;, (u); = 0 || <t
xr; + t xT; § —t

2 Proximal Gradient Algorithm

The proximal gradient iteration can be written as 2®) = z(*=1) —#, G, (z*~1) where

1

Gi(x) = n (:I: — prox,, (o — th(m))).

from sub-gradient definition of prox
Gi(x) € Vg(x) + Oh(z — tGy(x)).

In other words, G¢(x) = 0 if and only of & minimizes f(x) = g(x) + h(x).
To determine stepsize t in
zt =z —tGy(x).
Start with some ¢ = #; repeat ¢ := £t (with 0 < 8 < 1) until
t
g(x —1Gy(2)) < g(x) — tVg(2)" Gi(2) + | Gi(@)]*.

The inequality is motivated from the convergence analysis, which will be described next.

3 Convergence of Proximal Gradient Method

Assumptions.



e Vg(x) is Lipschitz continuous with constant L > 0

IVg(x) — Vo)l < Lz —yll, Va,y
e optimal value f* is finite and attained at &* (not necessarily unique).
Claim. We show that f(z®)) — f(z*) decreases at least as fast as 1/k if

e if step size tp = 1/L is used

o if backtrack line search is used
Proof. To prove this we will start with some properties regarding g(x):
e affine lower bound from convexity:
9(y) = g(x) + Vg(x)" (y - ).
e quadratic upper bound from Lipschitz property
T L 2
9(y) < g(x) + Vg(@)" (y —2) + S lly — ="
Let v = y — «. The proof of this straight-forward using
1
9(y) ~ 9(@) = Vo(e)To + [ (Vg(a + to) - Vo(e) vt
0
A consequence of this is that the line search inequality
t
9@ —tGy(x)) < g(x) — tVg(2)Gi(2) + (| Gi(@)]” (1)

is satisfied for 0 <t < +. This means back-tracking at ¢ terminates at ¢ > min(f, /L).
If the line search inequality holds, then for all z,

fla = tGy(x)) < f(2) + Ge()" (x — 2) — %I\Gt(w)IIQ- (2)

Using , we can obtain the progress in one iteration:

| =

(e —2|* = JJ* — 2*|?).

fla®) = f(=") <

[\J

t

Analysis with fixed stepsize. We will show that f(z*®)) — f(z*) = O(4). In fact,

k

D (f@) = fz) <

i=1

(=0 — || — ||z — 2*|?)

[~
2~

1

k
D (et =2 — [z —2*?)

1=

(2@ — &> — 2™ —a*|?).

IN
2]
)

S

Since f(x(") is non-increasing,
1
(k)Y _ £* < 0) _ %2
F@) = 1 < ool — o



This means when ¢t = £, f(z®) — f* = O(£).
Analysis with line search. The derivation is quite similar:

k

k
% * 1 i— * 7 *
(f@®) = f@) <Y -l —2*|* — @ —a*|?)
i=1 i=1 2t
1 < _
Yo (2D =2 — 2 —2*|?)
mln i=1
(llfﬂ(o) e[ — a® —z*|?).
Since f(x(?) is non-increasing,
F@®) — £ < e ® — 2.
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