#### CS395T Lecture 18: 3D Representations



Qixing Huang Oct. 31<sup>th</sup> 2018

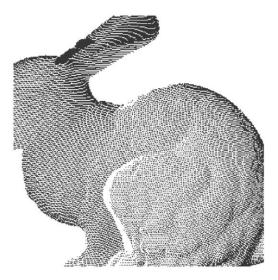


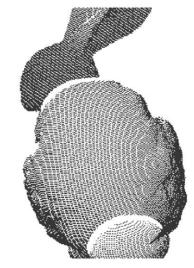
### **3D Representations**

- Point clouds
- Parametric surfaces
- Implicit surfaces
- Triangular meshes
- Part-based models

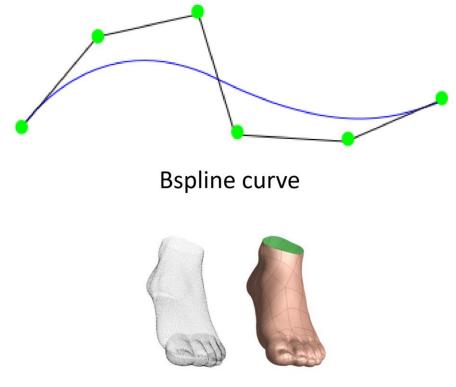
### Point Cloud







#### Parametric surfaces



Eck and Hoppe' 96

#### **Implicit Surfaces**

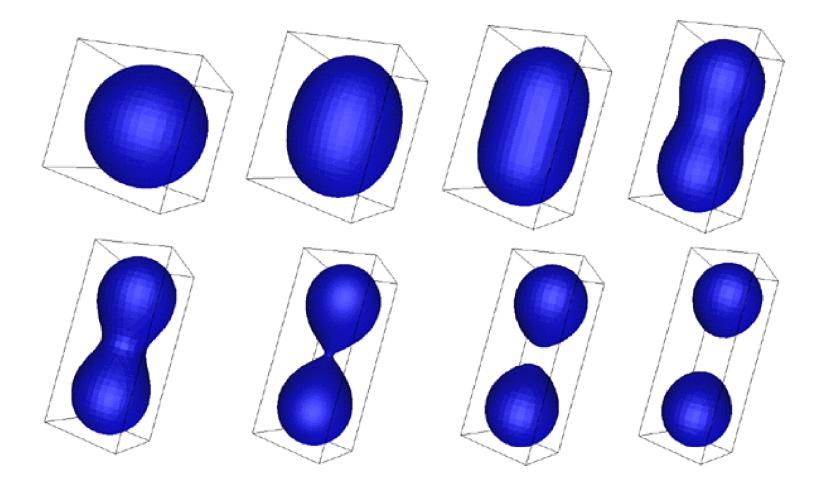
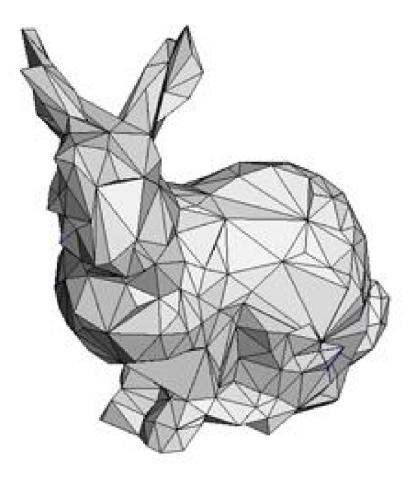


Image from http://paulbourke.net/geometry/implicitsurf/implicitsurf4.gif

### **Triangular Mesh**



### Scene Graph

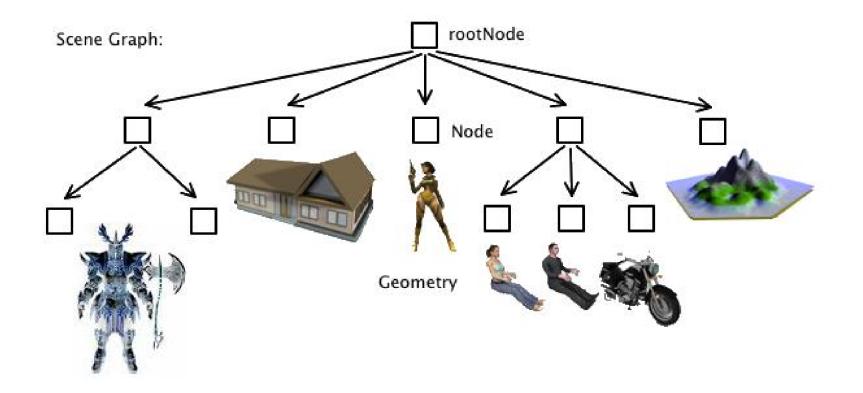


Image from https://gamedev.stackexchange.com/tags/scene-graph/info

#### What to Learn?

• Pros and cons of each representation

Conversions between different representations

## This Lecture

• Implicit surface

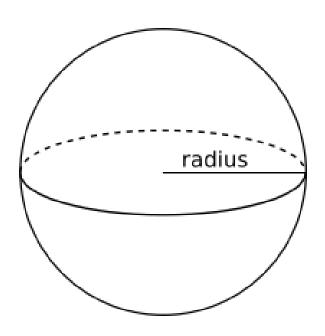
• Point cloud -> Implicit Surface

• Implicit surface -> triangular mesh

#### **Implicit Surfaces**

### What is implicit surface?

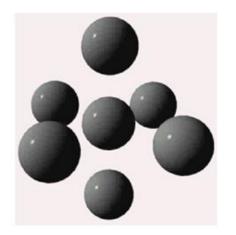
 A sphere x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup> = radius<sup>2</sup> is an implicit surface



# What is implicit surface?

- Implicit surfaces are two-dimensional, geometric shapes that exist in three dimensional space
  - Defined in R<sup>3</sup>
  - 2D Manifold if no singular points
  - A surface embedded in R<sup>3</sup>

## Examples of implicit surfaces



Metaball



Radial Basis Function [Carr et al. 01]

# Definition of implicit surface

Definition

{
$$p=(x,y,z): f(p)=0, p \in \mathbb{R}^3$$
}

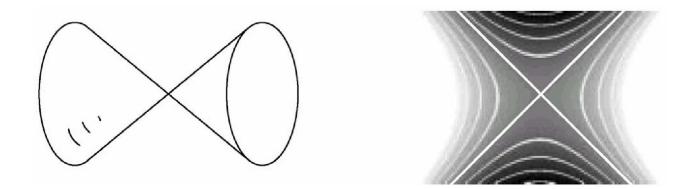
- When *f* is algebraic function, i.e., polynomial function
  - Note that f and c\*f specify the same curve
  - Algebraic distance: the value of *f(p)* is the approximation of distance from *p* to the algebraic surface *f=0*

# Definition of implicit surface

• Regular point *p* on the surface

$$\nabla f(p) = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}) \neq 0$$

Consider cone z<sup>2</sup>=x<sup>2</sup>+y<sup>2</sup>
 – (0,0,0) is not a regular point



#### Implicit function theorem

Let  $f: \mathbb{R}^{n+m} \to \mathbb{R}^m$  be a continuously differentiable function, and let  $\mathbb{R}^{n+m}$  have coordinates  $(\mathbf{x}, \mathbf{y})$ . Fix a point  $(\mathbf{a}, \mathbf{b}) = (a_1, ..., a_n, b_1, ..., b_m)$  with  $f(\mathbf{a}, \mathbf{b}) = \mathbf{0}$ , where  $\mathbf{0} \in \mathbb{R}^m$  is the zero vector. If the Jacobian matrix  $J_{f, \mathbf{y}}(\mathbf{a}, \mathbf{b}) = [(\partial f_i / \partial y_j)(\mathbf{a}, \mathbf{b})]$  is invertible, then there exists an open set U of  $\mathbb{R}^n$  containing  $\mathbf{a}$ , and such that there exists a unique continuously differentiable function  $g: U \to \mathbb{R}^m$  such that

$$g(\mathbf{a}) = \mathbf{b}$$

and

$$f(\mathbf{x},g(\mathbf{x})) = \mathbf{0}$$
 for all  $\mathbf{x} \in U.$ 

Moreover, the partial derivatives of g in U are given by

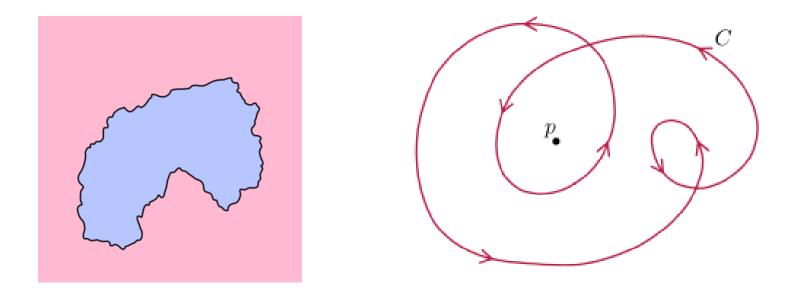
$$rac{\partial g}{\partial x_j}(\mathbf{x}) = -\sum_i (J_{f,\mathbf{y}}(\mathbf{x},g(\mathbf{x}))^{-1})_{ji} rac{\partial f}{\partial x_i}(\mathbf{x},g(\mathbf{x})).$$

No singular points then an implicit surface is a manifold

From https://en.wikipedia.org/wiki/Implicit\_function\_theorem

#### Jordan-Brouwer Separation Theorem

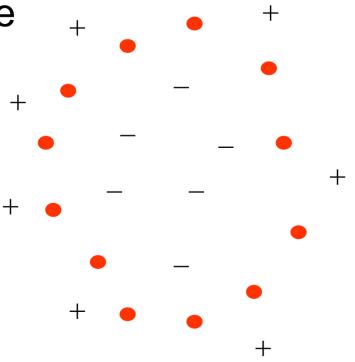
Any compact, connected hyper-surface X in R<sup>n</sup> will divide R<sup>n</sup> into two connected regions: the "outside" D<sub>0</sub> and the "inside" D<sub>1</sub>. Furthermore, D<sub>1</sub> is itself a compact manifold with boundary X



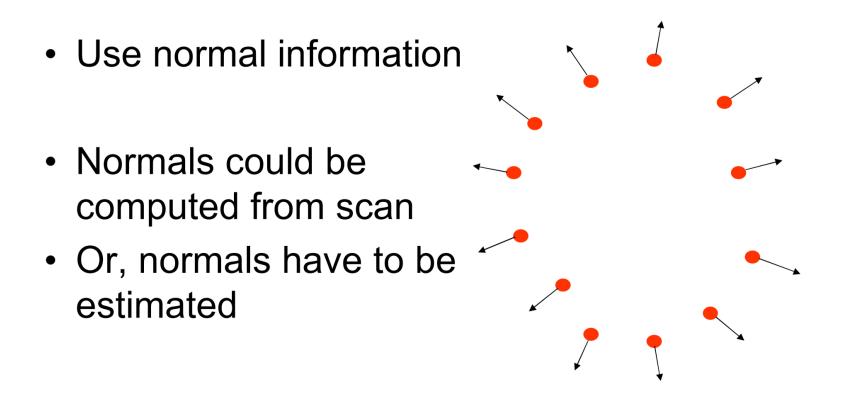
#### Point Cloud -> Implicit

# Implicits from point samples

- Constraints define inside and outside
- Simple approach (Turk, + O'Brien)
  - Sprinkle additional information manually
  - Make additional information soft constraints

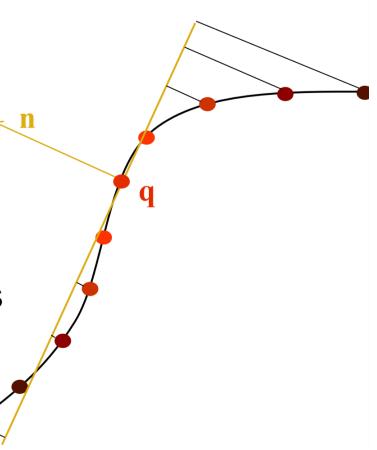


# Implicits from point samples



# Estimating normals

- Normal orientation (Implicits are signed)
  - Use inside/outside information from scan
- Normal direction by fitting a tangent
  - LS fit to nearest neighbors
  - Weighted LS fit
  - MLS fit



# Estimating normals

- General fitting problem  $\min_{\|\mathbf{n}\|=1} \sum_{i} \langle \mathbf{q} - \mathbf{p}_{i}, \mathbf{n} \rangle^{2} \theta(\|\mathbf{q} - \mathbf{p}_{i}\|)$ 
  - Problem is non-linear
     because n is constrained
     to unit sphere

http://graphics.stanford.edu/~mapauly/Pdfs/SigCourse04.pdf

n

q

# Estimating normals

• The constrained minimization problem

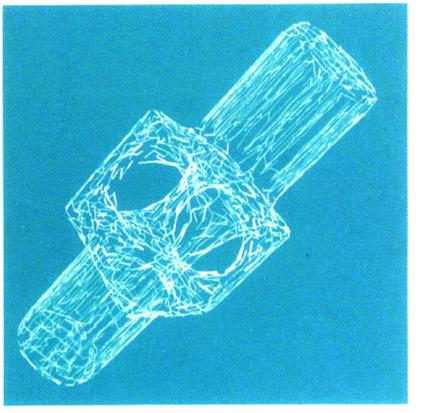
$$\min_{\|\mathbf{n}\|=1}\sum_{i}\langle \mathbf{q}-\mathbf{p}_{i},\mathbf{n}\rangle^{2}\theta_{i}$$

is solved by the eigenvector corresponding to the smallest eigenvalue of the following covariance matrix

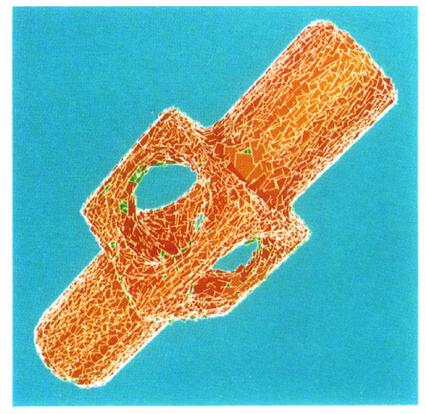
$$\sum_{i} (\mathbf{q} - \mathbf{p}_{i}) \cdot (\mathbf{q} - \mathbf{p}_{i})^{\mathrm{T}} \theta_{i}$$

which is constructed as a sum of weighted outer products.

#### Normal orientation [Hoppe et al. 92]



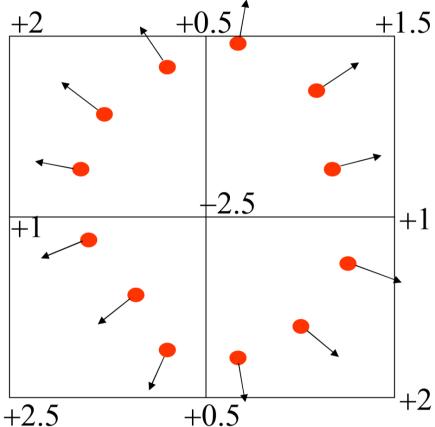
(a) Traversal order of orientation propagation



(b) Oriented tangent planes  $(Tp(\mathbf{x}_i))$ 

# Implicits from point samples

- Compute non-zero anchors in the distance field
- Compute distances at specific points
  - Vertices, mid-points, etc. in a spatial subdivision

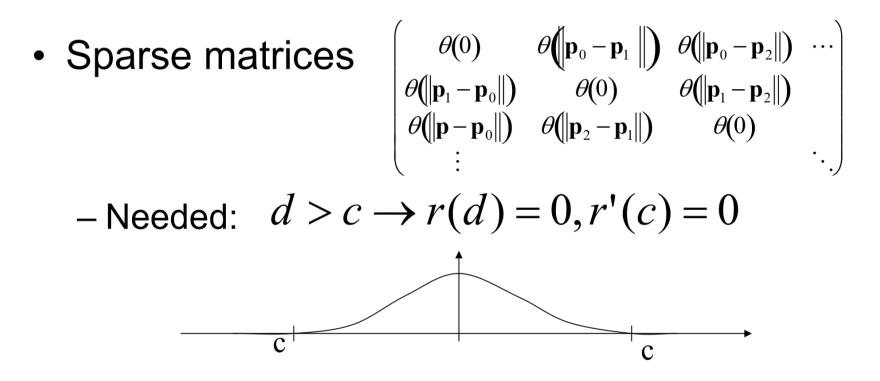


• Given N points and normals  $\mathbf{p}_i$ ,  $\mathbf{n}_i$ and constraints  $f(\mathbf{p}_i) = 0$ ,  $f(\mathbf{c}_i) = d_i$ 

• Let 
$$\mathbf{p}_{i+N} = \mathbf{c}_i$$

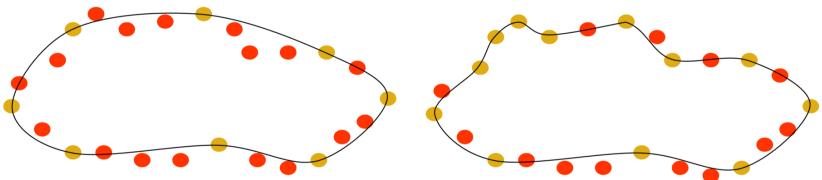
• An RBF approximation  $f(\mathbf{x}) = \sum_{i} w_{i} \theta(\|\mathbf{p}_{i} - \mathbf{x}\|)$ leads to a system of linear equations

- Practical problems: N > 10000
- Matrix solution becomes difficult
- Two solutions
  - Sparse matrices allow iterative solution
  - Smaller number of RBFs



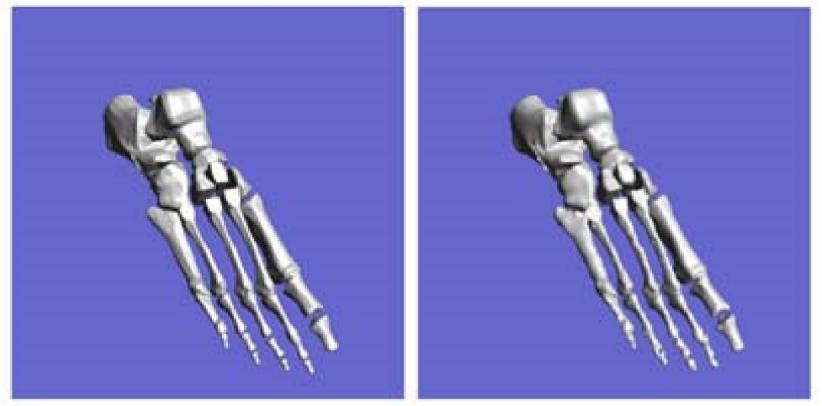
Compactly supported RBFs

- Smaller number of RBFs
- Greedy approach (Carr et al.)
  - Start with random small subset
  - Add RBFs where approximation quality is not sufficient



#### **RBF Implicits - Results**

Images courtesy Greg Turk



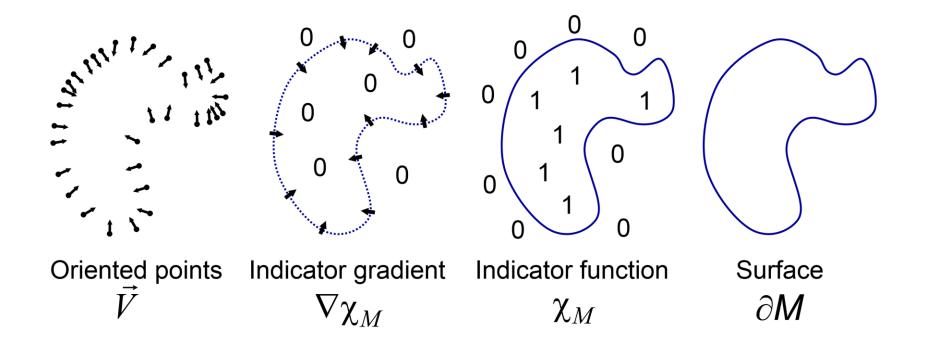
#### Defining point-set surfaces [Amenta et al. 05]

#### **Defining Point-Set Surfaces**

Nina Amenta Yong J. Kil

Center for Image Processing and Integrated Computing, U C Davis

# Poisson surface reconstruction [Kazhdan et al. 06]



# Poisson surface reconstruction [Kazhdan et al. 06]

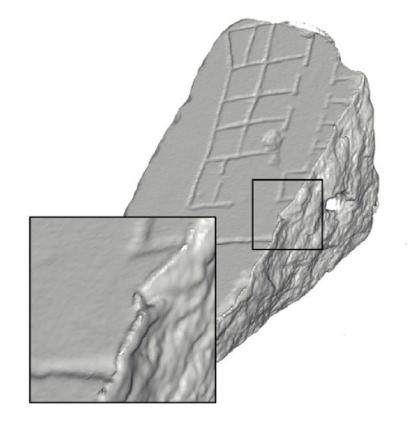
Define the vector field:

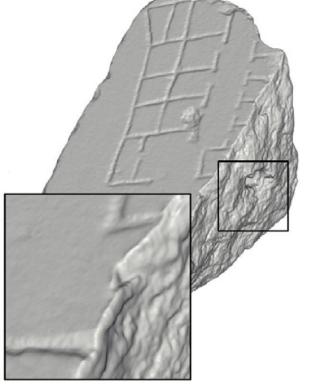
$$\nabla(\chi_M * \tilde{F})(q) = \sum_{s \in S} \int_{\mathscr{P}_s} \tilde{F}_p(q) \vec{N}_{\partial M}(p) dp$$
$$\approx \sum_{s \in S} |\mathscr{P}_s| \tilde{F}_{s.p}(q) s. \vec{N} \equiv \vec{V}(q)$$

Solve the Poisson equation:

$$\Delta ilde{\chi} = 
abla \cdot ec{V}$$
 .

# Poisson surface reconstruction [Kazhdan et al. 06]





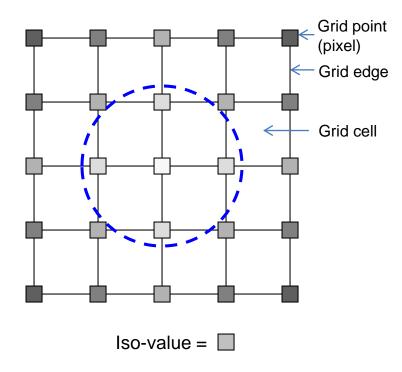
VRIP

Poisson Surface Reconstruction

#### Implicit Surface -> Mesh

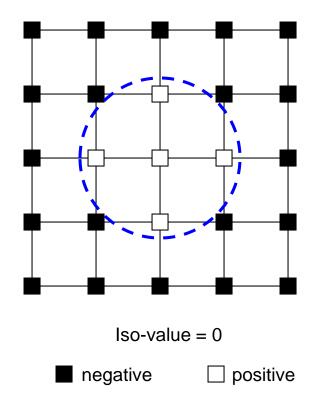
# Contouring (On A Grid)

- Input
  - A grid where each grid point (pixel or voxel) has a value (color)
  - An iso-value (threshold)
- Output
  - A closed, manifold, nonintersecting polyline (2D) or mesh (3D) that separates grid points above the isovalue from those that are below the iso-value.



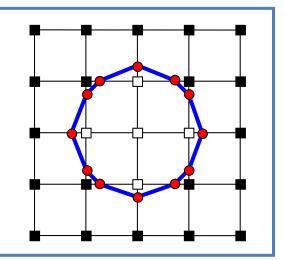
### Contouring (On A Grid)

- Input
  - A grid where each grid point (pixel or voxel) has a value (color)
  - An iso-value (threshold)
- Output
  - Equivalently, we extract the zero-contour (separating negative from positive) after subtracting the iso-value from the grid points

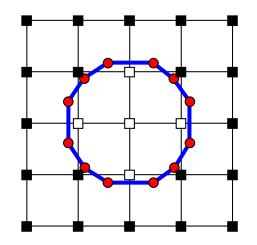


#### Algorithms

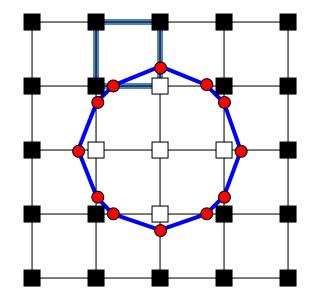
- Primal methods
  - Marching Squares (2D),
     Marching Cubes (3D)
  - Placing vertices on grid edges



- Dual methods
  - Dual Contouring (2D,3D)
  - Placing vertices in grid cells



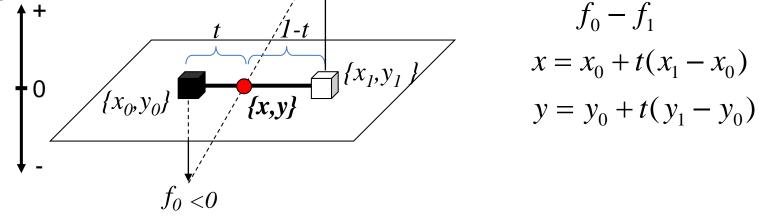
- For each grid cell with a sign change
  - Create one vertex on each grid edge with a sign change
  - Connect vertices by lines



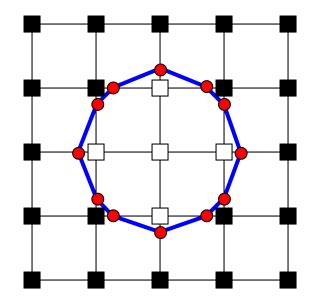
- For each grid cell with a sign change
  - Create one vertex on each grid edge with a sign change
  - Connect vertices by lines



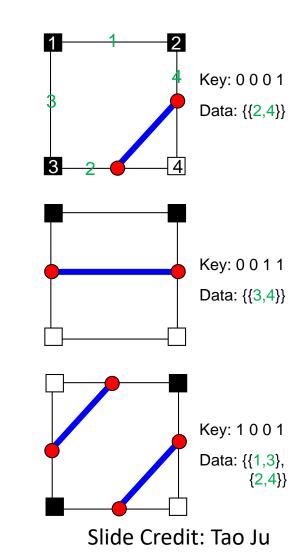
- Creating vertices: linear interpolation
  - Assuming the underlying, continuous function is linear on the grid edge
  - Linearly interpolate the positions of the two gridpoints $<math>t = \frac{f_0}{f_0 - f_1}$



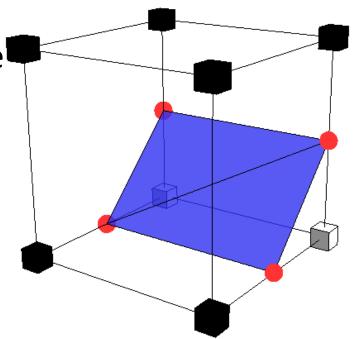
- For each grid cell with a sign change
  - Create one vertex on each grid edge with a sign change
  - Connect vertices by lines



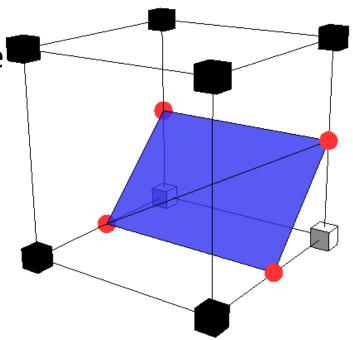
- Connecting vertices by lines
  - Lines shouldn't intersect
  - Each vertex is used once
    - So that it will be used exactly twice by the two cells incident on the edge
- Two approaches
  - Do a walk around the grid cell
    - Connect consecutive pair of vertices
  - Or, using a pre-computed look-up table
    - 2<sup>4</sup>=16 sign configurations
    - For each sign configuration, it stores the indices of the grid edges whose vertices make up the lines.



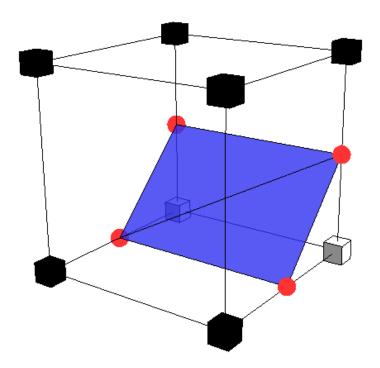
- For each grid cell with a sign change
  - Create one vertex on each grid edge with a sign change (using linear interpolation)
  - Connect vertices into triangles



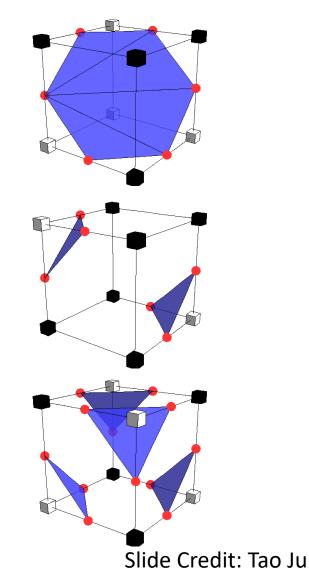
- For each grid cell with a sign change
  - Create one vertex on each grid edge with a sign change
  - (using linear interpolation)
    - Connect vertices into triangles



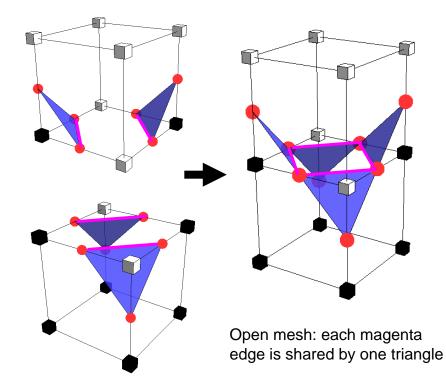
- Connecting vertices by triangles
  - Triangles shouldn't intersect
  - To be a closed manifold:
    - Each vertex used by a triangle "fan"
    - Each mesh edge used by 2 triangles (if inside grid cell) or 1 triangle (if on a grid face)



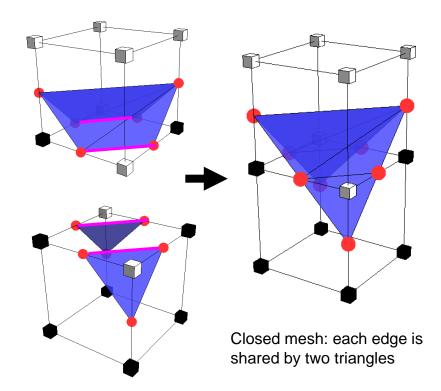
- Connecting vertices by triangles
  - Triangles shouldn't intersect
  - To be a closed manifold:
    - Each vertex used by a triangle "fan"
    - Each mesh edge used by 2 triangles (if inside grid cell) or 1 triangle (if on a grid face)



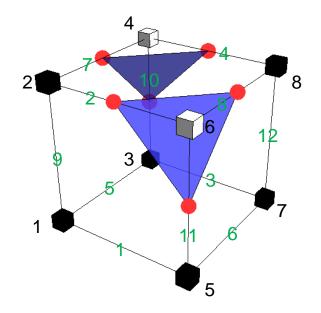
- Connecting vertices by triangles
  - Triangles shouldn't intersect
  - To be a closed manifold:
    - Each vertex used by a triangle "fan"
    - Each mesh edge used by 2 triangles (if inside grid cell) or 1 triangle (if on a grid face)



- Connecting vertices by triangles
  - Triangles shouldn't intersect
  - To be a closed manifold:
    - Each vertex used by a triangle "fan"
    - Each mesh edge used by 2 triangles (if inside grid cell) or 1 triangle (if on a grid face)
    - Each mesh edge on the grid face is shared between adjacent cells

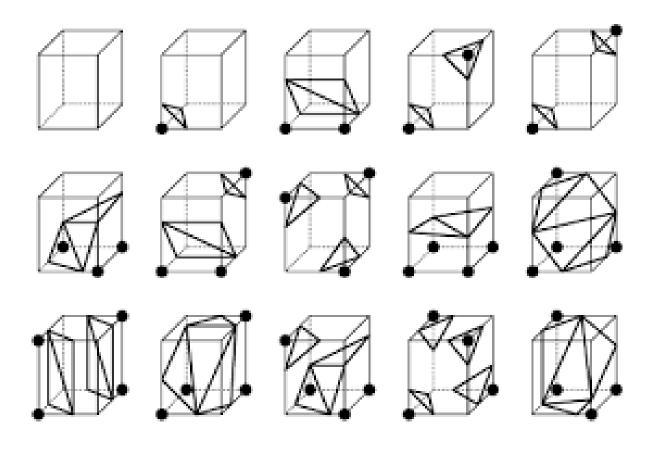


- Connecting vertices by triangles
  - Triangles shouldn't intersect
  - To be a closed manifold:
    - Each vertex used by a triangle "fan"
    - Each mesh edge used by 2 triangles (if inside grid cell) or 1 triangle (if on a grid face)
    - Each mesh edge on the grid face is shared between adjacent cells
- Look-up table
  - 2^8=256 sign configurations
  - For each sign configuration, it stores indices of the grid edges whose vertices make up the triangles



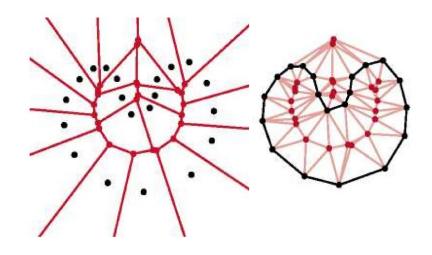
Sign: "0 0 0 1 0 1 0 0" Triangles: {{2,8,11},{4,7,10}}

#### Lookup Table



#### Two Approaches

| Zero Set $f(x,y)=0$<br>Interior<br>f(x,y) > 0<br>Exterior $f(x,y) < 0$ |
|------------------------------------------------------------------------|
|                                                                        |
| Implicit Surface -> Contouring                                         |



#### Computational Geometry Based